1
|
Schou M, Amini N, Takano A, Arakawa R, Dahl K, Toth M, Svedberg M, Varrone A, Halldin C. Microsome Mediated in Vitro Metabolism: A Convenient Method for the Preparation of the PET Radioligand Metabolite [ 18F]FE-PE2I-OH for Translational Dopamine Transporter Imaging. ACS Chem Neurosci 2023; 14:3732-3736. [PMID: 37753876 PMCID: PMC10587862 DOI: 10.1021/acschemneuro.3c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Undesired radiometabolites can be detrimental to the development of positron emission tomography (PET) radioligands. Methods for quantifying radioligand metabolites in brain tissue include ex vivo studies in small animals or labeling and imaging of the radiometabolite(s) of interest. The latter is a time- and resource-demanding process, which often includes multistep organic synthesis. We hypothesized that this process could be replaced by making use of liver microsomes, an in vitro system that mimics metabolism. In this study, rat liver microsomes were used to prepare radiometabolites of the dopamine transporter radioligand [18F]FE-PE2I for in vitro imaging using autoradiography and in vivo imaging using PET in rats and nonhuman primates. The primary investigated hydroxy-metabolite [18F]FE-PE2I-OH ([18F]2) was obtained in a 2% radiochemical yield and >99% radiochemical purity. In vitro and in vivo imaging demonstrated that [18F]2 readily crossed the blood-brain barrier and bound specifically and reversibly to the dopamine transporter. In conclusions, the current study demonstrates the potential of liver microsomes in the production of radiometabolites for translational imaging studies and radioligand discovery.
Collapse
Affiliation(s)
- Magnus Schou
- Department
of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
- PET
Science Centre, Precision Medicine and Biosamples, Oncology R&D, AstraZeneca, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Nahid Amini
- Department
of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Akihiro Takano
- Department
of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Ryosuke Arakawa
- Department
of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Kenneth Dahl
- Department
of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
- PET
Science Centre, Precision Medicine and Biosamples, Oncology R&D, AstraZeneca, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Miklos Toth
- Department
of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Marie Svedberg
- Department
of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Andrea Varrone
- Department
of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Christer Halldin
- Department
of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| |
Collapse
|
2
|
Chen WH, Chiu CH, Farn SS, Cheng KH, Huang YR, Lee SY, Fang YC, Lin YH, Chang KW. Identification of the Hepatic Metabolites of Flumazenil and their Kinetic Application in Neuroimaging. Pharmaceuticals (Basel) 2023; 16:ph16050764. [PMID: 37242547 DOI: 10.3390/ph16050764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Studies of the neurobiological causes of anxiety disorders have suggested that the γ-aminobutyric acid (GABA) system increases synaptic concentrations and enhances the affinity of GABAA (type A) receptors for benzodiazepine ligands. Flumazenil antagonizes the benzodiazepine-binding site of the GABA/benzodiazepine receptor (BZR) complex in the central nervous system (CNS). The investigation of flumazenil metabolites using liquid chromatography (LC)-tandem mass spectrometry will provide a complete understanding of the in vivo metabolism of flumazenil and accelerate radiopharmaceutical inspection and registration. The main goal of this study was to investigate the use of reversed-phase high performance liquid chromatography (PR-HPLC), coupled with electrospray ionization triple-quadrupole tandem mass spectrometry (ESI-QqQ MS), to identify flumazenil and its metabolites in the hepatic matrix. Carrier-free nucleophilic fluorination with an automatic synthesizer for [18F]flumazenil, combined with nano-positron emission tomography (NanoPET)/computed tomography (CT) imaging, was used to predict the biodistribution in normal rats. The study showed that 50% of the flumazenil was biotransformed by the rat liver homogenate in 60 min, whereas one metabolite (M1) was a methyl transesterification product of flumazenil. In the rat liver microsomal system, two metabolites were identified (M2 and M3), as their carboxylic acid and hydroxylated ethyl ester forms between 10 and 120 min, respectively. A total of 10-30 min post-injection of [18F]flumazenil showed an immediate decreased in the distribution ratio observed in the plasma. Nevertheless, a higher ratio of the complete [18F]flumazenil compound could be used for subsequent animal studies. [18F] According to in vivo nanoPET/CT imaging and ex vivo biodistribution assays, flumazenil also showed significant effects on GABAA receptor availability in the amygdala, prefrontal cortex, cortex, and hippocampus in the rat brain, indicating the formation of metabolites. We reported the completion of the biotransformation of flumazenil by the hepatic system, as well as [18F]flumazenil's potential as an ideal ligand and PET agent for the determination of the GABAA/BZR complex for multiplex neurological syndromes at the clinical stage.
