1
|
Crosstalk between ORMDL3, serine palmitoyltransferase, and 5-lipoxygenase in the sphingolipid and eicosanoid metabolic pathways. J Lipid Res 2021; 62:100121. [PMID: 34560079 PMCID: PMC8527048 DOI: 10.1016/j.jlr.2021.100121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022] Open
Abstract
Leukotrienes (LTs) and sphingolipids are critical lipid mediators participating in numerous cellular signal transduction events and developing various disorders, such as bronchial hyperactivity leading to asthma. Enzymatic reactions initiating production of these lipid mediators involve 5-lipoxygenase (5-LO)-mediated conversion of arachidonic acid to LTs and serine palmitoyltransferase (SPT)-mediated de novo synthesis of sphingolipids. Previous studies have shown that endoplasmic reticulum membrane protein ORM1-like protein 3 (ORMDL3) inhibits the activity of SPT and subsequent sphingolipid synthesis. However, the role of ORMDL3 in the synthesis of LTs is not known. In this study, we used peritoneal-derived mast cells isolated from ORMDL3 KO or control mice and examined their calcium mobilization, degranulation, NF-κB inhibitor-α phosphorylation, and TNF-α production. We found that peritoneal-derived mast cells with ORMDL3 KO exhibited increased responsiveness to antigen. Detailed lipid analysis showed that compared with WT cells, ORMDL3-deficient cells exhibited not only enhanced production of sphingolipids but also of LT signaling mediators LTB4, 6t-LTB4, LTC4, LTB5, and 6t-LTB5. The crosstalk between ORMDL3 and 5-LO metabolic pathways was supported by the finding that endogenous ORMDL3 and 5-LO are localized in similar endoplasmic reticulum domains in human mast cells and that ORMDL3 physically interacts with 5-LO. Further experiments showed that 5-LO also interacts with the long-chain 1 and long-chain 2 subunits of SPT. In agreement with these findings, 5-LO knockdown increased ceramide levels, and silencing of SPTLC1 decreased arachidonic acid metabolism to LTs to levels observed upon 5-LO knockdown. These results demonstrate functional crosstalk between the LT and sphingolipid metabolic pathways, leading to the production of lipid signaling mediators.
Collapse
|
2
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
3
|
Bugajev V, Halova I, Demkova L, Cernohouzova S, Vavrova P, Mrkacek M, Utekal P, Draberova L, Kuchar L, Schuster B, Draber P. ORMDL2 Deficiency Potentiates the ORMDL3-Dependent Changes in Mast Cell Signaling. Front Immunol 2021; 11:591975. [PMID: 33643282 PMCID: PMC7905224 DOI: 10.3389/fimmu.2020.591975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
The systemic anaphylactic reaction is a life-threatening allergic response initiated by activated mast cells. Sphingolipids are an essential player in the development and attenuation of this response. De novo synthesis of sphingolipids in mammalian cells is inhibited by the family of three ORMDL proteins (ORMDL1, 2, and 3). However, the cell and tissue-specific functions of ORMDL proteins in mast cell signaling are poorly understood. This study aimed to determine cross-talk of ORMDL2 and ORMDL3 proteins in IgE-mediated responses. To this end, we prepared mice with whole-body knockout (KO) of Ormdl2 and/or Ormdl3 genes and studied their role in mast cell-dependent activation events in vitro and in vivo. We found that the absence of ORMDL3 in bone marrow-derived mast cells (BMMCs) increased the levels of cellular sphingolipids. Such an increase was further raised by simultaneous ORMDL2 deficiency, which alone had no effect on sphingolipid levels. Cells with double ORMDL2 and ORMDL3 KO exhibited increased intracellular levels of sphingosine-1-phosphate (S1P). Furthermore, we found that concurrent ORMDL2 and ORMDL3 deficiency increased IκB-α phosphorylation, degranulation, and production of IL-4, IL-6, and TNF-α cytokines in antigen-activated mast cells. Interestingly, the chemotaxis towards antigen was increased in all mutant cell types analyzed. Experiments in vivo showed that passive cutaneous anaphylaxis (PCA), which is initiated by mast cell activation, was increased only in ORMDL2,3 double KO mice, supporting our in vitro observations with mast cells. On the other hand, ORMDL3 KO and ORMDL2,3 double KO mice showed faster recovery from passive systemic anaphylaxis, which could be mediated by increased levels of blood S1P presented in such mice. Our findings demonstrate that Ormdl2 deficiency potentiates the ORMDL3-dependent changes in mast cell signaling.
