1
|
Zhou X, Gui L, Lu Z, Chen B, Wu Z, Zhou Z, Liang Y, He M, Hu B. Trace rare earth elements analysis in atmospheric particulates and cigar smoke by ICP-MS after pretreatment with magnetic polymers. Anal Chim Acta 2024; 1324:343003. [PMID: 39218568 DOI: 10.1016/j.aca.2024.343003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/27/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Some heavy metals could be ingested into human body through breathing besides diet and drinking. Atmospheric particulates and smoke are main sources of this kind for the metals' exposure to human. Compared with environmental water, the methodologies for trace metals in particulates and smoke samples with more complex matrix are much less. Magnetic functional sorbents can be designed to remove complex matrix and enrich target analytes. The combination of magnetic solid phase extraction (MSPE) with highly sensitive inductively coupled plasma mass spectrometry (ICP-MS) detection is a good alternative for the analytical purpose. (92). RESULTS Magnetic polymers were synthesized through free radical polymerization with Fe3O4 nanoparticles as the core and 2-methyl-2-hydroxyethyl 2-acrylate-2-hydroxyethyl ester phosphate as external modifier. The sorbent showed a high phosphorus content (2.7 wt%) and good selectivity to target REEs, along with good reusability (at least 45 times) and chemical stability. With the consumption of 150 mL aqueous solution, an enrichment factor of 300 was obtained by the proposed method, leading to low detection limits (0.001-0.2 ng L-1) for 15 REEs. The application potential of the method was further evaluated by analyzing local atmospheric particulate and cigar smoke samples. Recovery of 86.3-107 % in digested total suspended particulate (TSP) was obtained for 15 REEs, demonstrating a good anti-interference ability of the method. Target REEs in TSP, PM2.5 and PM10 samples were found to be 0.01-2.81, 0.006-1.09 and 0.009-2.46 ng m-3, respectively, and none of them were detected in the collected cigar smoke. (148) SIGNIFICANCE: The method of MSPE-ICP-MS was demonstrated with good potential for trace analysis in complex sample matrix, probably due to the good selectivity of the functionalized polymers. With the design and fabrication of specific functionalized magnetic sorbents, other heavy metals can be monitored in those samples which would be intake by human breathing. It provided an efficient strategy for the evaluation of metals' health risk in particulates and smoke samples. (69).
Collapse
Affiliation(s)
- Xin Zhou
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Lingyun Gui
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Ziyang Lu
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zhekuan Wu
- Tobacco Research Institute of Hubei Province, Hubei Tobacco Company, Wuhan, 430040, China.
| | - Zhen Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan, 430072, China.
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
2
|
Bedair A, Abdelhameed RM, Hammad SF, Abdallah IA, Mansour FR. Applications of metal organic frameworks in dispersive micro solid phase extraction (D-μ-SPE). J Chromatogr A 2024; 1732:465192. [PMID: 39079363 DOI: 10.1016/j.chroma.2024.465192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/05/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
Metal-organic frameworks (MOFs) are a fascinating family of crystalline porous materials made up of metal clusters and organic linkers. In comparison with other porous materials, MOFs have unique characteristics including high surface area, homogeneous open cavities, and permanent high porosity with variable shapes and sizes. For these reasons, MOFs have recently been explored as sorbents in sample preparation by solid-phase extraction (SPE). However, SPE requires large amounts of sorbents and suffers from limited contact surfaces with analytes, which compromises extraction recovery and efficiency. Dispersive SPE (D-SPE) overcomes these limitations by dispersing the sorbents into the sample, which in turn increases contact with the analytes. Miniaturization of the microextraction procedure, particularly the amount of sorbent reduces the amount consumed of the organic solvent and shorten the time required to attain the equilibrium state. This may explain the reported high efficiency and applicability of MOFs in dispersive micro SPE (D-µ-SPE). This method retains all the advantages of solid phase extraction while also being simpler, faster, cheaper, and, in some cases, more effective in comparison with D-SPE. Besides, D-µ-SPE requires smaller amounts of the sorbents which reduces the overall cost, and the amount of waste generated from the analytical process. In this review, we discuss the applications of MOFs in D-µ-SPE of various analytes including pharmaceuticals, pesticides, organic dyes from miscellaneous matrices including water samples, biological samples and food samples.
Collapse
Affiliation(s)
- Alaa Bedair
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Monufia, Egypt
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Giza 12622, Egypt
| | - Sherin F Hammad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31111 Egypt
| | - Inas A Abdallah
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Monufia, Egypt
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31111 Egypt.
| |
Collapse
|
3
|
Dakova I, Yordanova T, Karadjova I. Polymeric Materials in Speciation Analysis Based on Solid-Phase Extraction. Molecules 2023; 29:187. [PMID: 38202769 PMCID: PMC10780835 DOI: 10.3390/molecules29010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Speciation analysis is a relevant topic since the (eco)toxicity, bioavailability, bio (geo)chemical cycles, and mobility of a given element depend on its chemical forms (oxidation state, organic ligands, etc.). The reliability of analytical results for chemical species of elements depends mostly on the maintaining of their stability during the sample pretreatment step and on the selectivity of further separation step. Solid-phase extraction (SPE) is a matter of choice as the most suitable and widely used procedure for both enrichment of chemical species of elements and their separation. The features of sorbent material are of great importance to ensure extraction efficiency from one side and selectivity from the other side of the SPE procedure. This review presents an update on the application of polymeric materials in solid-phase extraction used in nonchromatographic methods for speciation analysis.
