1
|
Rathod A, Beig G. Impact of biomass induced black carbon particles in cascading COVID-19. URBAN CLIMATE 2021; 38:100913. [PMID: 34258181 PMCID: PMC8264527 DOI: 10.1016/j.uclim.2021.100913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 05/13/2023]
Abstract
We explore the association of biomass-induced black carbon aerosolized virus with COVID-19 in one of the top-ranked polluted hot spot regions of the world, Delhi, at the time when other confounding factors were almost stable and the pandemic wave was on the declining stage. Delhi was worst affected by COVID-19. However, when it was fast returning back to normal after about 6 months with minimum fatalities, it suddenly encountered a reversal with a 10 fold increase in infection counts, coinciding with the onset of the stubble burning period in neighbouring states. We hereby report that the crop residue burning induced lethal aged Black carbon-rich particles which engulfs Delhi during the post-monsoon months of October-November are strongly associated with COVID-19 and largely responsible for the sudden surge. It is found that the virus efficacy is not necessarily related to any particulates but it is more of source-based toxicity of its component where the virus is piggybacking. We conclude that the aged biomass BC particles tend to aggregate and react with other compounds to grow in size, providing temporary habitat to viruses leading to the rapid increase in COVID-19 cases which declined after the crop burning stopped.
Collapse
Affiliation(s)
- Aditi Rathod
- Indian Institute of Tropical Meteorology, Pune 411008, India
| | - Gufran Beig
- Indian Institute of Tropical Meteorology, Pune 411008, India
| |
Collapse
|
2
|
Ivaneev AI, Ermolin MS, Fedotov PS. Separation, Characterization, and Analysis of Environmental Nano- and Microparticles: State-of-the-Art Methods and Approaches. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821040055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Hartmann C, Elsner M, Niessner R, Ivleva NP. Nondestructive Chemical Analysis of the Iron-Containing Protein Ferritin Using Raman Microspectroscopy. APPLIED SPECTROSCOPY 2020; 74:193-203. [PMID: 30556406 DOI: 10.1177/0003702818823203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ferritin is a ubiquitous intracellular iron storage protein of animals, plants, and bacteria. The cavity of this protein acts like a reaction chamber for natural formation and storage of nano-sized particles via biomineralization. Knowledge of the chemical composition and structure of the iron core is highly warranted in the fields of nano technologies as well as biomolecules and medicine. Here, we show that Raman microspectroscopy (RM) is a suitable nondestructive approach for an analysis of proteins containing such nano-sized iron oxides. Our approach addresses: (1) synthesis of suitable reference materials, i.e., ferrihydrite, maghemite and magnetite nanoparticles; (2) optimization of parameters for Raman spectroscopic analysis; (3) comparison of Raman spectra from ferritin with apoferritin and our reference minerals; and (4) validation of Raman analysis by X-ray diffraction and Mössbauer spectroscopy as two independent complementary approaches. Our results reveal that the iron core of natural ferritin is composed of the iron(III) hydroxide ferrihydrite (Fe2O3 ∙ 0.5 H2O).
Collapse
Affiliation(s)
- Carolin Hartmann
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Munich, Germany
| | - Martin Elsner
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Munich, Germany
| | - Reinhard Niessner
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Munich, Germany
| | - Natalia P Ivleva
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Munich, Germany
| |
Collapse
|
4
|
Tamuli KJ, Sahoo RK, Bordoloi M. Biocatalytic green alternative to existing hazardous reaction media: synthesis of chalcone and flavone derivatives via the Claisen–Schmidt reaction at room temperature. NEW J CHEM 2020. [DOI: 10.1039/d0nj03839c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, two novel agro-food waste products from banana peels were used to synthesize chalcone and flavone derivatives at room temperature under solvent free conditions.