Collapse
Affiliation(s)
- Viktor Bugajev
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Livia Demkova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Sara Cernohouzova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Petra Vavrova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Michal Mrkacek
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Pavol Utekal
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Lubica Draberova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ladislav Kuchar
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Björn Schuster
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
4
|
Song HY, Chien CS, Yarmishyn AA, Chou SJ, Yang YP, Wang ML, Wang CY, Leu HB, Yu WC, Chang YL, Chiou SH. Generation of GLA-Knockout Human Embryonic Stem Cell Lines to Model Autophagic Dysfunction and Exosome Secretion in Fabry Disease-Associated Hypertrophic Cardiomyopathy. Cells 2019; 8:cells8040327. [PMID: 30965672 PMCID: PMC6523555 DOI: 10.3390/cells8040327] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/15/2022] Open
Abstract
Fabry disease (FD) is a rare inherited disorder characterized by a wide range of systemic symptoms; it is particularly associated with cardiovascular and renal problems. Enzyme replacement therapy and pharmacological chaperone migalastat are the only approved and effective treatment strategies for FD patients. It is well documented that alpha-galactosidase A (GLA) enzyme activity deficiency causes globotriaosylceramide (Gb3) accumulation, which plays a crucial role in the etiology of FD. However, the detailed mechanisms remain unclear, and the lack of a reliable and powerful disease model is an obstacle. In this study, we created such a model by using CRISPR/Cas9-mediated editing of GLA gene to knockout its expression in human embryonic stem cells (hESCs). The cardiomyocytes differentiated from these hESCs (GLA-null CMs) were characterized by the accumulation of Gb3 and significant increases of cell surface area, the landmarks of FD-associated cardiomyopathy. Furthermore, we used mass spectrometry to compare the proteomes of GLA-null CMs and parental wild type CMs and found that the Rab GTPases involved in exocytotic vesicle release were significantly downregulated. This caused impairment of autophagic flux and protein turnover, resulting in an increase of reactive oxygen species and apoptosis. To summarize, we established a FD model which can be used as a promising tool to study human hypertrophic cardiomyopathy in a physiologically and pathologically relevant manner and to develop new therapies by targeting Rab GTPases signaling-related exosomal vesicles transportation.
Collapse
Affiliation(s)
- Hui-Yung Song
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Chian-Shiu Chien
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Aliaksandr A Yarmishyn
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Shih-Jie Chou
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- School of Pharmaceutical Sciences, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Mong-Lien Wang
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- School of Pharmaceutical Sciences, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Chien-Ying Wang
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Emergent Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Hsin-Bang Leu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Division of Cardiology & Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Wen-Chung Yu
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Division of Cardiology & Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Yuh-Lih Chang
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- School of Pharmaceutical Sciences, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Shih-Hwa Chiou
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Genomics Research Center, Academia Sinica, Taipei 11574, Taiwan.
| |
Collapse
|
5
|
Kidney Lipidomics by Mass Spectrometry Imaging: A Focus on the Glomerulus. Int J Mol Sci 2019; 20:ijms20071623. [PMID: 30939806 PMCID: PMC6480965 DOI: 10.3390/ijms20071623] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 12/13/2022] Open
Abstract
Lipid disorders have been associated with glomerulopathies, a distinct type of renal pathologies, such as nephrotic syndrome. Global analyses targeting kidney lipids in this pathophysiologic context have been extensively performed, but most often regardless of the architectural and functional complexity of the kidney. The new developments in mass spectrometry imaging technologies have opened a promising field in localized lipidomic studies focused on this organ. In this article, we revisit the main works having employed the Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) technology, and the few reports on the use of TOF-Secondary Ion Mass Spectrometry (TOF-SIMS). We also present a first analysis of mouse kidney cortex sections by cluster TOF-SIMS. The latter represents a good option for high resolution lipid imaging when frozen unfixed histological samples are available. The advantages and drawbacks of this developing field are discussed.