Collapse
Affiliation(s)
| | | | - Irina Karadjova
- Faculty of Chemistry and Pharmacy, University of Sofia “St. Kliment Ohridski”, 1, James. Bourchier Blvd.1, 1164 Sofia, Bulgaria; (I.D.); (T.Y.)
| |
Collapse
|
4
|
Tokalıoğlu Ş, Demirişler MS, Şahan H, Patat Ş. Environmentally friendly nanoflower Al 2O 3@carbon spheres as adsorbent for dispersive solid-phase microextraction of copper and lead in food and water samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5846-5854. [PMID: 37874290 DOI: 10.1039/d3ay01579c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A fast and simple dispersive solid-phase microextraction method (d-SPμE) was described for the determination of copper and lead in food, water, and sediments using FAAS. Firstly, nanoflower Al2O3@carbon spheres composite (NF Al2O3@CSs) was synthesized and then characterized. The obtained NF Al2O3@CSs was used for the d-SPμE of copper and lead in aqueous solutions. The influence of important parameters like pH, contact time, eluent conditions, volume of sample, and competing ion effects on the d-SPμE efficiency of copper and lead was investigated. They were pH, 7; eluent, 2 mol L-1 HCl (2 mL); sample volume, 250 mL for copper and 150 mL for lead with recoveries ≥90%. The adsorption and elution of analytes on NF Al2O3@CSs were realized quickly without vortexing. The LODs of the d-SPμE for copper and lead were found to be 0.69 μg L-1 and 2.8 μg L-1, respectively, while its PF was 125 for copper and 75 for lead. The intra-day precision and inter-day repeatability (RSD%, n = 7) were 1.3% and 1.6% for Cu(II) and 2.3% and 3.2% for Pb(II), respectively. Finally, the accuracy of the d-SPμE was investigated by determination of the analytes in four certified reference materials (TMDA-53.3 Lake water, NW-TMDA-54.6 Lake water, NIST 1573a Tomato leaves, and NIST RM 8704 Buffalo River Sediment). The analyte recoveries together with analyses of dam water, river water, wastewater, sea water, sumac, tea, chocolate, and lentils were studied. The results indicate that recoveries ranged from 90 to 103% in water samples and 91 to 110% in food samples.
Collapse
Affiliation(s)
- Şerife Tokalıoğlu
- Erciyes University, Faculty of Sciences, Chemistry Department, 38039, Kayseri, Turkey.
| | | | - Halil Şahan
- Kayseri University, Department of Basic Sciences of Engineering, 38280, Kayseri, Turkey
| | - Şaban Patat
- Erciyes University, Faculty of Sciences, Chemistry Department, 38039, Kayseri, Turkey.
| |
Collapse
|
5
|
Zhang DX, Wang MY, Lin WB, Qu S, Ji L, Xu C, Kan H, Dong K. Recent advances in emerging application of functional materials in sample pretreatment methods for liquid chromatography-mass spectrometry analysis of plant growth regulators: A mini-review. J Chromatogr A 2023; 1704:464130. [PMID: 37302252 DOI: 10.1016/j.chroma.2023.464130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/04/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
Plant growth regulators (PGRs) are a class of small molecular compounds, which can remarkably affect the physiological process of plants. The complex plant matrix along with a wide polarity range and unstable chemical properties of PGRs hinder their trace analysis. In order to obtain a reliable and accurate result, a sample pretreatment process must be carried out, including eliminating the interference of the matrix effect and pre-concentrating the analytes. In recent years, the research of functional materials in sample pretreatment has experienced rapid growth. This review comprehensively overviews recent development in functional materials covering one-dimensional materials, two-dimensional materials, and three-dimensional materials applied in the pretreatment of PGRs before liquid chromatography-mass spectrometry (LC-MS) analysis. Besides, the advantages and limitations of the above functionalized enrichment materials are discussed, and their future trends have been prospected. The work could be helpful to bring new insights for researchers engaged in functional materials in sample pretreatment of PGRs based on LC-MS.
Collapse
Affiliation(s)
- Dong-Xue Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Ming-Yue Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Wen-Bo Lin
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Shuai Qu
- Biology Institute of Jilin province, 1244 Qianjin Street, Changchun 130012, Jilin, China
| | - Li Ji
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Chen Xu
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Hong Kan
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China.
| | - Kai Dong
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China.