Collapse
Affiliation(s)
- Kashyap J. Tamuli
- Chemical Sciences and Technology Division
- CSIR-North East Institute of Science & Technology
- Jorhat
- India
| | - Ranjan K. Sahoo
- Chemical Sciences and Technology Division
- CSIR-North East Institute of Science & Technology
- Jorhat
- India
| | - Manobjyoti Bordoloi
- Chemical Sciences and Technology Division
- CSIR-North East Institute of Science & Technology
- Jorhat
- India
- Department of Chemistry
| |
Collapse
|
5
|
Abstract
Abstract
Micro Raman spectroscopy has been applied very early in environmental analytics. However, until now the field of application is quite limited. The main reasons for the low acceptance are high cost of the method and the low throughput. New developments in technology lead to cheaper instrumentation. Automation of Raman microscopy of particles might be a solution for a higher throughput and a broader application in environmental analytics. A more detailed analysis of aerosols and microplastic is good examples that could benefit from this development.
Collapse
|
6
|
Petrone P, Pucci P, Vergara A, Amoresano A, Birolo L, Pane F, Sirano F, Niola M, Buccelli C, Graziano V. A hypothesis of sudden body fluid vaporization in the 79 AD victims of Vesuvius. PLoS One 2018; 13:e0203210. [PMID: 30256793 PMCID: PMC6157861 DOI: 10.1371/journal.pone.0203210] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 08/16/2018] [Indexed: 11/18/2022] Open
Abstract
In AD 79 the town of Herculaneum was suddenly hit and overwhelmed by volcanic ash-avalanches that killed all its remaining residents, as also occurred in Pompeii and other settlements as far as 20 kilometers from Vesuvius. New investigations on the victims' skeletons unearthed from the ash deposit filling 12 waterfront chambers have now revealed widespread preservation of atypical red and black mineral residues encrusting the bones, which also impregnate the ash filling the intracranial cavity and the ash-bed encasing the skeletons. Here we show the unique detection of large amounts of iron and iron oxides from such residues, as revealed by inductively coupled plasma mass spectrometry and Raman microspectroscopy, thought to be the final products of heme iron upon thermal decomposition. The extraordinarily rare preservation of significant putative evidence of hemoprotein thermal degradation from the eruption victims strongly suggests the rapid vaporization of body fluids and soft tissues of people at death due to exposure to extreme heat.
Collapse
Affiliation(s)
- Pierpaolo Petrone
- Laboratory of Human Osteobiology and Forensic Anthropology, Department of Advanced Biomedical Sciences, Azienda Ospedaliera Universitaria “Federico II” 5, Naples, Italy
| | - Piero Pucci
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Monte Sant'Angelo, Naples, Italy
| | - Alessandro Vergara
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Monte Sant'Angelo, Naples, Italy
- CEINGE Biotecnologie Avanzate S.C a R.L., Naples, Italy
- Task Force di Ateneo "Metodologie Analitiche per la Salvaguardia dei Beni Culturali", Universita' di Napoli Federico II, Naples, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Monte Sant'Angelo, Naples, Italy
| | - Leila Birolo
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Monte Sant'Angelo, Naples, Italy
| | - Francesca Pane
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Monte Sant'Angelo, Naples, Italy
| | - Francesco Sirano
- Parco Archeologico di Ercolano, Corso Resina Herculaneum, Naples, Italy
| | - Massimo Niola
- Department of Advanced Biomedical Sciences, Azienda Ospedaliera Universitaria “Federico II”, Naples, Italy
| | - Claudio Buccelli
- Department of Advanced Biomedical Sciences, Azienda Ospedaliera Universitaria “Federico II”, Naples, Italy
| | - Vincenzo Graziano
- Department of Advanced Biomedical Sciences, Azienda Ospedaliera Universitaria “Federico II”, Naples, Italy
| |
Collapse
|
7
|
Bemetz J, Wegemann A, Saatchi K, Haase A, Häfeli UO, Niessner R, Gleich B, Seidel M. Microfluidic-Based Synthesis of Magnetic Nanoparticles Coupled with Miniaturized NMR for Online Relaxation Studies. Anal Chem 2018; 90:9975-9982. [DOI: 10.1021/acs.analchem.8b02374] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jonas Bemetz
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistrasse 17, 81377 München, Germany
| | - Andreas Wegemann
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Axel Haase
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Urs O. Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Reinhard Niessner
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistrasse 17, 81377 München, Germany
| | - Bernhard Gleich
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Michael Seidel
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistrasse 17, 81377 München, Germany
| |