Collapse
|
6
|
Bhat OM, Yuan X, Li G, Lee R, Li PL. Sphingolipids and Redox Signaling in Renal Regulation and Chronic Kidney Diseases. Antioxid Redox Signal 2018; 28:1008-1026. [PMID: 29121774 PMCID: PMC5849286 DOI: 10.1089/ars.2017.7129] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/30/2017] [Accepted: 11/04/2017] [Indexed: 01/04/2023]
Abstract
Significance: Sphingolipids play critical roles in the membrane biology and intracellular signaling events that influence cellular behavior and function. Our review focuses on the cellular mechanisms and functional relevance of the cross talk between sphingolipids and redox signaling, which may be critically implicated in the pathogenesis of different renal diseases. Recent Advances: Reactive oxygen species (ROS) and sphingolipids can regulate cellular redox homeostasis through the regulation of NADPH oxidase, mitochondrial integrity, nitric oxide synthase (NOS), and antioxidant enzymes. Over the last two decades, there have been significant advancements in the field of sphingolipid research, and it was in 2010 for the first time that sphingolipid receptor modulator was exploited as a therapeutic in humans. The cross talk of sphingolipids with redox signaling pathways becomes an important mechanism in the development of many different diseases such as renal diseases. Critical Issues: The critical issues to be addressed in this review are how sphingolipids interact with the redox signaling pathway to regulate renal function and even result in chronic kidney diseases. Ceramide, sphingosine, and sphingosine-1-phosphate (S1P) as main signaling sphingolipids are discussed in more detail. Future Directions: Although sphingolipids and ROS may mediate or modulate cellular responses to physiological and pathological stimuli, more translational studies and mechanistic pursuit in a tissue- or cell-specific way are needed to enhance our understanding of this important topic and to develop effective therapeutic strategies to treat diseases associated with redox signaling and sphingolipid cross talk. Antioxid. Redox Signal. 28, 1008-1026.
Collapse
Affiliation(s)
- Owais M Bhat
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Guangbi Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - RaMi Lee
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
7
|
Rae Buchberger A, DeLaney K, Johnson J, Li L. Mass Spectrometry Imaging: A Review of Emerging Advancements and Future Insights. Anal Chem 2018; 90:240-265. [PMID: 29155564 PMCID: PMC5959842 DOI: 10.1021/acs.analchem.7b04733] [Citation(s) in RCA: 574] [Impact Index Per Article: 95.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Amanda Rae Buchberger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jillian Johnson
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
8
|
Kodama T, Tsukimura T, Kawashima I, Sato A, Sakuraba H, Togawa T. Differences in cleavage of globotriaosylceramide and its derivatives accumulated in organs of young Fabry mice following enzyme replacement therapy. Mol Genet Metab 2017; 120:116-120. [PMID: 27756537 DOI: 10.1016/j.ymgme.2016.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 11/23/2022]
Abstract
In Fabry disease, large amounts of globotriaosylceramide (Gb3) and related glycosphingolipids accumulate in organs due to a deficiency of α-galactosidase A (GLA) activity. Enzyme replacement therapy (ERT) with recombinant GLA is now available, and it has been reported that ERT is beneficial for patients with Fabry disease, especially those who start treatment at an early stage of the disease. However, it seems that the efficacy of ERT differs with each organ, and Gb3 accumulated in the kidneys shows resistance to ERT when it is started at a late stage. In this study, we examined the differences in cleavage of Gb3 isoforms, and lyso-Gb3 and its analogues in the kidneys, liver, and heart in young Fabry mice subjected to ERT. The results revealed that recurrent administration of recombinant GLA had prominent effects in terms of degradation of Gb3 and its derivatives accumulated in the organs. However, particular Gb3 isoforms, i.e., Gb3 (C20:0) and Gb3 (C24OH), accumulated in the kidneys largely escaped from degradation. Such Gb3 isoforms may gradually accumulate in the kidneys from a young age, which results in a reduction in the efficacy of ERT for Fabry disease.