Collapse
Affiliation(s)
- Wei-Hsi Chen
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan City 325207, Taiwan
| | - Chuang-Hsin Chiu
- Department of Nuclear Medicine, Tri-Service General Hospital, Taipei 114202, Taiwan
| | - Shiou-Shiow Farn
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan City 325207, Taiwan
| | - Kai-Hung Cheng
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan City 325207, Taiwan
| | - Yuan-Ruei Huang
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan City 325207, Taiwan
| | - Shih-Ying Lee
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan City 325207, Taiwan
| | - Yao-Ching Fang
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110301, Taiwan
| | - Yu-Hua Lin
- Laboratory Animal Center, Taipei Medical University, Taipei 110301, Taiwan
| | - Kang-Wei Chang
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110301, Taiwan
- Laboratory Animal Center, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
3
|
Jucaite A, Stenkrona P, Cselényi Z, De Vita S, Buil-Bruna N, Varnäs K, Savage A, Varrone A, Johnström P, Schou M, Davison C, Sykes A, Pilla Reddy V, Hoch M, Vazquez-Romero A, Moein MM, Halldin C, Merchant MS, Pass M, Farde L. Brain exposure of the ATM inhibitor AZD1390 in humans-a positron emission tomography study. Neuro Oncol 2021; 23:687-696. [PMID: 33123736 DOI: 10.1093/neuonc/noaa238] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The protein kinase ataxia telangiectasia mutated (ATM) mediates cellular response to DNA damage induced by radiation. ATM inhibition decreases DNA damage repair in tumor cells and affects tumor growth. AZD1390 is a novel, highly potent, selective ATM inhibitor designed to cross the blood-brain barrier (BBB) and currently evaluated with radiotherapy in a phase I study in patients with brain malignancies. In the present study, PET was used to measure brain exposure of 11C-labeled AZD1390 after intravenous (i.v.) bolus administration in healthy subjects with an intact BBB. METHODS AZD1390 was radiolabeled with carbon-11 and a microdose (mean injected mass 1.21 µg) was injected in 8 male subjects (21-65 y). The radioactivity concentration of [11C]AZD1390 in brain was measured using a high-resolution PET system. Radioactivity in arterial blood was measured to obtain a metabolite corrected arterial input function for quantitative image analysis. Participants were monitored by laboratory examinations, vital signs, electrocardiogram, adverse events. RESULTS The brain radioactivity concentration of [11C]AZD1390 was 0.64 SUV (standard uptake value) and reached maximum 1.00% of injected dose at Tmax[brain] of 21 min (time of maximum brain radioactivity concentration) after i.v. injection. The whole brain total distribution volume was 5.20 mL*cm-3. No adverse events related to [11C]AZD1390 were reported. CONCLUSIONS This study demonstrates that [11C]AZD1390 crosses the intact BBB and supports development of AZD1390 for the treatment of glioblastoma multiforme or other brain malignancies. Moreover, it illustrates the potential of PET microdosing in predicting and guiding dose range and schedule for subsequent clinical studies.
Collapse
Affiliation(s)
- Aurelija Jucaite
- PET Science Centre, Precision Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Per Stenkrona
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Zsolt Cselényi
- PET Science Centre, Precision Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | | | - Nuria Buil-Bruna
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Katarina Varnäs
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | | | - Andrea Varrone
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Peter Johnström
- PET Science Centre, Precision Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Magnus Schou
- PET Science Centre, Precision Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | | | - Andy Sykes
- Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Matthias Hoch
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Ana Vazquez-Romero
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Mohammad Mahdi Moein
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | | | | | - Lars Farde
- PET Science Centre, Precision Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
4
|
Cao S, Tang J, Liu C, Fang Y, Ji L, Xu Y, Chen Z. Synthesis and Biological Evaluation of [ 18F]FECNT-d 4 as a Novel PET Agent for Dopamine Transporter Imaging. Mol Imaging Biol 2021; 23:733-744. [PMID: 33851345 DOI: 10.1007/s11307-021-01603-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/21/2021] [Accepted: 04/02/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE The dopamine transporter (DAT) is a marker of the occurrence and development of Parkinson's disease (PD) and other diseases with nigrostriatal degeneration. 2β-Carbomethoxy-3β-(4-chlorophenyl)-8-(2-[18F]-fluoroethyl)nortropane ([18F]FECNT), an 18F-labelled tropane derivative, was reported to be a useful positron-emitting probe for DAT. However, the rapid formation of brain-penetrating radioactive metabolites is an impediment to the proper quantitation of DAT in PET studies with [18F]FECNT. Deuterium-substituted analogues have presented better in vivo stability to reduce metabolites. This study aimed to synthesize a deuterium-substituted DAT radiotracer, [18F]FECNT-d4, and to make a preliminary investigation of its properties as a DAT tracer in vivo. PROCEDURES The ligand [18F]FECNT-d4 was obtained by one-step radiolabelling reaction. The lipophilicity was measured by the shake-flask method. Binding properties of [18F]FECNT-d4 were estimated by in vitro binding assay, biodistribution, and microPET imaging in rats. In vivo stability of [18F]FECNT-d4 was estimated by radio-HPLC. RESULTS [18F]FECNT-d4 was synthesized at an average activity yield of 46 ± 17 % (n = 15) and the molar activity was 67 ± 12 GBq/μmol. The deuterated tracer showed suitable lipophilicity and the ability to penetrate the blood-brain barrier (brain uptake of 1.72 % ID at 5 min). [18F]FECNT-d4 displayed a high binding affinity for DAT comparable to that of [18F]FECNT in rat striatum homogenates. Biodistribution results in normal rats showed that [18F]FECNT-d4 exhibited a higher ratio of the target to non-target (striatum/cerebellum) at 15 min post administration (5.00 ± 0.44 vs 3.84 ± 0.24 for [18F]FECNT-d4 vs [18F]FECNT). MicroPET imaging studies of [18F]FECNT-d4 in normal rats showed that the ligand selectively localized to DAT-rich striatal regions and the accumulation could be blocked with DAT inhibitor. Furthermore, in the unilateral PD model rat, a significant reduction of the signal was found in the lesioned side relative to the unlesioned side. Striatal standardized uptake value of [18F]FECNT-d4 remained ~4.02 in the striatum between 5 and 20 min, whereas that of [18F]FECNT fell rapidly from 4.11 to 2.95. Radio-HPLC analysis of the plasma demonstrated better in vivo stability of [18F]FECNT-d4 than [18F]FECNT. CONCLUSION The deuterated compound [18F]FECNT-d4 may serve as a promising PET imaging agent to assess DAT-related disorders.
Collapse
Affiliation(s)
- Shanshan Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jie Tang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Chunyi Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Yi Fang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Linyang Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yingjiao Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Zhengping Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China. .,NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China.
| |
Collapse
|
5
|
Ghosh KK, Padmanabhan P, Yang CT, Mishra S, Halldin C, Gulyás B. Dealing with PET radiometabolites. EJNMMI Res 2020; 10:109. [PMID: 32997213 PMCID: PMC7770856 DOI: 10.1186/s13550-020-00692-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023] Open
Abstract
Abstract Positron emission tomography (PET) offers the study of biochemical,
physiological, and pharmacological functions at a cellular and molecular level.
