1
|
Li M, Xiao Y, Wang Z, Sheng E, Zhao R, Han C, Du D. Enzyme- and label-free cascade isothermal amplification aptasensor for the ultrasensitive detection of ochratoxin A. Anal Chim Acta 2024; 1324:343111. [PMID: 39218583 DOI: 10.1016/j.aca.2024.343111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Ultrasensitive detection is crucial for the early warning and intervention of risk factors, ultimately benefiting the environment and human health. Low levels of ochratoxin A (OTA) present a hidden yet significant threat, and rapid detection via high-performing biosensors is therefore essential. RESULTS A cascade isothermal amplification aptasensor (CIA-aptasensor) was designed for OTA detection. On the surface of a magnetic bead probe, the OTA level was converted into positively correlated trigger cDNA through its competitive binding with OTA-Apt. The released trigger cDNA activated catalytic hairpin assembly followed by coupling with a hybridization chain reaction to achieve CIA. After adding graphene oxide and SYBR Green I, the background interference was eliminated to specifically obtain OTA-related fluorescence. The ultrasensitive limit of detection was 0.22 pg mL-1, an improvement of 1368-fold over conventional enzyme-linked aptamer sorbent assay by the same OTA-Apt, demonstrating satisfactory reliability and practicability. Thus, the CIA-aptasensor provides an enzyme- and label-free simplified homogeneous system with minimal background interference using isothermal conditions. SIGNIFICANCE This study provides a polymerase chain reaction-like approach for enhancing the sensitivity and performance of a biosensor, which could be extended for the application of CIA and label-free signaling strategy to other risk factors.
Collapse
Affiliation(s)
- Ming Li
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang, 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| | - Yu Xiao
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang, 212013, PR China
| | - Zexuan Wang
- School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Enze Sheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Rujin Zhao
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang, 212013, PR China
| | - Chenfei Han
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang, 212013, PR China
| | - Daolin Du
- Jingjiang College, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| |
Collapse
|
2
|
Hou Y, Chen R, Wang Z, Lu R, Wang Y, Ren S, Li S, Wang Y, Han T, Yang S, Zhou H, Gao Z. Bio-barcode assay: A useful technology for ultrasensitive and logic-controlled specific detection in food safety: A review. Anal Chim Acta 2023; 1267:341351. [PMID: 37257972 DOI: 10.1016/j.aca.2023.341351] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023]
Abstract
Food safety is one of the greatest public health challenges. Developing ultrasensitive detection methods for analytes at ultra-trace levels is, therefore, essential. In recent years, the bio-barcode assay (BCA) has emerged as an effective ultrasensitive detection strategy that is based on the indirect amplification of various DNA probes. This review systematically summarizes the progress of fluorescence, PCR, and colorimetry-based BCA methods for the detection of various contaminants, including pathogenic bacteria, toxins, pesticides, antibiotics, and other chemical substances in food in over 120 research papers. Current challenges, including long experimental times and strict storage conditions, and the prospects for the application of BCA in biomedicine and environmental analyses, have also been discussed herein.
Collapse
Affiliation(s)
- Yue Hou
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, People's Republic of China; Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China
| | - Ruipeng Chen
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China
| | - Zhiguang Wang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, People's Republic of China; Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China
| | - Ran Lu
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China
| | - Yonghui Wang
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China
| | - Shuyue Ren
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China
| | - Shuang Li
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China
| | - Yu Wang
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China
| | - Tie Han
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China
| | - Shiping Yang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, People's Republic of China.
| | - Huanying Zhou
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China.
| | - Zhixian Gao
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China.
| |
Collapse
|
3
|
Xu L, El-Aty AA, Eun JB, Shim JH, Zhao J, Lei X, Gao S, She Y, Jin F, Wang J, Jin M, Hammock BD. Recent Advances in Rapid Detection Techniques for Pesticide Residue: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13093-13117. [PMID: 36210513 PMCID: PMC10584040 DOI: 10.1021/acs.jafc.2c05284] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As an important chemical pollutant affecting the safety of agricultural products, the on-site and efficient detection of pesticide residues has become a global trend and hotspot in research. These methodologies were developed for simplicity, high sensitivity, and multiresidue detection. This review introduces the currently available technologies based on electrochemistry, optical analysis, biotechnology, and some innovative and novel technologies for the rapid detection of pesticide residues, focusing on the characteristics, research status, and application of the most innovative and novel technologies in the past 10 years, and analyzes challenges and future development prospects. The current review could be a good reference for researchers to choose the appropriate research direction in pesticide residue detection.