Collapse
Affiliation(s)
- Takashi Kodama
- Department of Functional Bioanalysis, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Takahiro Tsukimura
- Department of Functional Bioanalysis, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Ikuo Kawashima
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 113-0021, Japan
| | - Atsuko Sato
- Department of Clinical Genetics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Hitoshi Sakuraba
- Department of Clinical Genetics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Tadayasu Togawa
- Department of Functional Bioanalysis, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
9
|
Glycosphingolipid storage in Fabry mice extends beyond globotriaosylceramide and is affected by ABCB1 depletion. Future Sci OA 2016; 2:FSO147. [PMID: 28116130 PMCID: PMC5242178 DOI: 10.4155/fsoa-2016-0027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/10/2016] [Indexed: 11/17/2022] Open
Abstract
Aim: Fabry disease is caused by α-galactosidase A deficiency leading to accumulation of globotriaosylceramide (Gb3) in tissues. Clinical manifestations do not appear to correlate with total Gb3 levels. Studies examining tissue distribution of specific acyl chain species of Gb3 and upstream glycosphingolipids are lacking. Material & methods/Results: Thorough characterization of the Fabry mouse sphingolipid profile by LC-MS revealed unique Gb3 acyl chain storage profiles. Storage extended beyond Gb3; all Fabry tissues also accumulated monohexosylceramides. Depletion of ABCB1 had a complex effect on glycosphingolipid storage. Conclusion: These data provide insights into how specific sphingolipid species correlate with one another and how these correlations change in the α-galactosidase A-deficient state, potentially leading to the identification of more specific biomarkers of Fabry disease. Fabry disease is caused by a shortage of the enzyme α-galactosidase A leading to storage of a fat called globotriaosylceramide (Gb3) in tissues. Disease severity does not appear to correlate directly with total Gb3. Importantly, Gb3 is comprised of many highly related but distinct species. We examined levels of Gb3 species and precursor molecules in Fabry mice. Gb3 species and storage are unique to each tissue. Furthermore, storage is not limited to Gb3; precursor fats are also elevated. Detailed analyses of differences in storage between the normal and α-galactosidase A-deficient state may provide a better understanding of the causes of Fabry disease.
Collapse
|
10
|
Kuchař L, Asfaw B, Rybová J, Ledvinová J. Tandem Mass Spectrometry of Sphingolipids: Applications for Diagnosis of Sphingolipidoses. Adv Clin Chem 2016; 77:177-219. [PMID: 27717417 DOI: 10.1016/bs.acc.2016.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent years, mass spectrometry (MS) has become the dominant technology in lipidomic analysis. It is widely used in diagnosis and research of lipid metabolism disorders including those characterized by impairment of lysosomal functions and storage of nondegraded-degraded substrates. These rare diseases, which include sphingolipidoses, have severe and often fatal clinical consequences. Modern MS methods have contributed significantly to achieve a definitive diagnosis, which is essential in clinical practice to begin properly targeted patient care. Here we summarize MS and tandem MS methods used for qualitative and quantitative analysis of sphingolipids (SL) relative to the diagnostic process for sphingolipidoses and studies focusing on alterations in cell functions due to these disorders. This review covers the following topics: Tandem MS is sensitive and robust in determining the composition of sphingolipid classes in various biological materials. Its ability to establish SL metabolomic profiles using MS bench-top analyzers, significantly benefits the first stages of a diagnosis as well as metabolic studies of these disorders. It can thus contribute to a better understanding of the biological significance of SL.