| |
Collapse
|
6
|
New Carbamoyl Surface-Modified ZrO 2 Nanohybrids for Selective Au Extraction from E-Waste. Molecules 2023; 28:molecules28052219. [PMID: 36903468 PMCID: PMC10004478 DOI: 10.3390/molecules28052219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Efficient and selective extractions of precious and critical metal ions such as Au(III) and Pd(II) were investigated using zirconia nanoparticles surface modified with different organic mono- and di-carbamoyl phosphonic acid ligands. The modification is made on the surface of commercial ZrO2 that is dispersed in aqueous suspension and was achieved by optimizing the Bronsted acid-base reaction in ethanol/H2O solution (1:2), resulting in inorganic-organic systems of ZrO2-Ln (Ln: organic carbamoyl phosphonic acid ligand). The presence, binding, amount, and stability of the organic ligand on the surface of zirconia nanoparticles were confirmed by different characterizations such as TGA, BET, ATR-FTIR, and 31P-NMR. Characterizations showed that all the prepared modified zirconia had a similar specific surface area (50 m2.g-1) and the same amount of ligand on the zirconia surface in a 1:50 molar ratio. ATR-FTIR and 31P-NMR data were used to elucidate the most favorable binding mode. Batch adsorption results showed that (i) ZrO2 surface modified with di-carbamoyl phosphonic acid ligands had the highest adsorption efficiency to extract metals than mono-carbamoyl ligands, and (ii) higher hydrophobicity of the ligand led to better adsorption efficiency. The surface-modified ZrO2 with di-N,N-butyl carbamoyl pentyl phosphonic acid ligand (ZrO2-L6) showed promising stability, efficiency, and reusability in industrial applications for selective gold recovery. In terms of thermodynamic and kinetic adsorption data, ZrO2-L6 fits the Langmuir adsorption model and pseudo-second-order kinetic model for the adsorption of Au(III) with maximum experimental adsorption capacity qmax = 6.4 mg.g-1.
Collapse
|
7
|
Gui L, Chen B, Zhou Z, Liang Y, He M, Hu B. Phytic acid functionalized magnetic adsorbents for facile enrichment of trace rare earth elements in environmental water, digested atmospheric particulates and the extracts followed by inductively coupled plasma mass spectrometry detection. Talanta 2022; 244:123426. [DOI: 10.1016/j.talanta.2022.123426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/20/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
|
8
|
Feng Y, Sun M, Sun M, Feng J, Sun H, Feng J. Extraction performance-structure relationship of polyamidoamine dendrimers on silica for online solid-phase extraction of organic pollutants. J Chromatogr A 2022; 1673:463132. [DOI: 10.1016/j.chroma.2022.463132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 11/26/2022]
|
9
|
Yu J, Jiang X, Lu Z, Han Q, Chen Z, Liang Q. In situ self-assembly of three-dimensional porous graphene film on zinc fiber for solid-phase microextraction of polychlorinated biphenyls. Anal Bioanal Chem 2022; 414:5585-5594. [PMID: 35288764 DOI: 10.1007/s00216-022-04003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/10/2022] [Accepted: 03/02/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Jiayan Yu
- Beijing Key Lab of Microanalytical Methods & Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Science Building D308, Beijing, 100084, China
| | - Xue Jiang
- Beijing Key Lab of Microanalytical Methods & Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Science Building D308, Beijing, 100084, China.,College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Zenghui Lu
- Beijing Key Lab of Microanalytical Methods & Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Science Building D308, Beijing, 100084, China
| | - Qiang Han
- Beijing Key Lab of Microanalytical Methods & Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Science Building D308, Beijing, 100084, China.
| | - Zhenling Chen
- The Second Research Institute of Civil Aviation Administration of China, Chengdu, 610041, China
| | - Qionglin Liang
- Beijing Key Lab of Microanalytical Methods & Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Science Building D308, Beijing, 100084, China
| |
Collapse
|
10
|
Bazargan M, Ghaemi F, Amiri A, Mirzaei M. Metal–organic framework-based sorbents in analytical sample preparation. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214107] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Kanu AB. Recent developments in sample preparation techniques combined with high-performance liquid chromatography: A critical review. J Chromatogr A 2021; 1654:462444. [PMID: 34380070 DOI: 10.1016/j.chroma.2021.462444] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/29/2022]
Abstract
This review article compares and contrasts sample preparation techniques coupled with high-performance liquid chromatography (HPLC) and describes applications developed in biomedical, forensics, and environmental/industrial hygiene in the last two decades. The proper sample preparation technique can offer valued data for a targeted application when coupled to HPLC and a suitable detector. Improvements in sample preparation techniques in the last two decades have resulted in efficient extraction, cleanup, and preconcentration in a single step, thus providing a pathway to tackle complex matrix applications. Applications such as biological therapeutics, proteomics, lipidomics, metabolomics, environmental/industrial hygiene, forensics, glycan cleanup, etc., have been significantly enhanced due to improved sample preparation techniques. This review looks at the early sample preparation techniques. Further, it describes eight sample preparation technique coupled to HPLC that has gained prominence in the last two decades. They are (1) solid-phase extraction (SPE), (2) liquid-liquid extraction (LLE), (3) gel permeation chromatography (GPC), (4) Quick Easy Cheap Effective Rugged, Safe (QuEChERS), (5) solid-phase microextraction (SPME), (6) ultrasonic-assisted solvent extraction (UASE), and (7) microwave-assisted solvent extraction (MWASE). SPE, LLE, GPC, QuEChERS, and SPME can be used offline and online with HPLC. UASE and MWASE can be used offline with HPLC but have also been combined with the online automated techniques of SPE, LLE, GPC, or QuEChERS for targeted analysis. Three application areas of biomedical, forensics, and environmental/industrial hygiene are reviewed for the eight sample preparation techniques. Three hundred and twenty references on the eight sample preparation techniques published over the last two decades (2001-2021) are provided. Other older references were included to illustrate the historical development of sample preparation techniques.