Collapse
Affiliation(s)
- Lingyuan Xu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - A.M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Jong-Bang Eun
- Department of Food Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Jae-Han Shim
- Natural Products Chemistry Laboratory, Biotechnology Research Institute, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea
| | - Jing Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingmei Lei
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Song Gao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fen Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bruce D. Hammock
- Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
4
|
Ultrasensitive immuno-PCR for detecting aflatoxin B1 based on magnetic separation and barcode DNA. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Tabatabaei MS, Islam R, Ahmed M. Size and macromolecule stabilizer-dependent performance of gold colloids in immuno-PCR. Anal Bioanal Chem 2022; 414:2205-2217. [PMID: 35034157 DOI: 10.1007/s00216-021-03857-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/27/2022]
Abstract
Gold nanoparticles (GNPs) are well-documented for their size and surface chemistry-dependent electronic and optical properties that are extensively utilized to develop highly sensitive immunoassays. GNP-based immuno-polymerase chain reaction (immuno-PCR) is especially interesting due to the facile loading of biomolecules on the surface of GNP probes and has been utilized to develop analyte-specific assays. In this study, the role of size and surface chemistry of GNPs is explored in detail to develop a highly sensitive and reproducible immuno-PCR assay for specific detection of biotinylated analytes. Our results indicate that smaller-sized gold nanoparticles outperform the larger ones in terms of their sensitivity in immuno-PCR assay and show superior loading of proteins and oligonucleotides on the surface of nanoparticles. Furthermore, the role of different macromolecular stabilizers (such as polyethylene glycol (PEG), bovine serum albumin (BSA), and PEGylated BSA) was compared to optimize the loading of biomolecules and to improve the signal-to-noise ratio of GNP probes. mPEG-BSA-functionalized GNP probes of 15 nm were found to be highly sensitive at low concentrations of analytes and significantly (~ 30 fold) improve the limit of detection of analytes in comparison with ELISA assay.
Collapse
Affiliation(s)
- Mahdis Sadat Tabatabaei
- Department of Chemistry, University of Prince Edward Island, Prince Edward Island, Charlottetown, C1A 4P3, Canada
| | | | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, Prince Edward Island, Charlottetown, C1A 4P3, Canada. .,Faculty of Sustainable Design Engineering, University of Prince Edward Island, Prince Edward Island, Charlottetown, C1A 4P3, Canada.
| |
Collapse
|
6
|
Chen J, Shi G, Yan C. Visual Test Paper for on-Site Polychlorinated Biphenyls Detection and Its Logic Gate Applications. Anal Chem 2021; 93:15438-15444. [PMID: 34763426 DOI: 10.1021/acs.analchem.1c03309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A visual detection method was proposed for polychlorinated biphenyls (PCBs) detection using lateral flow test paper as the sensing platform. The aptamer sequence was used to recognize the target 3,3',4,4'-tetrachlorobiphenyl (PCB77). The integration of Zn2+-dependent DNAzyme with toehold-mediated strand displacement reaction significantly improved the response signals. Gold nanoparticles were utilized as the signal tracers in the test paper, making the results visible directly by the naked eye. Under optimal conditions, the paper enables the visual detection of PCB77 as low as 10 pM without additional instrumentation. The assay displays a high selectivity for PCB77 against potential interfering molecules. The visual test paper is robust and has been applied to the detection of PCB77 in milk samples with good recovery and satisfactory accuracy. Using two different PCBs (PCB77 and PCB72) as inputs, we further fabricated OR and AND logic gates, which is conducive to the development of an intelligent detection strategy for PCBs monitoring. Given the attractive characteristics of disposability, low cost, logic operation, and intuitive output, the test paper shows great promise for on-site screening of PCBs in resource-limited areas.