The performance of a PET study mostly depends on the used radiotracer of
interest. However, the development of a novel PET tracer is very difficult, as
it is required to fulfill a lot of important criteria. PET radiotracers usually
encounter different chemical modifications including redox reaction, hydrolysis,
decarboxylation, and various conjugation processes within living organisms. Due
to this biotransformation, different chemical entities are produced, and the
amount of the parent radiotracer is declined. Consequently, the signal measured
by the PET scanner indicates the entire amount of radioactivity deposited in the
tissue; however, it does not offer any indication about the chemical disposition
of the parent radiotracer itself. From a radiopharmaceutical perspective, it is
necessary to quantify the parent radiotracer’s fraction present in the tissue.
Hence, the identification of radiometabolites of the radiotracers is vital for
PET imaging. There are mainly two reasons for the chemical identification of PET
radiometabolites: firstly, to determine the amount of parent radiotracers in
plasma, and secondly, to rule out (if a radiometabolite enters the brain) or
correct any radiometabolite accumulation in peripheral tissue. Besides,
radiometabolite formations of the tracer might be of concern for the PET study,
as the radiometabolic products may display considerably contrasting distribution
patterns inside the body when compared with the radiotracer itself. Therefore,
necessary information is needed about these biochemical transformations to
understand the distribution of radioactivity throughout the body. Various
published review articles on PET radiometabolites mainly focus on the sample
preparation techniques and recently available technology to improve the
radiometabolite analysis process. This article essentially summarizes the
chemical and structural identity of the radiometabolites of various radiotracers
including [11C]PBB3,
[11C]flumazenil,
[18F]FEPE2I, [11C]PBR28,
[11C]MADAM, and
(+)[18F]flubatine. Besides, the importance of
radiometabolite analysis in PET imaging is also briefly summarized. Moreover,
this review also highlights how a slight chemical modification could reduce the
formation of radiometabolites, which could interfere with the results of PET
imaging. Graphical abstract ![]()
Collapse
Affiliation(s)
- Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore.
| | - Chang-Tong Yang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore.,Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore.,Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Sachin Mishra
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Christer Halldin
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore.,Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76, Stockholm, Sweden
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore. .,Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76, Stockholm, Sweden.
| |
Collapse
|
6
|
Ribeiro MJ, Vercouillie J, Arlicot N, Tauber C, Gissot V, Mondon K, Barantin L, Cottier JP, Maia S, Deloye JB, Emond P, Guilloteau D. Usefulness of PET With [ 18F]LBT-999 for the Evaluation of Presynaptic Dopaminergic Neuronal Loss in a Clinical Environment. Front Neurol 2020; 11:754. [PMID: 32973645 PMCID: PMC7472558 DOI: 10.3389/fneur.2020.00754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/18/2020] [Indexed: 11/21/2022] Open
Abstract
Purpose: The density of the neuronal dopamine transporter (DAT) is directly correlated with the presynaptic dopaminergic system injury. In a first study, we evaluated the brain distribution and kinetics of [18F]LBT-999, a DAT PET radioligand, in a group of eight healthy subjects. Taking into account the results obtained in healthy volunteers, we wanted to evaluate whether the loss of presynaptic striatal dopaminergic fibers could be estimated, under routine clinical conditions, using [18F]LBT-999 and a short PET acquisition. Materials and methods: Six patients with Parkinson's disease (PD) were compared with eight controls. Eighty-nine minutes of dynamic PET following an intravenous injection of [18F]LBT-999 were acquired. Using regions of interest for striatal nuclei, substantia nigra (SN), cerebellum, and occipital cortex, defined over each T1 3D MRI, time–activity curves (TACs) were obtained. From TACs, binding potential (BPND) using the simplified reference tissue model and distribution volume ratios (DVRs) using Logan graphical analysis were calculated. Ratios obtained for a 10-min image, acquired between 30 and 40 min post-injection, were also calculated. Cerebellum activity was used as non-specific reference region. Results: In PD patients and as expected, striatal uptake was lower than in controls which is confirmed by BPND, DVR, and ratios calculated for both striatal nuclei and SN, significantly inferior in PD patients compared with controls (p < 0.001). Conclusions: PET with [18F]LBT-999 could be an alternative to assess dopaminergic presynaptic injury in a clinical environment using a single 10 min acquisition.
Collapse
Affiliation(s)
- Maria-Joao Ribeiro
- UMR 1253, iBrain, Université de Tours, Tours, France.,CHRU, Tours, France.,Inserm CIC 1415, CHRU, Tours, France
| | - Johnny Vercouillie
- UMR 1253, iBrain, Université de Tours, Tours, France.,CHRU, Tours, France.,Inserm CIC 1415, CHRU, Tours, France
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, Tours, France.,CHRU, Tours, France.,Inserm CIC 1415, CHRU, Tours, France
| | - Clovis Tauber
- UMR 1253, iBrain, Université de Tours, Tours, France
| | - Valérie Gissot
- CHRU, Tours, France.,Inserm CIC 1415, CHRU, Tours, France
| | | | - Laurent Barantin
- UMR 1253, iBrain, Université de Tours, Tours, France.,CHRU, Tours, France
| | | | | | | | - Patrick Emond
- UMR 1253, iBrain, Université de Tours, Tours, France.,CHRU, Tours, France
| | - Denis Guilloteau
- UMR 1253, iBrain, Université de Tours, Tours, France.,CHRU, Tours, France.,Inserm CIC 1415, CHRU, Tours, France
| |
Collapse
|
7
|
Lindberg A, Nag S, Schou M, Arakawa R, Nogami T, Moein MM, Elmore CS, Pike VW, Halldin C. Development of a 18F-labeled PET radioligand for imaging 5-HT 1B receptors: [ 18F]AZ10419096. Nucl Med Biol 2019; 78-79:11-16. [PMID: 31678782 PMCID: PMC10114145 DOI: 10.1016/j.nucmedbio.2019.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/01/2019] [Accepted: 10/20/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION In the last decade PET has been useful in studying and understanding the 5-HT1B receptor. [11C]AZ10419369 and [11C]P943 have been applied as radioligands in these studies. Both use carbon-11 (t1/2 = 20.4 min) as radionuclide, which limits the application to PET centres that have an on-site cyclotron and radiochemistry facilities. In this paper we report the synthesis and initial evaluation of the first fluorine-18 PET radioligand to image 5-HT1B receptors in brain, [18F]AZ10419096. MATERIALS AND METHODS A boronate-precursor for [18F]AZ10419096 was synthesized from an intermediate provided by AstraZeneca and was labeled with fluorine 18 using Cu-mediated radio-fluorination. [18F]AZ10419096 was used in PET baseline and pretreatment measurements in nonhuman primates. PET data were analyzed using SRTM using the cerebellum as reference region. Blood samples for radio-metabolite analysis were collected during PET measurements. RESULTS Radio-fluorination gave [18F]AZ10419096 in sufficient amounts and molar activity and with high radiochemical purity to be applied in PET measurements. In a baseline PET measurement [18F]AZ10419096 showed a high brain uptake and regional distribution consistent with reported 5-HT1B receptor densities. In a pretreatment PET measurement, AR-A000002 (2.0 mg/kg) blocked the binding of [18F]AZ10419096 to 5-HT1B receptors in occipital cortex by 80%, thereby demonstrating high specific binding. CONCLUSION [18F]AZ10419096 is the first fluorine-18 PET radioligand for imaging 5-HT1B receptors in vivo with high specific binding and binding potential. [18F]AZ10419096 is a candidate for further development for use in clinical PET studies.