Collapse
Affiliation(s)
- A Bakarr Kanu
- Department of Chemistry, Winston-Salem State University, Winston-Salem, NC 27110, United States.
| |
Collapse
|
12
|
An overview of graphene-based nanoadsorbent materials for environmental contaminants detection. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116255] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Baskın D, Yılmaz Ö, Islam MN, Tülü M, Koyuncu İ, Eren T. Metal adsorption properties of multi‐functional
PAMAM
dendrimer based gels. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Dilgeş Baskın
- Faculty of Science and Arts, Department of Chemistry Yildiz Technical University Istanbul Turkey
| | - Özge Yılmaz
- Faculty of Science and Arts, Department of Chemistry Yildiz Technical University Istanbul Turkey
| | - Muhammad Nazrul Islam
- Faculty of Science and Arts, Department of Chemistry Yildiz Technical University Istanbul Turkey
| | - Metin Tülü
- Faculty of Science and Arts, Department of Chemistry Yildiz Technical University Istanbul Turkey
| | - İkbal Koyuncu
- Faculty of Science and Arts, Department of Chemistry Yildiz Technical University Istanbul Turkey
| | - Tarik Eren
- Faculty of Science and Arts, Department of Chemistry Yildiz Technical University Istanbul Turkey
| |
Collapse
|
14
|
Ahmad W, Qaiser S, Ullah R, Mohamed Jan B, Karakassides MA, Salmas CE, Kenanakis G, Ikram R. Utilization of Tires Waste-Derived Magnetic-Activated Carbon for the Removal of Hexavalent Chromium from Wastewater. MATERIALS 2020; 14:ma14010034. [PMID: 33374883 PMCID: PMC7796004 DOI: 10.3390/ma14010034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023]
Abstract
The present study focuses on fabrication of magnetic activated carbon (M-AC) using tire waste and its potential investigation for adsorption of Cr (VI) from wastewater. The composite material (M-AC) was synthesized by pyrolysis followed by in situ magnetization method, and characterized by FTIR, FESEM, EDX, and XRD analysis. The maximum adsorption of Cr (VI) ion over composite adsorbent was found (~99.5%) to occur at pH 2, sample volume 10 mL, adsorbent dose 100 mg, contact time 30 min. The adsorption process was endothermic, feasible, spontaneous, and was found to follow pseudo second order of the reaction. The Cr ion could be completely desorbed (~99.3%) from the composite adsorbent by using 20 mL of 2 M NaOH solution. The composite adsorbent was regenerated by continuous adsorption and desorption for 5 consecutive cycles by using 10 mL 0.1 M HCl solution. M-AC also performed well in case of tannery wastewater by removing about 97% of Cr (VI).
Collapse
Affiliation(s)
- Waqas Ahmad
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; (W.A.); (S.Q.); (R.U.)
| | - Shanif Qaiser
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; (W.A.); (S.Q.); (R.U.)
| | - Rahman Ullah
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; (W.A.); (S.Q.); (R.U.)
| | - Badrul Mohamed Jan
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Michael A. Karakassides
- Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina, Greece; (M.A.K.); (C.E.S.)
| | - Constantinos E. Salmas
- Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina, Greece; (M.A.K.); (C.E.S.)
| | - George Kenanakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, Vasilika Vouton, GR-70013 Heraklion, Crete, Greece;
| | - Rabia Ikram
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Correspondence:
| |
Collapse
|
15
|
Khan WA, Arain MB, Soylak M. Nanomaterials-based solid phase extraction and solid phase microextraction for heavy metals food toxicity. Food Chem Toxicol 2020; 145:111704. [DOI: 10.1016/j.fct.2020.111704] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/25/2022]
|
16
|
Hagarová I. Magnetic Solid Phase Extraction as a Promising Technique for Fast Separation of Metallic Nanoparticles and Their Ionic Species: A Review of Recent Advances. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2020; 2020:8847565. [PMID: 32963882 PMCID: PMC7502132 DOI: 10.1155/2020/8847565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
The widespread use of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) in a wide variety of industrial as well as medical sectors is indisputable. This leads to a new concern about their presence in various environmental compartments. Since their negative effect and potential toxicity impact have been confirmed, analytical chemists focus on the development of different procedures for their reliable detection, identification, characterization, and quantification, not only in homogenous and simple matrices but also in complex environmental matrices. However, nanoparticles and their ionic species can coexist and their toxicity may differ; therefore, novel analytical approaches are necessary to monitor not only the nanoparticles but also their ionic species. The aim of this article is to bring a review of recent works where magnetic solid-phase extraction (MSPE) procedures in connection with spectrometric methods were used for separation/preconcentration and quantification of (1) silver and gold ions in various environmental samples, (2) AgNPs and AuNPs in real water samples in the presence of various coexisting ions, and (3) both species (it means Ag ions and AgNPs; Au ions and AuNPs) in real water samples. The results presented herein show the great analytical potential of MSPE procedures in connection with spectrometric methods used in these fields and can be helpful in guiding analytical chemists who aim to work on this subject.