Collapse
Affiliation(s)
- L Kuchař
- Charles University in Prague and General University Hospital, Prague, Czech Republic.
| | - B Asfaw
- Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - J Rybová
- Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - J Ledvinová
- Charles University in Prague and General University Hospital, Prague, Czech Republic.
| |
Collapse
|
11
|
Relative distribution of Gb3 isoforms/analogs in NOD/SCID/Fabry mice tissues determined by tandem mass spectrometry. Bioanalysis 2016; 8:1793-807. [PMID: 27523577 DOI: 10.4155/bio-2016-0116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM Fabry disease is a lysosomal storage disorder leading to glycosphingolipid accumulation in different organs, tissues and biological fluids. The development of a Fabry disease gene therapy trial is underway in Canada. A tool to determine the distribution of Gb3 biomarkers in tissues of Fabry mice might be applicable to monitor the effect of gene therapy. Results & methodology: An ultra-performance LC-MS/MS (UPLC-MS/MS) method for the analysis of 22 Gb3 isoform/analogs in various Fabry mice tissues was developed and validated. Marked variation in biomarker organ distribution was found with higher levels in the spleen, followed by the small intestine, kidneys, lungs, heart, liver and brain. CONCLUSION The devised method is sensitive and useful for the evaluation of biomarker profiles in Fabry mice.
Collapse
|
12
|
Vens-Cappell S, Kouzel IU, Kettling H, Soltwisch J, Bauwens A, Porubsky S, Müthing J, Dreisewerd K. On-Tissue Phospholipase C Digestion for Enhanced MALDI-MS Imaging of Neutral Glycosphingolipids. Anal Chem 2016; 88:5595-9. [PMID: 27212679 DOI: 10.1021/acs.analchem.6b01084] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can be used to simultaneously visualize the lateral distribution of different lipid classes in tissue sections, but the applicability of the method to real-life samples is often limited by ion suppression effects. In particular, the presence of abundant phosphatidylcholines (PCs) can reduce the ion yields for all other lipid species in positive ion mode measurements. Here, we used on-tissue treatment with buffer-free phospholipase C (PLC) to near-quantitatively degrade PCs in fresh-frozen tissue sections. The ion signal intensities of mono-, di-, and oligohexosylceramides were enhanced by up to 10-fold. In addition, visualization of Shiga toxin receptor globotriaosylceramide (Gb3Cer) in the kidneys of wild-type and α-galactosidase A-knockout (Fabry) mice was possible at about ten micrometer resolution. Importantly, the PLC treatment did not decrease the high lateral resolution of the MS imaging analysis.
Collapse
Affiliation(s)
- Simeon Vens-Cappell
- Institute for Hygiene, University of Münster , 48149 Münster, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University of Münster , 48149 Münster, Germany
| | - Ivan U Kouzel
- Institute for Hygiene, University of Münster , 48149 Münster, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University of Münster , 48149 Münster, Germany
| | - Hans Kettling
- Institute for Hygiene, University of Münster , 48149 Münster, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University of Münster , 48149 Münster, Germany
| | - Jens Soltwisch
- Institute for Hygiene, University of Münster , 48149 Münster, Germany
| | - Andreas Bauwens
- Institute for Hygiene, University of Münster , 48149 Münster, Germany
| | - Stefan Porubsky
- Institute of Pathology Mannheim, University of Heidelberg , 68167 Mannheim, Germany.,Cellular and Molecular Pathology, German Cancer Research Center, DKFZ , 69120 Heidelberg, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster , 48149 Münster, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University of Münster , 48149 Münster, Germany
| | - Klaus Dreisewerd
- Institute for Hygiene, University of Münster , 48149 Münster, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University of Münster , 48149 Münster, Germany
| |
Collapse
|
13
|
Sugimoto M, Wakabayashi M, Shimizu Y, Yoshioka T, Higashino K, Numata Y, Okuda T, Zhao S, Sakai S, Igarashi Y, Kuge Y. Imaging Mass Spectrometry Reveals Acyl-Chain- and Region-Specific Sphingolipid Metabolism in the Kidneys of Sphingomyelin Synthase 2-Deficient Mice. PLoS One 2016; 11:e0152191. [PMID: 27010944 PMCID: PMC4806983 DOI: 10.1371/journal.pone.0152191] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/10/2016] [Indexed: 12/31/2022] Open
Abstract