Collapse
Affiliation(s)
- Anton Lindberg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden; Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA.
| | - Sangram Nag
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden
| | - Magnus Schou
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden; PET Science Centre, Precision Medicine and Genomics, R&D, AstraZeneca, SE-17176 Stockholm, Sweden
| | - Ryosuke Arakawa
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden
| | - Tsuyoshi Nogami
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden
| | - Mohammad Mahdi Moein
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden
| | - Charles S Elmore
- Isotope Chemistry, Early Chemical Development, Pharmaceutical Sciences R&D, AstraZeneca, SE-43250 Göteborg, Sweden
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden
| |
Collapse
|
8
|
Arlicot N, Vercouillie J, Malherbe C, Bidault R, Gissot V, Maia S, Barantin L, Cottier JP, Deloye JB, Guilloteau D, Ribeiro MJ. PET imaging of Dopamine Transporter with [18F]LBT-999: initial evaluation in healthy volunteers. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2019; 66:148-155. [PMID: 31496203 DOI: 10.23736/s1824-4785.19.03175-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND To evaluate in healthy human brain the distribution, uptake, and kinetics of [18F]LBT-999, a PET ligand targeting the dopamine transporter, to assess its ability to explore dopaminergic innervation, using a shorter protocol, more convenient for patients than currently with [123I]ioflupane. METHODS After intravenous injection of [18F]LBT-999, 8 healthy subjects (53-80y) underwent a dynamic PET-scan. Venous samples were concomitantly obtained for metabolites analysis. Time activity curves (TACs) were generated for several ROIs (caudate, putamen, occipital cortex, substantia nigra and cerebellum). Cerebellum was used as reference region to calculate binding potentials (BPND). RESULTS No adverse events or detectable pharmacological effects were reported. [18F]LBT-999 PET revealed a good cerebral distribution, with an intense and symmetric uptake in both putamen and caudate (BPND of 6.75±1.17 and 6.30±1.17, respectively), without other brain abnormal tracer accumulation. Regional TACs showed a plateau from the maximal uptake, 20min pi, to the end of the acquisition for both caudate and putamen, whereas uptake in substantia nigra decreased progressively. A faster clearance and lowest BPND values were observed in both cortex and cerebellum. Ratios to the cerebellum exhibit value of about 3 in substantia nigra, close to 10 for both caudate and putamen, and remained around the value of 1 in cortex. The parent fraction of [18F]LBT-999 in plasma was 80%, 60% and 45% at 15, 30 and 45 min pi, respectively. CONCLUSIONS These findings support the usefulness of [18F]LBT-999 for a quantitative clinical evaluation of presynaptic dopaminergic innervation.
Collapse
Affiliation(s)
- Nicolas Arlicot
- CHRU de Tours, Unité de Radiopharmacie, Tours, France - .,UMR 1253, iBrain, Université de Tours, Inserm, Tours, France - .,-INSERM CIC 1415, University Hospital, Tours, France -
| | - Johnny Vercouillie
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,-INSERM CIC 1415, University Hospital, Tours, France
| | - Cécile Malherbe
- CHRU de Tours, Unité de Radiopharmacie, Tours, France.,UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Rudy Bidault
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | - Serge Maia
- CHRU de Tours, Unité de Radiopharmacie, Tours, France.,UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | - Jean-Philippe Cottier
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,CHRU de Tours, Service de Neuroradiologie, Tours, France
| | | | - Denis Guilloteau
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,-INSERM CIC 1415, University Hospital, Tours, France.,CHRU de Tours, Service de Médecine Nucléaire in vitro, Tours, France
| | - Maria-Joao Ribeiro
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,-INSERM CIC 1415, University Hospital, Tours, France.,CHRU de Tours, Service de Médecine Nucléaire in vivo, Tours, France
| |
Collapse
|
9
|
Dahoun T, Calcia MA, Veronese M, Bloomfield P, Reis Marques T, Turkheimer F, Howes OD. The association of psychosocial risk factors for mental health with a brain marker altered by inflammation: A translocator protein (TSPO) PET imaging study. Brain Behav Immun 2019; 80:742-750. [PMID: 31112791 DOI: 10.1016/j.bbi.2019.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022] Open
Abstract
Psychiatric disorders associated with psychosocial risk factors, including depression and psychosis, have been shown to demonstrate increased microglia activity. Whilst preclinical studies indicate that psychosocial stress leads to increased levels of microglia in the frontal cortex, no study has yet been performed in humans. This study aimed at investigating whether psychosocial risk factors for depression and/or psychosis would be associated with alterations in a brain marker expressed by microglia, the translocator specific protein (TSPO) in humans. We used [11C]-PBR28 Positron Emission Tomography on healthy subjects exposed to childhood and adulthood psychosocial risk factors (high-risk group, N = 12) and age- and sex-matched healthy controls not exposed to childhood and adulthood psychosocial risk factors (low-risk group, N = 12). The [11C]-PBR28 volume of distribution (VT) and Distribution Volume Ratio (DVR) were measured in the total gray matter, and frontal, parietal, temporal, occipital lobes. Levels of childhood trauma, anxiety and depression were measured using respectively the Childhood Trauma Questionnaire, State-anxiety questionnaire and Beck Depression Inventory. Compared to the low-risk group, the high-risk group did not exhibit significant differences in the mean [11C]-PBR28 VT (F(1,20) = 1.619, p = 0.218) or DVR (F(1,22) = 0.952, p = 0.340) on any region. There were no significant correlations between the [11C]-PBR28 VT and DVRs in total gray matter and frontal lobe and measures of childhood trauma, anxiety and depression. Psychosocial risk factors for depression and/or psychosis are unlikely to be associated with alterations in [11C]-PBR28 binding, indicating that alterations in TSPO expression reported in these disorders is unlikely to be caused by psychosocial risk factors alone.