Collapse
Affiliation(s)
- Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Gu Shi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chong Yan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
7
|
Li M, Hong X, Qiu X, Yang C, Mao Y, Li Y, Liu Z, Du D. Ultrasensitive monitoring strategy of PCR-like levels for zearalenone contamination based DNA barcode. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4490-4497. [PMID: 33448409 DOI: 10.1002/jsfa.11089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The ultrasensitive monitoring strategy of zearalenone (ZEN) is essential and desirable for food safety and human health. In the present study, a coupling of gold nanoparticles-DNA barcode and direct competitive immunoassay-based real-time polymerase chain reaction signal amplification (RT-IPCR) for ZEN close to the sensitivity of PCR-like levels is described and evaluated. RESULTS The RT-IPCR benefited from the use of a DNA barcode and RT-PCR detection strategy, thus resulting in ultrasensitive and simple detection for ZEN. Under the optimal RT-IPCR, the linear range of detection was from 0.5 to 1000 pg mL-1 and the limit of detection was 0.5 pg mL-1 , which was 400-fold lower than the enzyme-linked immunosorbent assay. The detection procedure was simplified and the detection time was shortened. The specificity, accuracy and precision of the RT-IPCR confirmed a high performance. ZEN-positive contamination levels were from 0.056 to 152.12 ng g-1 by the RT-IPCR, which was demonstrated to be highly reliable by liquid chromatography-tandem mass spectrometry. CONCLUSION The proposed RT-IPCR could be used as an alternative for detecting ZEN with satisfactory ultrasensitivity, simplicity, low cost and high-throughput. The present study could provide a strategy for the ultrasensitive detection of the small molecule with a simple and practical approach, which has significant appeal and application prospects.
Collapse
Affiliation(s)
- Ming Li
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Xia Hong
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Chuqin Yang
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yuhao Mao
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yan Li
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Zhenjiang Liu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Daolin Du
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
8
|
Munir S, Ahmed S, Ibrahim M, Khalid M, Ojha SC. A Spellbinding Interplay Between Biological Barcoding and Nanotechnology. Front Bioeng Biotechnol 2020; 8:883. [PMID: 33014994 PMCID: PMC7506030 DOI: 10.3389/fbioe.2020.00883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
Great scientific research with improved potential in probing biological locales has remained a giant stride. The use of bio-barcodes with the potential use of nanotechnology is a hallmark being developed among recent advanced techniques. Biobarcoding is a novel method used for screening biomolecules to identify and divulge ragbag biodiversity. It establishes successful barcoding projects in the field of nanomedical technology for massively testing disease diagnosis and treatment. Biobarcoding and nanotechnology are recently developed technologies that provide unique opportunities and challenges for multiplex detection such as DNAs, proteins and nucleic acids of animals, plants, viruses, and various other species. These technologies also clump drug delivery, gene delivery, and DNA sequencing. Bio-barcode amplification assay (BCA) is used at large for the detection and identification of proteins and DNAs. DNA barcoding combined with nanotechnology has been proven highly sensitive rendering fast uniplex and multiplex detection of pathogens in food, blood, and other specimens. This review takes a panoramic view of current advances in nano bio-barcodes which have been summarized to explore additional applications such as detection of cytokines, neurotransmitters, cancer markers, prostate-specific antigens, and allergens. In the future, it will also be possible to detect some fungi, algae, protozoa, and other pollutants in food, agriculture, and clinical samples. Using these technologies, specific and efficient sensors would possibly be developed that can perform swift detections of antigens, allergens, and other specimens.