Collapse
|
8
|
Bondy AL, Craig RL, Zhang Z, Gold A, Surratt JD, Ault AP. Isoprene-Derived Organosulfates: Vibrational Mode Analysis by Raman Spectroscopy, Acidity-Dependent Spectral Modes, and Observation in Individual Atmospheric Particles. J Phys Chem A 2017; 122:303-315. [DOI: 10.1021/acs.jpca.7b10587] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Amy L. Bondy
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109 United States
| | - Rebecca L. Craig
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109 United States
| | - Zhenfa Zhang
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Avram Gold
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jason D. Surratt
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrew P. Ault
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109 United States
- Department
of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Niranjan R, Thakur AK. The Toxicological Mechanisms of Environmental Soot (Black Carbon) and Carbon Black: Focus on Oxidative Stress and Inflammatory Pathways. Front Immunol 2017; 8:763. [PMID: 28713383 PMCID: PMC5492873 DOI: 10.3389/fimmu.2017.00763] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/16/2017] [Indexed: 12/29/2022] Open
Abstract
The environmental soot and carbon blacks (CBs) cause many diseases in humans, but their underlying mechanisms of toxicity are still poorly understood. Both are formed after the incomplete combustion of hydrocarbons but differ in their constituents and percent carbon contents. For the first time, “Sir Percival Pott” described soot as a carcinogen, which was subsequently confirmed by many others. The existing data suggest three main types of diseases due to soot and CB exposures: cancer, respiratory diseases, and cardiovascular dysfunctions. Experimental models revealed the involvement of oxidative stress, DNA methylation, formation of DNA adducts, and Aryl hydrocarbon receptor activation as the key mechanisms of soot- and CB-induced cancers. Metals including Si, Fe, Mn, Ti, and Co in soot also contribute in the reactive oxygen species (ROS)-mediated DNA damage. Mechanistically, ROS-induced DNA damage is further enhanced by eosinophils and neutrophils via halide (Cl− and Br−) dependent DNA adducts formation. The activation of pulmonary dendritic cells, T helper type 2 cells, and mast cells is crucial mediators in the pathology of soot- or CB-induced respiratory disease. Polyunsaturated fatty acids (PUFAs) were also found to modulate T cells functions in respiratory diseases. Particularly, telomerase reverse transcriptase was found to play the critical role in soot- and CB-induced cardiovascular dysfunctions. In this review, we propose integrated mechanisms of soot- and CB-induced toxicity emphasizing the role of inflammatory mediators and oxidative stress. We also suggest use of antioxidants and PUFAs as protective strategies against soot- and CB-induced disorders.
Collapse
Affiliation(s)
- Rituraj Niranjan
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology Kanpur, Kanpur, India
| | - Ashwani Kumar Thakur
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
10
|
Haisch C. Raman-based microarray readout: a review. Anal Bioanal Chem 2016; 408:4535-45. [PMID: 26973235 DOI: 10.1007/s00216-016-9444-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/16/2016] [Accepted: 02/23/2016] [Indexed: 11/26/2022]
Abstract
For a quarter of a century, microarrays have been part of the routine analytical toolbox. Label-based fluorescence detection is still the commonest optical readout strategy. Since the 1990s, a continuously increasing number of label-based as well as label-free experiments on Raman-based microarray readout concepts have been reported. This review summarizes the possible concepts and methods and their advantages and challenges. A common label-based strategy is based on the binding of selective receptors as well as Raman reporter molecules to plasmonic nanoparticles in a sandwich immunoassay, which results in surface-enhanced Raman scattering signals of the reporter molecule. Alternatively, capture of the analytes can be performed by receptors on a microarray surface. Addition of plasmonic nanoparticles again leads to a surface-enhanced Raman scattering signal, not of a label but directly of the analyte. This approach is mostly proposed for bacteria and cell detection. However, although many promising readout strategies have been discussed in numerous publications, rarely have any of them made the step from proof of concept to a practical application, let alone routine use. Graphical Abstract Possible realization of a SERS (Surface-Enhanced Raman Scattering) system for microarray readout.
Collapse
Affiliation(s)
- Christoph Haisch
- Technische Universität München, Marchioninistrasse 17, 81377, Munich, Germany.
| |
Collapse
|