Collapse
Affiliation(s)
- Tarik Dahoun
- Psychiatric Imaging Group MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College, Hammersmith Hospital, London W12 0NN, UK; Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX37 JX, UK
| | - Marilia A Calcia
- Institute of Psychiatry, Neurology and Neuroscience (IoPPN), King's College London, London SE5 8AF, UK
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Neurology and Neuroscience (IoPPN), King's College London, London SE5 8AF, UK
| | - Peter Bloomfield
- Psychiatric Imaging Group MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College, Hammersmith Hospital, London W12 0NN, UK
| | - Tiago Reis Marques
- Psychiatric Imaging Group MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College, Hammersmith Hospital, London W12 0NN, UK; Institute of Psychiatry, Neurology and Neuroscience (IoPPN), King's College London, London SE5 8AF, UK
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Neurology and Neuroscience (IoPPN), King's College London, London SE5 8AF, UK
| | - Oliver D Howes
- Psychiatric Imaging Group MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College, Hammersmith Hospital, London W12 0NN, UK; Institute of Psychiatry, Neurology and Neuroscience (IoPPN), King's College London, London SE5 8AF, UK.
| |
Collapse
|
10
|
Ludwig FA, Fischer S, Houska R, Hoepping A, Deuther-Conrad W, Schepmann D, Patt M, Meyer PM, Hesse S, Becker GA, Zientek FR, Steinbach J, Wünsch B, Sabri O, Brust P. In vitro and in vivo Human Metabolism of ( S)-[ 18F]Fluspidine - A Radioligand for Imaging σ 1 Receptors With Positron Emission Tomography (PET). Front Pharmacol 2019; 10:534. [PMID: 31263411 PMCID: PMC6585474 DOI: 10.3389/fphar.2019.00534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/29/2019] [Indexed: 12/26/2022] Open
Abstract
(S)-[18F]fluspidine ((S)-[18F]1) has recently been explored for positron emission tomography (PET) imaging of sigma-1 receptors in humans. In the current report, we have used plasma samples of healthy volunteers to investigate the radiometabolites of (S)-[18F]1 and elucidate their structures with LC-MS/MS. For the latter purpose additional in vitro studies were conducted by incubation of (S)-[18F]1 and (S)-1 with human liver microsomes (HLM). In vitro metabolites were characterized by interpretation of MS/MS fragmentation patterns from collision-induced dissociation or by use of reference compounds. Thereby, structures of corresponding radio-HPLC-detected radiometabolites, both in vitro and in vivo (human), could be identified. By incubation with HLM, mainly debenzylation and hydroxylation occurred, beside further mono- and di-oxygenations. The product hydroxylated at the fluoroethyl side chain was glucuronidated. Plasma samples (10, 20, 30 min p.i., n = 5-6), obtained from human subjects receiving 250–300 MBq (S)-[18F]1 showed 97.2, 95.4, and 91.0% of unchanged radioligand, respectively. In urine samples (90 min p.i.) the fraction of unchanged radioligand was only 2.6% and three major radiometabolites were detected. The one with the highest percentage, also found in plasma, matched the glucuronide formed in vitro. Only a small amount of debenzylated metabolite was detected. In conclusion, our metabolic study, in particular the high fractions of unchanged radioligand in plasma, confirms the suitability of (S)-[18F]1 as PET radioligand for sigma-1 receptor imaging.
Collapse
Affiliation(s)
- Friedrich-Alexander Ludwig
- Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany
| | - Steffen Fischer
- Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany
| | - Richard Houska
- Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany
| | | | - Winnie Deuther-Conrad
- Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany
| | - Dirk Schepmann
- Department of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, Leipzig University, Leipzig, Germany
| | - Philipp M Meyer
- Department of Nuclear Medicine, Leipzig University, Leipzig, Germany
| | - Swen Hesse
- Department of Nuclear Medicine, Leipzig University, Leipzig, Germany.,Integrated Research and Treatment Center (IFB) Adiposity Diseases, Leipzig University, Leipzig, Germany
| | | | - Franziska Ruth Zientek
- Department of Nuclear Medicine, Leipzig University, Leipzig, Germany.,Integrated Research and Treatment Center (IFB) Adiposity Diseases, Leipzig University, Leipzig, Germany
| | - Jörg Steinbach
- Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany
| | - Bernhard Wünsch
- Department of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, Leipzig University, Leipzig, Germany
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany
| |
Collapse
|
11
|
Malherbe C, Bidault R, Netter C, Guilloteau D, Vercouillie J, Arlicot N. Development of a Fast and Facile Analytical Approach to Quantify Radiometabolites in Human Plasma Samples Using Ultra High Performance Liquid Chromatography. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/ajac.2019.105016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Kukk S, Loog O, Hiltunen JV, Järv J. In Vitro Ligand Binding Kinetics Explains the Pharmacokinetics of [ 18F]FE-PE2I in Dopamine Transporter PET Imaging. ACS Med Chem Lett 2018; 9:1292-1296. [PMID: 30613342 DOI: 10.1021/acsmedchemlett.8b00504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/29/2018] [Indexed: 11/30/2022] Open
Abstract
Two of the most popular positron emission tomography (PET) tracers, [11C]PE2I and [18F]FE-PE2I, used to quantify dopamine transporters (DAT), display dissimilar kinetic behavior in in vivo assays. This difference can be explained by comparing values of kinetic rate constants, which characterize interaction of these tracers with DAT sites in vitro. At the same time, this kinetic analysis showed that the overall binding mechanism is similar for these two tracers and includes a fast step of complex formation followed by a slow isomerization step of this complex. Comparison with previous PE2I data revealed that isomerization of the DAT complex with PE2I occurs three times faster than in the case of FE-PE2I, which leads to the slower onset of peak specific binding of the former tracer in the DAT-rich regions. Therefore, ligands with slower isomerization on-rate, including [18F]FE-PE2I, seem to be better tracers in vivo, and their properties can be predicted in vitro.