Collapse
Affiliation(s)
- Shehla Munir
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Sarfraz Ahmed
- Department of Basic Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Ibrahim
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Tabatabaei MS, Islam R, Ahmed M. Applications of gold nanoparticles in ELISA, PCR, and immuno-PCR assays: A review. Anal Chim Acta 2020; 1143:250-266. [PMID: 33384122 DOI: 10.1016/j.aca.2020.08.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/19/2022]
Abstract
Development of state-of-the-art assays for sensitive and specific detection of disease biomarkers has received significant interest for early detection and prevention of various diseases. Enzyme Linked Immunosorbent assays (ELISA) and Polymerase Chain Reaction (PCR) are two examples of proteins and nucleic acid detection assays respectively, which have been widely used for the sensitive detection of target analytes in biological fluids. Recently, immuno-PCR has emerged as a sensitive detection method, where high specificity of sandwich ELISA assays is combined with high sensitivity of PCR for trace detection of biomarkers. However, inherent disadvantages of immuno-PCR assays limit their application as rapid and sensitive detection method in clinical settings. With advances in nanomaterials, nanoparticles-based immunoassays have been widely used to improve the sensitivity and simplicity of traditional immunoassays. Owing to facile synthesis, surface functionalization, and superior optical and electronic properties, gold nanoparticles have been at the forefront of sensing and detection technologies and have been extensively studied to improve the efficacies of immunoassays. This review provides a brief history of immuno-PCR assays and specifically focuses on the role of gold nanoparticles to improve the sensitivity and specificity of ELISA, PCR and immuno-PCR assays.
Collapse
Affiliation(s)
| | - Rafiq Islam
- Somru BioScience Inc., 19 Innovation Way, BioCommons Research Park.Charlottetown, PE, C1E 0B7, Canada
| | - Marya Ahmed
- Department of Chemistry, 550 University Ave. Charlottetown, PE, C1A 4P3, Canada; Faculty of Sustainable Design Engineering, University of Prince Edward Island, 550 University Ave. Charlottetown, PE, C1A 4P3, Canada.
| |
Collapse
|
10
|
Wang Y, Jin M, Chen G, Cui X, Zhang Y, Li M, Liao Y, Zhang X, Qin G, Yan F, Abd El-Aty A, Wang J. Bio-barcode detection technology and its research applications: A review. J Adv Res 2019; 20:23-32. [PMID: 31193255 PMCID: PMC6522771 DOI: 10.1016/j.jare.2019.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022] Open
Abstract
With the rapid development of nanotechnology, the bio-barcode assay (BCA), as a new diagnostic tool, has been gradually applied to the detection of protein and nucleic acid targets and small-molecule compounds. BCA has the advantages of high sensitivity, short detection time, simple operation, low cost, good repeatability and good linear relationship between detection results. However, bio-barcode technology is not yet fully formed as a complete detection system, and the detection process in all aspects and stages is unstable. Therefore, studying the optimal reaction conditions, optimizing the experimental steps, exploring the multi-residue detection of small-molecule substances, and preparing immuno-bio-barcode kits are important research directions for the standardization and commercialization of BCA. The main theme of this review was to describe the principle of BCA, provide a comparison of its application, and introduce the single-residue and multi-residue detection of macromolecules and single-residue detection of small molecules. We also compared it with other detection methods, summarized its feasibility and limitations, expecting that with further improvement and development, the technique can be more widely used in the field of stable small-molecule and multi-residue detection.
Collapse
Affiliation(s)
- Yuanshang Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Ge Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Xueyan Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Yudan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Mingjie Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Yun Liao
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Xiuyuan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Guoxin Qin
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, PR China
| | - Feiyan Yan
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, PR China
| | - A.M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| |
Collapse
|
11
|
Dahiya B, Mehta PK. Detection of potential biomarkers associated with outrageous diseases and environmental pollutants by nanoparticle-based immuno-PCR assays. Anal Biochem 2019; 587:113444. [PMID: 31545948 DOI: 10.1016/j.ab.2019.113444] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022]
Abstract
Immuno-polymerase chain reaction (I-PCR) assay with advantages of both enzyme-linked immunosorbent assay (ELISA) and PCR exhibits several-fold enhanced sensitivity in comparison to respective ELISA, which has wide applications for ultralow detection of several molecules, i.e. cytokines, protooncogenes and biomarkers associated with several diseases. Conjugation of reporter DNA to the detection antibodies is the most crucial step of I-PCR assay that usually employs streptavidin-protein A, streptavidin-biotin conjugate or succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC) system by a covalent binding. However, coupling of antibodies and oligonucleotides to nanoparticles (NPs) is relatively easier in the NP-based I-PCR (NP-I-PCR) that also displays better accuracy. This article is mainly focused on the detection of important biomarkers associated with several outrageous infectious and non-infectious diseases by NP-I-PCR assays, which would expedite an early initiation of therapy thus human health would be improved. Similarly, ultralow detection of environmental pollutants by these assays and their elimination would certainly improve human health.