Collapse
Affiliation(s)
- Ingrid Hagarová
- Comenius University in Bratislava, Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
17
|
Bashir K, Chen G, Han J, Shu H, Cui X, Wang L, Li W, Fu Q. Preparation of magnetic metal organic framework and development of solid phase extraction method for simultaneous determination of fluconazole and voriconazole in rat plasma samples by HPLC. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1152:122201. [PMID: 32590216 DOI: 10.1016/j.jchromb.2020.122201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/19/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022]
Abstract
Fluconazole and voriconazole are the two broad-spectrum triazole antifungals. The present work described the fabrication method for the synthesis of the amino-modified magnetic metal-organic framework. This material was applied as a pre-sample treatment sorbent for the selective extraction of fluconazole and voriconazole in rat plasma samples. The material was fabricated by the chemical bonding approach method and was characterized by different parameters. The factors which affect the extraction efficiency of the sorbent material were also optimized in this study. Due to the optimization of solid-phase extraction conditions, the nonspecific interaction was reduced and the extraction recoveries of target drugs were increased in plasma samples. The extraction method was combined with the HPLC-UV method for the analysis. Excellent linearity (0.1-25 µg/mL), detections (0.02, 0.03 µg/mL) and quantification limits (0.04, 0.05 µg/mL) were resulted for fluconazole and voriconazole respectively. The maximum recoveries from spiked plasma samples of fluconazole and voriconazole were 86.8% and 78.6% and relative standard deviation were 0.9-2.8% and 2.2-3.6% respectively. Moreover, this sorbent material was used multiple times which was an improvement over single-use commercial sorbent materials. This validated method has practical potential for the simultaneous determination of these drugs in therapeutic drug monitoring studies as well as for routine pharmacokinetic evaluations.
Collapse
Affiliation(s)
- Kamran Bashir
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Guoning Chen
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Jili Han
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Hua Shu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xia Cui
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Lu Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Wen Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Qiang Fu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
18
|
Huang L, Huang W, Shen R, Shuai Q. Chitosan/thiol functionalized metal-organic framework composite for the simultaneous determination of lead and cadmium ions in food samples. Food Chem 2020; 330:127212. [PMID: 32526650 DOI: 10.1016/j.foodchem.2020.127212] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/03/2020] [Accepted: 05/31/2020] [Indexed: 12/30/2022]
Abstract
In this work, a facile solid phase extraction (SPE) method was developed for the analysis of trace Pb2+ and Cd2+ by using chitosan/thiol modified metal-organic frameworks (CS/MOF-SH) composite as adsorbent followed by graphite furnace atomic absorption spectrometer (GF-AAS) detection. The potential influencing factors, such as solution pH, adsorbent dosage, and extraction time, were fully estimated. Under the optimized extraction conditions, the detection limits of Pb2+ and Cd2+ were 0.033 µg L-1 and 0.008 µg L-1, respectively. Compared to other studies, CS/MOF-SH not only possessed superior adsorption performance, but also had the advantages of ease of handling and recyclability. Encouragingly, the developed method was of high accuracy and could monitor trace Pb2+ and Cd2+ in various certified reference materials (rice, wheat and tea) with complicated matrices, demonstrating its practical potential for regular monitoring of trace heavy metal ions in real food samples.
Collapse
Affiliation(s)
- Lijin Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, PR China.
| | - Wan Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, PR China.
| | - Rujia Shen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, PR China.
| | - Qin Shuai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, PR China.
| |
Collapse
|
19
|
Orange SJ, Taghvimi A, Dastmalchi S, Javadzadeh Y. Silica-Functionalized Nano-Graphene Oxide Composite as Potent-Dispersive Solid-Phase Extraction Adsorbent of Methylphenidate from Urine Samples. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04423-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Gouda AA, Amin AH, Ali IS, Al Malah Z. Green Dispersive Micro Solid-Phase Extraction using Multiwalled Carbon Nanotubes for Preconcentration and Determination of Cadmium and Lead in Food, Water, and Tobacco Samples. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411014666180619145236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background:
Cadmium (Cd2+) and lead (Pb2+) have acute and chronic effects on humans
and other living organisms. In the present work, new, green and accurate dispersive micro solid-phase
extraction (DμSPE) method for the separation and preconcentration of trace amounts of cadmium
(Cd2+) and lead (Pb2+) ions in various food, water and tobacco samples collected from Saudi Arabia
prior to its Flame Atomic Absorption Spectrometric (FAAS) determinations was developed.
Methods:
The proposed method was based on a combination of oxidized multiwalled carbon
nanotubes (O-MWCNTs) with a new chelating agent 5-benzyl-4-[4-methoxybenzylideneamino)-4H-
1,2,4-triazole-3-thiol (BMBATT) to enrich and separate trace levels of Cd2+ and Pb2+. The effect of
separation parameters was investigated. The validation of the proposed preconcentration procedure
was performed using certified reference materials.
Results:
Analyte recovery values ranged from 95-102%, indicating that the method is highly accurate.
Furthermore, precision was demonstrated by the relative standard deviation (RSD < 3.0%). The limits
of detection were 0.08 and 0.1 μg L−1 for Cd2+ and Pb2+ ions, respectively. The preconcentration factor
was 200.