Obesity was reported to cause kidney injury by excessive accumulation of sphingolipids such as sphingomyelin and ceramide. Sphingomyelin synthase 2 (SMS2) is an important enzyme for hepatic sphingolipid homeostasis and its dysfunction is considered to result in fatty liver disease. The expression of SMS2 is also high in the kidneys. However, the contribution of SMS2 on renal sphingolipid metabolism remains unclear. Imaging mass spectrometry is a powerful tool to visualize the distribution and provide quantitative data on lipids in tissue sections. Thus, in this study, we analyzed the effects of SMS2 deficiency on the distribution and concentration of sphingomyelins in the liver and kidneys of mice fed with a normal-diet or a high-fat-diet using imaging mass spectrometry and liquid chromatography/electrospray ionization-tandem mass spectrometry. Our study revealed that high-fat-diet increased C18–C22 sphingomyelins, but decreased C24-sphingomyelins, in the liver and kidneys of wild-type mice. By contrast, SMS2 deficiency decreased C18–C24 sphingomyelins in the liver. Although a similar trend was observed in the whole-kidneys, the effects were minor. Interestingly, imaging mass spectrometry revealed that sphingomyelin localization was specific to each acyl-chain length in the kidneys. Further, SMS2 deficiency mainly decreased C22-sphingomyelin in the renal medulla and C24-sphingomyelins in the renal cortex. Thus, imaging mass spectrometry can provide visual assessment of the contribution of SMS2 on acyl-chain- and region-specific sphingomyelin metabolism in the kidneys.
Collapse
Affiliation(s)
- Masayuki Sugimoto
- Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo, Japan
| | - Masato Wakabayashi
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo, Japan
| | - Yoichi Shimizu
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
- Laboratory of Bioanalysis and Molecular Imaging, Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Takeshi Yoshioka
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo, Japan
| | - Kenichi Higashino
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo, Japan
| | - Yoshito Numata
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo, Japan
| | - Tomohiko Okuda
- Drug Discovery Technologies, Discovery Research Laboratory for Core Therapeutic Areas, Shionogi & Co., Ltd., Toyonaka, Japan
| | - Songji Zhao
- Department of Tracer Kinetics & Bioanalysis, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shota Sakai
- Department of Biomembrane and Biofunctional Chemistry, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Yasuyuki Igarashi
- Department of Biomembrane and Biofunctional Chemistry, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Yuji Kuge
- Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
14
|
Sueoka H, Aoki M, Tsukimura T, Togawa T, Sakuraba H. Distributions of Globotriaosylceramide Isoforms, and Globotriaosylsphingosine and Its Analogues in an α-Galactosidase A Knockout Mouse, a Model of Fabry Disease. PLoS One 2015; 10:e0144958. [PMID: 26661087 PMCID: PMC4685999 DOI: 10.1371/journal.pone.0144958] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/25/2015] [Indexed: 11/25/2022] Open
Abstract
Fabry disease is caused by deficient activity of α-galactosidase A (GLA) and characterized by systemic accumulation of glycosphingolipids, substrates of the enzyme. To gain insight into the pathogenesis of Fabry disease based on accumulated substrates, we examined the tissue and plasma distributions of globotriaosylceramide (Gb3) isoforms, and globotriaosylsphingosine (lyso-Gb3) and its analogues in a GLA knockout mouse, a model of Fabry disease, by means of liquid chromatography-mass spectrometry and nano-liquid chromatography-tandem mass spectrometry, respectively. The results revealed that the contents of these substrates in the liver, kidneys, heart, and plasma of GLA knockout mice were apparently higher than in those of wild-type ones, and organ specificity in the accumulation of Gb3 isoforms was found. Especially in the kidneys, accumulation of a large amount of Gb3 isoforms including hydroxylated residues was found. In the GLA knockout mice, the proportion of hydrophobic Gb3 isoforms was apparently higher than that in the wild-type mice. On the other hand, hydrophilic residues were abundant in plasma. Unlike that of Gb3, the concentration of lyso-Gb3 was high in the liver, and the lyso-Gb3/Gb3 ratio in plasma was significantly higher than those in the organs. The concentration of lyso-Gb3 was apparently higher than those of its analogues in the organs and plasma from both the GLA knockout and wild-type mice. This information will be useful for elucidating the basis of Fabry disease.