Collapse
Affiliation(s)
- Bhawna Dahiya
- Centre for Biotechnology, Maharshi Dayanand University (MDU), Rohtak, 124001, Haryana, India
| | - Promod K Mehta
- Centre for Biotechnology, Maharshi Dayanand University (MDU), Rohtak, 124001, Haryana, India.
| |
Collapse
|
12
|
Abstract
Ligand-binding techniques such as immunoassays, the reference for clinical diagnosis, offer a wide range of innovative approaches based on signal DNA amplification, nanotechnologies or digital assays, which result in technologies with sensitivities more than 1000-times that of formats used 20 years ago. Providing that these technologies gain acceptance and translate into robust commercial platforms, we expect that several fields will be impacted in the near future, including the clinical diagnosis of cancer markers, the early detection of infectious diseases and the safety of biotherapeutics. Furthermore, the combination of these techniques with microfluidic systems will allow probing of biological diversity at the single cell level and will lead to the discovery of novel and rare biomarkers.
Collapse
|
13
|
Ryazantsev DY, Voronina DV, Zavriev SK. Immuno-PCR: achievements and perspectives. BIOCHEMISTRY (MOSCOW) 2017; 81:1754-1770. [DOI: 10.1134/s0006297916130113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Teng Y, Li X, Chen T, Zhang M, Wang X, Li Z, Luo Y. Isolation of the PCB-degrading bacteria Mesorhizobium sp. ZY1 and its combined remediation with Astragalus sinicus L. for contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:141-149. [PMID: 26292091 DOI: 10.1080/15226514.2015.1073667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A bacterial strain ZY1 capable of utilizing PCBs as its carbon source was isolated from the root nodules of Chinese milk vetch (Astragalus sinicus L.). The strain was identified as Mesorhizobium sp. according to its physiological-biochemical properties and the analysis of its 16S rRNA gene sequence. When the initial OD600 was 0.15, 62.7% of 15 mg L(-1) 3,3',4,4'-TCB in a liquid culture was degraded by Mesorhizobium sp. ZY1 within 10 days. Mesorhizobium sp. ZY1 also greatly increased the biotransformation of soil PCBs. Pot experiments indicated that the soil PCB concentrations of a single incubation of strain ZY1 (R) and a single planting of A. sinicus (P) decreased by 20.5% and 23.0%, respectively, and the concentration of PCBs in soil treated with A. sinicus and strain ZY1 decreased by 53.1%. We also observed that A. sinicus-Mesorhizobium sp. ZY1 treatment (PR) improved plant biomass and the concentration of PCBs in plants compared with a single A. sinicus planting treatment (P). The results suggest that the synergistic association between A. sinicus and PCBs-degrading Mesorhizobium sp. ZY1 can stimulate the phytoextraction of PCBs and the rhizosphere microflora to degrade PCBs, and might be a promising bioremediation strategy for PCB-contaminated soil.
Collapse
Affiliation(s)
- Ying Teng
- a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing China
| | - Xiufen Li
- a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing China
- b University of Chinese Academy of Sciences , Beijing China
| | - Ting Chen
- a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing China
| | - Manyun Zhang
- a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing China
- b University of Chinese Academy of Sciences , Beijing China
| | - Xiaomi Wang
- a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing China
- b University of Chinese Academy of Sciences , Beijing China
| | - Zhengao Li
- a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing China
| | - Yongming Luo
- a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing China
| |
Collapse
|