Conclusion:
The proposed method was used for the estimation of Cd2+ and Pb2+ ion content in various
real samples, and satisfactory results were obtained. The proposed method has high adsorption
capacity, rapid adsorption equilibrium, extremely low LODs, high preconcentration factors and
shortens the time of sample preparation in comparison to classical SPE.
Collapse
Affiliation(s)
- Ayman A. Gouda
- Faculty of Public Health and Health Informatics, Umm AL-Qura University, Makkah, Saudi Arabia
| | - Ali H. Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim S. Ali
- Faculty of Public Health and Health Informatics, Umm AL-Qura University, Makkah, Saudi Arabia
| | - Zakia Al Malah
- Chemistry Department, Faculty of Applied Science, Umm AL-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
21
|
Salimi M, Behbahani M, Sobhi HR, Ghambarian M, Esrafili A. Trace measurement of lead and cadmium ions in wastewater samples using a novel dithizone immobilized metal–organic framework‐based μ‐dispersive solid‐phase extraction. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maryam Salimi
- Research Center for Environmental Health Technology Iran University of Medical Sciences Tehran Iran
| | - Mohammad Behbahani
- Faculty of Engineering Shohadaye Hoveizeh University of Technology, Dasht‐e Azadegan Susangerd Iran
| | | | - Mahnaz Ghambarian
- Iranian Research and Development Center for Chemical Industries (ACECR) Tehran Iran
| | - Ali Esrafili
- Research Center for Environmental Health Technology Iran University of Medical Sciences Tehran Iran
- Department of Environmental Health Engineering, School of Public Health Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
22
|
Ullah R, Ahmad W, Ahmad I, Khan M, Iqbal Khattak M, Hussain F. Adsorption and recovery of hexavalent chromium from tannery wastewater over magnetic max phase composite. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1717531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Rahman Ullah
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Waqas Ahmad
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Imtiaz Ahmad
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Mansoor Khan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | | | - Fida Hussain
- School of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan, P.R. China
| |
Collapse
|
23
|
Pyrzynska K. Nanomaterials in speciation analysis of metals and metalloids. Talanta 2020; 212:120784. [PMID: 32113547 DOI: 10.1016/j.talanta.2020.120784] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 02/07/2023]
Abstract
Nanomaterials have draw extensive attention from the scientists in recent years mainly due to their unique and attractive thermal, mechanical and electronic properties, as well as high surface to volume ratio and the possibility for surface functionalization. Whereas mono functional nanomaterials providing a single function, the preparation of core/shell nanoparticles allows different properties to be combined in one material. Their properties have been extensively exploited in different extraction techniques to improve the efficiency of separation and preconcentration, analytical selectivity and method reliability. The aim of this paper is to provide an updated revision of the most important features and application of nanomaterials (metallic, silica, polymeric and carbon-based) for solid phase extraction and microextraction techniques in speciation analysis of some metals and metalloids (As, Cr, Sb, Se). Emphasis will be placed on the presentation of the most representative works published in the last five years (2015-2019).
Collapse
Affiliation(s)
- Krystyna Pyrzynska
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-93, Warsaw, Poland.
| |
Collapse
|
24
|
Mortada WI, Abdelghany AM. Preconcentration of Lead in Blood and Urine Samples Among Bladder Cancer Patients Using Mesoporous Strontium Titanate Nanoparticles. Biol Trace Elem Res 2020; 193:100-110. [PMID: 30972533 DOI: 10.1007/s12011-019-01704-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/19/2019] [Indexed: 11/26/2022]
Abstract
In this work, mesoporous strontium titanate nanoparticles (SrTiO3 NPs) were synthesized through a single-step combustion process and were characterized by FT-IR, XRD, SEM-EDX, and TEM. The effects of main parameters that may influence the extraction process (i.e., pH, sorbent amount, time of extraction, eluting agent, and the presence concomitant ions) were investigated. The optimum extraction was achieved at pH 6, 50 mg of sorbent, 20-min shaking time, and 4.0 mL of 0.1 mol L-1 thiourea as desorption agent. Under these conditions, the maximum adsorption capacity was 155.6 mg g-1 with a preconcentration factor of 250 (for a 1000 mL sample solution). The calibration graph was linear up to 1000 μg L-1 and the limit of detection was 1.75 μg L-1. The precision (as relative standard deviation) was 2.53% (n = 10). The procedure was employed for the preconcentration of Pb2+ from blood and urine samples of bladder cancer patients before its determination by FAAS.
Collapse
Affiliation(s)
- Wael I Mortada
- Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt.
| | - Amr M Abdelghany
- Spectroscopy Department, Physics Division, National Research Center, Cairo, 12311, Egypt
- Basic Science Department, Horus University, International Coastal Road, New Damietta, Kafr Saad, Damietta Governorate, Egypt
| |
Collapse
|
25
|
Lei Y, Zhang F, Guan P, Guo P, Wang G. Rapid and selective detection of Hg(ii) in water using AuNP in situ-modified filter paper by a head-space solid phase extraction Zeeman atomic absorption spectroscopy method. NEW J CHEM 2020. [DOI: 10.1039/d0nj02294b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AuNPs modified filter paper as sensitive mercury sensor was applied in the head-space solid phase extraction (HS-SPE) of Hg(ii). With negative pressure sampling, it can achieve in situ sampling and detection rapidly in a complex environment.