Collapse
Affiliation(s)
- Siim Kukk
- Department of Organic Chemistry, Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
- PharmaSynth AS, Teaduspargi 7, 50411 Tartu, Estonia
| | - Olavi Loog
- PharmaSynth AS, Teaduspargi 7, 50411 Tartu, Estonia
| | | | - Jaak Järv
- Department of Organic Chemistry, Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
- PharmaSynth AS, Teaduspargi 7, 50411 Tartu, Estonia
| |
Collapse
|
13
|
Varnäs K, Cselényi Z, Jucaite A, Halldin C, Svenningsson P, Farde L, Varrone A. PET imaging of [ 11C]PBR28 in Parkinson's disease patients does not indicate increased binding to TSPO despite reduced dopamine transporter binding. Eur J Nucl Med Mol Imaging 2018; 46:367-375. [PMID: 30270409 PMCID: PMC6333720 DOI: 10.1007/s00259-018-4161-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 09/07/2018] [Indexed: 11/29/2022]
Abstract
Purpose To examine the hypothesis that cerebral binding to the 18 kDa translocator protein (TSPO), a marker of microglia activation, is elevated in Parkinson’s disease (PD), and to assess the relationship between brain TSPO binding and dopaminergic pathology in PD. Methods The radioligand [11C]PBR28 was used for quantitative assessment of brain TSPO in 16 control subjects and 16 PD patients. To analyse the relationship between dopaminergic pathology and brain TSPO binding, PET studies of the dopamine transporter (DAT) were undertaken in PD patients using the DAT radioligand [18F]FE-PE2I. The total distribution volume of [11C]PBR28 was quantified in nigrostriatal regions, limbic cortices and thalamus, and the binding potential of [18F]FE-PE2I was quantified in nigrostriatal regions. Results Based on genotype analysis of the TSPO rs6971 polymorphism, 16 subjects (8 control subjects and 8 PD patients) were identified as high-affinity binders, and the remaining subjects were identified as mixed-affinity binders. A two-way ANOVA showed a strong main effect of TSPO genotype on the cerebral binding of [11C]PBR28, whereas no statistically significant main effect of diagnostic group, or a group by genotype interaction was found for any of the regions analysed. [18F]FE-PE2I PET studies in patients indicated a marked reduction in nigrostriatal binding to DAT. However, no correlations between the binding parameters were found for [11C]PBR28 and [18F]FE-PE2I. Conclusion The findings do not support the hypothesis of elevated cerebral TSPO binding or a relationship between TSPO binding and dopaminergic pathology in PD. Electronic supplementary material The online version of this article (10.1007/s00259-018-4161-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katarina Varnäs
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, R5:02 Karolinska University Hospital, SE-17176, Stockholm, Sweden.
| | - Zsolt Cselényi
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, R5:02 Karolinska University Hospital, SE-17176, Stockholm, Sweden.,PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Stockholm, Sweden
| | - Aurelija Jucaite
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, R5:02 Karolinska University Hospital, SE-17176, Stockholm, Sweden.,PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, R5:02 Karolinska University Hospital, SE-17176, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Translational Neuropharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, R5:02 Karolinska University Hospital, SE-17176, Stockholm, Sweden.,PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, R5:02 Karolinska University Hospital, SE-17176, Stockholm, Sweden
| |
Collapse
|
14
|
Lopes Alves I, Vállez García D, Parente A, Doorduin J, Dierckx R, Marques da Silva AM, Koole M, Willemsen A, Boellaard R. Pharmacokinetic modeling of [ 11C]flumazenil kinetics in the rat brain. EJNMMI Res 2017; 7:17. [PMID: 28229437 PMCID: PMC5321646 DOI: 10.1186/s13550-017-0265-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/15/2017] [Indexed: 11/12/2022] Open
Abstract
Background Preferred models for the pharmacokinetic analysis of [11C]flumazenil human studies have been previously established. However, direct translation of these models and settings to animal studies might be sub-optimal. Therefore, this study evaluates pharmacokinetic models for the quantification of [11C]flumazenil binding in the rat brain. Dynamic (60 min) [11C]flumazenil brain PET scans were performed in two groups of male Wistar rats (tracer dose (TD), n = 10 and pre-saturated (PS), n = 2). Time-activity curves from five regions were analyzed, including the pons (pseudo-reference region). Distribution volume (VT) was calculated using one- and two-tissue compartment models (1TCM and 2TCM) and spectral analysis (SA). Binding potential (BPND) was determined from full and simplified reference tissue models with one or two compartments for the reference tissue (FRTM, SRTM, and SRTM-2C). Model preference was determined by Akaike information criterion (AIC), while parameter agreement was assessed by linear regression, repeated measurements ANOVA and Bland-Altman plots. Results 1TCM and 2TCM fits of regions with high specific binding showed similar AIC, a preference for the 1TCM, and good VT agreement (0.1% difference). In contrast, the 2TCM was markedly preferred and necessary for fitting low specific-binding regions, where a worse VT agreement (17.6% difference) and significant VT differences between the models (p < 0.005) were seen. The PS group displayed results similar to those of low specific-binding regions. All reference models (FRTM, SRTM, and SRTM-2C) resulted in at least 13% underestimation of BPND. Conclusions Although the 1TCM was sufficient for the quantification of high specific-binding regions, the 2TCM was found to be the most adequate for the quantification of [11C]flumazenil in the rat brain based on (1) higher fit quality, (2) lower AIC values, and (3) ability to provide reliable fits for all regions. Reference models resulted in negatively biased BPND and were affected by specific binding in the pons of the rat.