Collapse
Affiliation(s)
- Hideaki Sueoka
- Genomic Science Laboratories, Sumitomo Dainippon Pharma Co., Ltd., Konohana-ku, Osaka, Japan
| | - Mikio Aoki
- Genomic Science Laboratories, Sumitomo Dainippon Pharma Co., Ltd., Konohana-ku, Osaka, Japan
| | - Takahiro Tsukimura
- Department of Functional Bioanalysis, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Tadayasu Togawa
- Department of Functional Bioanalysis, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Hitoshi Sakuraba
- Department of Clinical Genetics, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
- * E-mail:
| |
Collapse
|
15
|
Martin-Lorenzo M, Balluff B, Maroto AS, Carreira RJ, van Zeijl RJM, Gonzalez-Calero L, de la Cuesta F, Barderas MG, Lopez-Almodovar LF, Padial LR, McDonnell LA, Vivanco F, Alvarez-Llamas G. Molecular anatomy of ascending aorta in atherosclerosis by MS Imaging: Specific lipid and protein patterns reflect pathology. J Proteomics 2015; 126:245-51. [PMID: 26079611 DOI: 10.1016/j.jprot.2015.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/03/2015] [Accepted: 06/07/2015] [Indexed: 12/22/2022]
Abstract
The molecular anatomy of healthy and atherosclerotic tissue is pursued here to identify ongoing molecular changes in atherosclerosis development. Subclinical atherosclerosis cannot be predicted and novel therapeutic targets are needed. Mass spectrometry imaging (MSI) is a novel unexplored ex vivo imaging approach in CVD able to provide in-tissue molecular maps. A rabbit model of early atherosclerosis was developed and high-spatial-resolution MALDI-MSI was applied to comparatively analyze histologically-based arterial regions of interest from control and early atherosclerotic aortas. Specific protocols were applied to identify lipids and proteins significantly altered in response to atherosclerosis. Observed protein alterations were confirmed by immunohistochemistry in rabbit tissue, and additionally in human aortas. Molecular features specifically defining different arterial regions were identified. Localized in the intima, increased expression of SFA and lysolipids and intimal spatial organization showing accumulation of PI, PG and SM point to endothelial dysfunction and triggered inflammatory response. TG, PA, SM and PE-Cer were identified specifically located in calcified regions. Thymosin β4 (TMSB4X) protein was upregulated in intima versus media layer and also in response to atherosclerosis. This overexpression and localization was confirmed in human aortas. In conclusion, molecular histology by MS Imaging identifies spatial organization of arterial tissue in response to atherosclerosis.
Collapse
Affiliation(s)
- Marta Martin-Lorenzo
- Department of Immunology, IIS-Fundación Jiménez Díaz, UAM, REDinREN, Madrid, Spain
| | - Benjamin Balluff
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Aroa S Maroto
- Department of Immunology, IIS-Fundación Jiménez Díaz, UAM, REDinREN, Madrid, Spain
| | - Ricardo J Carreira
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rene J M van Zeijl
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Fernando de la Cuesta
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Maria G Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | | | - Luis R Padial
- Department of Cardiology, Hospital Virgen de la Salud, SESCAM, Toledo, Spain
| | - Liam A McDonnell
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Fernando Vivanco
- Department of Immunology, IIS-Fundación Jiménez Díaz, UAM, REDinREN, Madrid, Spain; Department of Biochemistry and Molecular Biology I, Universidad Complutense, Madrid, Spain
| | | |
Collapse
|
16
|
Crecelius AC, Schubert US, von Eggeling F. MALDI mass spectrometric imaging meets “omics”: recent advances in the fruitful marriage. Analyst 2015; 140:5806-20. [DOI: 10.1039/c5an00990a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI MSI) is a method that allows the investigation of the molecular content of surfaces, in particular, tissues, within its morphological context.
Collapse
Affiliation(s)
- A. C. Crecelius
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - U. S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - F. von Eggeling
- Jena Center for Soft Matter (JCSM)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Institute of Physical Chemistry
| |
Collapse
|