Collapse
Affiliation(s)
- Yongqian Lei
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering & Technological Research Center of Online Monitoring for Water Environmental Pollution
- Guangdong Institute of Analysis
- Guangdong Academy of Sciences
- Guangzhou 510070
- China
| | - Fang Zhang
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering & Technological Research Center of Online Monitoring for Water Environmental Pollution
- Guangdong Institute of Analysis
- Guangdong Academy of Sciences
- Guangzhou 510070
- China
| | - Peng Guan
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering & Technological Research Center of Online Monitoring for Water Environmental Pollution
- Guangdong Institute of Analysis
- Guangdong Academy of Sciences
- Guangzhou 510070
- China
| | - Pengran Guo
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering & Technological Research Center of Online Monitoring for Water Environmental Pollution
- Guangdong Institute of Analysis
- Guangdong Academy of Sciences
- Guangzhou 510070
- China
| | - Guanhua Wang
- College of Veterinary Medicine
- South China Agricultural University
- Guangzhou 510642
- China
| |
Collapse
|
26
|
Li YK, Wang XY, Liu X, Yang T, Chen ML, Wang JH. Ensuring high selectivity for preconcentration and detection of ultra-trace cadmium using a phage-functionalized metal–organic framework. Analyst 2020; 145:5280-5288. [DOI: 10.1039/d0an00944j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A phage functionalized metal–organic framework for selective preconcentration and detection of trace cadmium.
Collapse
Affiliation(s)
- Yi-Kun Li
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| | - Xiao-Yan Wang
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| | - Xun Liu
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| | - Ting Yang
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| | - Ming-Li Chen
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| | - Jian-Hua Wang
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| |
Collapse
|
27
|
Sarp G, Yilmaz E. A flower-like hybrid material composed of Fe 3O 4, graphene oxide and CdSe nanodots for magnetic solid phase extraction of ibuprofen prior to its quantification by HPLC detection. Mikrochim Acta 2019; 186:744. [PMID: 31686272 DOI: 10.1007/s00604-019-3875-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/26/2019] [Indexed: 01/30/2023]
Abstract
A flower-like Fe3O4/GO/CdSe nanodot magnetic hybrid material was produced and applied to magnetic solid-phase extraction of ibuprofen from pharmaceuticals, water, and urine samples. The material was characterized by X-ray diffraction, Raman spectroscopy and field emission scanning electron microscopy and SEM-EDX. The pH value, volume of sample solution, amount of sorbent, type and volume of elution solvent and extraction time were optimized. Following elution with acetone, ibuprofen was quantified by HPLC-DAD detection. The recoveries of ibuprofen from spiked real samples ranged between 87 and 109%, and the intra-day and inter-day relative standard deviations from 1.25 to 3.02%. The limit of detection, limit of quantification and preconcentration factor are 0.36 ng·mL-1,1.20 ng·mL-1 and 150, respectively. Graphical abstract Schematic representation of the combination of flower-like Fe3O4/GO/CdSe nanodot-based magnetic solid phase extraction (MSPE) and high-performance liquid chromatography (HPLC) procedure for the extraction and analysis of ibuprofen in pharmaceuticals, water, and urine samples.
Collapse
Affiliation(s)
- Gokhan Sarp
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38050, Kayseri, Turkey.,ERNAM - Nanotechnology Research and Application Center, Erciyes University, 38039, Kayseri, Turkey
| | - Erkan Yilmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38050, Kayseri, Turkey. .,ERNAM - Nanotechnology Research and Application Center, Erciyes University, 38039, Kayseri, Turkey. .,Technology Research & Application Center (TAUM), Erciyes University, 38039, Kayseri, Turkey.
| |
Collapse
|
28
|
Kagaya S, Mishima Y, Obata I, Gemmei-Ide M, Inoue Y, Tsugoshi T. Thermal Decomposition Behavior of a Chelating Resin Immobilizing Carboxymethylated Polyethyleneimine: Possibility of Estimation of Carboxymethylation Rate. ANAL SCI 2019; 35:1161-1164. [PMID: 31257271 DOI: 10.2116/analsci.19n017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chelating resins immobilizing carboxymethylated polyethyleneimine (CM-PEI) with different carboxymethylation rates were prepared. The thermal decomposition behavior of CM-PEI resins was investigated using thermogravimetry-differential thermal analysis/photo ionization-quadrupole mass spectrometry (TG-DTA/PI-QMS) and ion attachment ionization-quadrupole mass spectrometry equipped with direct inlet probe (DIP/IA-QMS). The obtained results suggested that the carboxymethyl group decomposed at relatively low temperature (150 °C - 300 °C); the peak areas at m/z 45 and 59 in TG-DTA/PI-QMS and m/z 58, 70, and 72 in DIP/IA-QMS significantly increased with increasing carboxymethylation rate. These relationships should be useful for estimating the carboxymethylation rate of CM-PEI resin.