Collapse
Affiliation(s)
- Isadora Lopes Alves
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - David Vállez García
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Andrea Parente
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudi Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ana Maria Marques da Silva
- Laboratory of Medical Imaging, School of Physics, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Michel Koole
- Department of Nuclear Medicine and Molecular Imaging, KU Leuven, Leuven, Belgium
| | - Antoon Willemsen
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
15
|
Effects of common anesthetic agents on [ 18F]flumazenil binding to the GABA A receptor. EJNMMI Res 2016; 6:80. [PMID: 27826950 PMCID: PMC5101239 DOI: 10.1186/s13550-016-0235-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/29/2016] [Indexed: 12/25/2022] Open
Abstract
Background The availability of GABAA receptor binding sites in the brain can be assessed by positron emission tomography (PET) using the radioligand, [18F]flumazenil. However, the brain uptake and binding of this PET radioligand are influenced by anesthetic drugs, which are typically needed in preclinical imaging studies and clinical imaging studies involving patient populations that do not tolerate relatively longer scan times. The objective of this study was to examine the effects of anesthesia on the binding of [18F]flumazenil to GABAA receptors in mice. Methods Brain and whole blood radioactivity concentrations were measured ex vivo by scintillation counting or in vivo by PET in four groups of mice following administration of [18F]flumazenil: awake mice and mice anesthetized with isoflurane, dexmedetomidine, or ketamine/dexmedetomidine. Dynamic PET recordings were obtained for 60 min in mice anesthetized by either isoflurane or ketamine/dexmedetomidine. Static PET recordings were obtained at 25 or 55 min after [18F]flumazenil injection in awake or dexmedetomidine-treated mice acutely anesthetized with isoflurane. The apparent distribution volume (VT*) was calculated for the hippocampus and frontal cortex from either the full dynamic PET scans using an image-derived input function or from a series of ex vivo experiments using whole blood as the input function. Results PET images showed persistence of high [18F]flumazenil uptake (up to 20 % ID/g) in the brains of mice scanned under isoflurane or ketamine/dexmedetomidine anesthesia, whereas uptake was almost indiscernible in late samples or static scans from awake or dexmedetomidine-treated animals. The steady-state VT* was twofold higher in hippocampus of isoflurane-treated mice and dexmedetomidine-treated mice than in awake mice. Conclusions Anesthesia has pronounced effects on the binding and blood-brain distribution of [18F]flumazenil. Consequently, considerable caution must be exercised in the interpretation of preclinical and clinical PET studies of GABAA receptors involving the use of anesthesia.
Collapse
|
16
|
LC-MS Supported Studies on the in Vitro Metabolism of both Enantiomers of Flubatine and the in Vivo Metabolism of (+)-[(18)F]Flubatine-A Positron Emission Tomography Radioligand for Imaging α4β2 Nicotinic Acetylcholine Receptors. Molecules 2016; 21:molecules21091200. [PMID: 27617996 PMCID: PMC6273452 DOI: 10.3390/molecules21091200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 12/27/2022] Open
Abstract
Both enantiomers of [18F]flubatine are promising radioligands for neuroimaging of α4β2 nicotinic acetylcholine receptors (nAChRs) by positron emission tomography (PET). To support clinical studies in patients with early Alzheimer’s disease, a detailed examination of the metabolism in vitro and in vivo has been performed. (+)- and (−)-flubatine, respectively, were incubated with liver microsomes from mouse and human in the presence of NADPH (β-nicotinamide adenine dinucleotide 2′-phosphate reduced tetrasodium salt). Phase I in vitro metabolites were detected and their structures elucidated by LC-MS/MS (liquid chromatography-tandem mass spectrometry). Selected metabolite candidates were synthesized and investigated for structural confirmation. Besides a high level of in vitro stability, the microsomal incubations revealed some species differences as well as enantiomer discrimination with regard to the formation of monohydroxylated products, which was identified as the main metabolic pathway in this assay. Furthermore, after injection of 250 MBq (+)-[18F]flubatine (specific activity > 350 GBq/μmol) into mouse, samples were prepared from brain, liver, plasma, and urine after 30 min and investigated by radio-HPLC (high performance liquid chromatography with radioactivity detection). For structure elucidation of the radiometabolites of (+)-[18F]flubatine formed in vivo, identical chromatographic conditions were applied to LC-MS/MS and radio-HPLC to compare samples obtained in vitro and in vivo. By this correlation approach, we assigned three of four main in vivo radiometabolites to products that are exclusively C- or N-hydroxylated at the azabicyclic ring system of the parent molecule.
Collapse
|
17
|
Gourand F, Amini N, Jia Z, Stone-Elander S, Guilloteau D, Barré L, Halldin C. [11C]MADAM Used as a Model for Understanding the Radiometabolism of Diphenyl Sulfide Radioligands for Positron Emission Tomography (PET). PLoS One 2015; 10:e0137160. [PMID: 26367261 PMCID: PMC4569384 DOI: 10.1371/journal.pone.0137160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/22/2015] [Indexed: 11/19/2022] Open
Abstract
In quantitative PET measurements, the analysis of radiometabolites in plasma is essential for determining the exact arterial input function. Diphenyl sulfide compounds are promising PET and SPECT radioligands for in vivo quantification of the serotonin transporter (SERT) and it is therefore important to investigate their radiometabolism. We have chosen to explore the radiometabolic profile of [11C]MADAM, one of these radioligands widely used for in vivo PET-SERT studies. The metabolism of [11C]MADAM/MADAM was investigated using rat and human liver microsomes (RLM and HLM) in combination with radio-HPLC or UHPLC/Q-ToF-MS for their identification. The effect of carrier on the radiometabolic rate of the radioligand [11C]MADAM in vitro and in vivo was examined by radio-HPLC. RLM and HLM incubations were carried out at two different carrier concentrations of 1 and 10 μM. Urine samples after perfusion of [11C]MADAM/MADAM in rats were also analysed by radio-HPLC. Analysis by UHPLC/Q-ToF-MS identified the metabolites produced in vitro to be results of N-demethylation, S-oxidation and benzylic hydroxylation. The presence of carrier greatly affected the radiometabolism rate of [11C]MADAM in both RLM/HLM experiments and in vivo rat studies. The good concordance between the results predicted by RLM and HLM experiments and the in vivo data obtained in rat studies indicate that the kinetics of the radiometabolism of the radioligand [11C]MADAM is dose-dependent. This issue needs to be addressed when the diarylsulfide class of compounds are used in PET quantifications of SERT.
Collapse
Affiliation(s)
- Fabienne Gourand
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatric Research, SE-171 76 Stockholm, Sweden
- CEA, DSV/I2BM, LDM-TEP Group, GIP Cyceron, Bd Henri Becquerel, BP 5229, F-14074 Caen, France
- Université de Caen Basse-Normandie, Caen, France
- CNRS, UMR ISTCT 6301, LDM-TEP Group, GIP Cyceron, Caen, France
- * E-mail:
| | - Nahid Amini
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatric Research, SE-171 76 Stockholm, Sweden
| | - Zhisheng Jia
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatric Research, SE-171 76 Stockholm, Sweden
| | - Sharon Stone-Elander
- Neuroradiology, Karolinska University Hospital, MicroPET and Clinical Neurosciences, Karolinska Institutet SE-171 76 Stockholm, Sweden
| | - Denis Guilloteau
- INSERM U930- Université François Rabelais de Tours, CHRU de Tours, 2 boulevard Tonnellé, 37044 Tours, France
| | - Louisa Barré
- CEA, DSV/I2BM, LDM-TEP Group, GIP Cyceron, Bd Henri Becquerel, BP 5229, F-14074 Caen, France
- Université de Caen Basse-Normandie, Caen, France
- CNRS, UMR ISTCT 6301, LDM-TEP Group, GIP Cyceron, Caen, France
| | - Christer Halldin
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatric Research, SE-171 76 Stockholm, Sweden
| |
Collapse
|
18
|
Jucaite A, Svenningsson P, Rinne JO, Cselényi Z, Varnäs K, Johnström P, Amini N, Kirjavainen A, Helin S, Minkwitz M, Kugler AR, Posener JA, Budd S, Halldin C, Varrone A, Farde L. Effect of the myeloperoxidase inhibitor AZD3241 on microglia: a PET study in Parkinson’s disease. Brain 2015; 138:2687-700. [DOI: 10.1093/brain/awv184] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/05/2015] [Indexed: 11/12/2022] Open
|
19
|
Fazio P, Svenningsson P, Forsberg A, Jönsson EG, Amini N, Nakao R, Nag S, Halldin C, Farde L, Varrone A. Quantitative Analysis of 18F-(E)-N-(3-Iodoprop-2-Enyl)-2β-Carbofluoroethoxy-3β-(4′-Methyl-Phenyl) Nortropane Binding to the Dopamine Transporter in Parkinson Disease. J Nucl Med 2015; 56:714-20. [DOI: 10.2967/jnumed.114.152421] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/25/2015] [Indexed: 01/27/2023] Open
|
20
|
Coupling ultra-high-pressure liquid chromatography with mass spectrometry for in-vitro drug-metabolism studies. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.06.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Khanapur S, Paul S, Shah A, Vatakuti S, Koole MJB, Zijlma R, Dierckx RAJO, Luurtsema G, Garg P, van Waarde A, Elsinga PH. Development of [18F]-labeled pyrazolo[4,3-e]-1,2,4- triazolo[1,5-c]pyrimidine (SCH442416) analogs for the imaging of cerebral adenosine A2A receptors with positron emission tomography. J Med Chem 2014; 57:6765-80. [PMID: 25061687 DOI: 10.1021/jm500700y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cerebral adenosine A2A receptors (A2ARs) are attractive therapeutic targets for the treatment of neurodegenerative and psychiatric disorders. We developed high affinity and selective compound 8 (SCH442416) analogs as in vivo probes for A2ARs using PET. We observed the A2AR-mediated accumulation of [18F]fluoropropyl ([18F]-10b) and [18F]fluoroethyl ([18F]-10a) derivatives of 8 in the brain. The striatum was clearly visualized in PET and in vitro autoradiography images of control animals and was no longer visible after pretreatment with the A2AR subtype-selective antagonist KW6002. In vitro and in vivo metabolite analyses indicated the presence of hydrophilic (radio)metabolite(s), which are not expected to cross the blood-brain-barrier. [18F]-10b and [18F]-10a showed comparable striatum-to- cerebellum ratios (4.6 at 25 and 37 min post injection, respectively) and reversible binding in rat brains. We concluded that these compounds performed equally well, but their kinetics were slightly different. These molecules are potential tools for mapping cerebral A2ARs with PET.
Collapse
Affiliation(s)
- Shivashankar Khanapur
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nakao R, Halldin C. A simplified radiometabolite analysis procedure for PET radioligands using a solid phase extraction with micellar medium. Nucl Med Biol 2013; 40:658-63. [DOI: 10.1016/j.nucmedbio.2013.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/13/2013] [Accepted: 02/14/2013] [Indexed: 10/26/2022]
|