Collapse
Affiliation(s)
- Shigehiro Kagaya
- Graduate School of Science and Engineering for Research, University of Toyama
| | | | - Issei Obata
- Graduate School of Science and Engineering for Research, University of Toyama
| | - Makoto Gemmei-Ide
- Graduate School of Science and Engineering for Research, University of Toyama
| | - Yoshinori Inoue
- Graduate School of Science and Engineering for Research, University of Toyama
| | - Takahisa Tsugoshi
- National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
29
|
de Sá IP, Higuera JM, Costa VC, Costa JAS, da Silva CMP, Nogueira ARA. Determination of Trace Elements in Meat and Fish Samples by MIP OES Using Solid-Phase Extraction. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01615-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
|
31
|
Verdian A, Fooladi E, Rouhbakhsh Z. Recent progress in the development of recognition bioelements for polychlorinated biphenyls detection: Antibodies and aptamers. Talanta 2019; 202:123-135. [PMID: 31171160 DOI: 10.1016/j.talanta.2019.04.059] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 01/06/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent pollutants, which have expanded in foods and the environment. Detection of PCBs is considered essential due to recognized side-effects of PCBs on health and the public concerns in this regard. On the other hand, due to the trace levels of these organic chlorine compounds, reliable and sensitive assays must be developed. Recognition elements are essential parts of analytical detection assays and sensors of PCBs since these elements are involved in the selective identification of the analytes of interest. Understanding the fundamentals of the recognition elements of PCBs and the benefits of the sensor strategies result in the development of next-generation recognition devices. This review aimed to highlight the recent progress in the recognition elements as key parts of biosensors. We initially, focused on the developed antibody-based biosensors for the detection of PCBs, followed by discussing the aptamers as novel recognition elements. Furthermore, the recent advancement in the development of aptamer-based solid phase extractions has been evaluated. These findings could contribute to improving the design of commercial PCB-kits in the future.
Collapse
Affiliation(s)
- Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | - Ebrahim Fooladi
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Zeinab Rouhbakhsh
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
32
|
Rocío-Bautista P, Termopoli V. Metal–Organic Frameworks in Solid-Phase Extraction Procedures for Environmental and Food Analyses. Chromatographia 2019. [DOI: 10.1007/s10337-019-03706-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
33
|
Selective adsorption and recovery of precious metal ions from water and metallurgical slag by polymer brush graphene–polyurethane composite. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2018.12.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
34
|
Arabsorkhi B, Sereshti H, Abbasi A. Electrospun metal‐organic framework/polyacrylonitrile composite nanofibrous mat as a microsorbent for the extraction of tetracycline residue in human blood plasma. J Sep Sci 2019; 42:1500-1508. [DOI: 10.1002/jssc.201801305] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/19/2019] [Accepted: 02/04/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Batoul Arabsorkhi
- School of ChemistryCollege of ScienceUniversity of Tehran Tehran Iran
| | - Hassan Sereshti
- School of ChemistryCollege of ScienceUniversity of Tehran Tehran Iran
| | - Alireza Abbasi
- School of ChemistryCollege of ScienceUniversity of Tehran Tehran Iran
| |
Collapse
|
35
|
Electrospun nanofiber polymers as extraction phases in analytical chemistry – The advances of the last decade. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
36
|
Wang J. Adsorption of aqueous neodymium, europium, gadolinium, terbium, and yttrium ions onto nZVI-montmorillonite: kinetics, thermodynamic mechanism, and the influence of coexisting ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33521-33537. [PMID: 30267348 DOI: 10.1007/s11356-018-3296-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
This study reports the adsorption of five rare earth elements (REEs) (belonging to light (Nd, Eu, Gd), medium (Tb), and heavy (Y) REE group) on montmorillonite-supported zero-valent iron nanoparticles (nZVI-M). Various parameters about REEs adsorption were investigated: the pH value, the adsorption kinetic, the maximum adsorption capacity, and the adsorption isotherm. The temperature (293-313 K) had a limited effect on the final adsorption equilibrium capacity and the analysis of thermodynamic studies suggests it was spontaneous (negative values of ∆Go) and exothermic (negative values of ∆Ho). The system randomness decreased after adsorption (negative values of ∆So). In addition, the values of thermodynamic parameters and the activation energy were strongly dependent on the temperature range because different kinds of REEs participated in the reaction in the form of hydrated ions and followed a randomly and complexly dissociative adsorption mechanism. According to the intraparticle diffusion model analysis, the adsorption of REEs on nZVI-M was dominated by chemisorption and the nano size of nZVI-M reduced the diffusion thickness and the resistance to intraparticle diffusion. Based on the characterization of adsorbent by XPS, the adsorption mechanisms of REEs on nZVI-M were ion exchange and surface complexation.
Collapse
Affiliation(s)
- Jiao Wang
- Environment and Resources College, Shanxi University, No.92 Wucheng Rd, Taiyuan, 030006, China.
| |
Collapse
|
37
|
|
38
|
A porous sintered material consisting of Presep PolyChelate as a chelating resin and particulate polyethylene as a thermoplastic binder for solid-phase extraction of trace elements. Talanta 2018; 188:665-670. [DOI: 10.1016/j.talanta.2018.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 11/21/2022]
|
39
|
Tahmasebi E. Adsorption efficiency enhancing of electrospun polycaprolactone nanofibers towards acidic polar drugs through the incorporation of a composite of graphene oxide nanosheets and Al 30 polyoxocations: a comparative study. Analyst 2018; 143:4684-4698. [PMID: 30179241 DOI: 10.1039/c8an01066h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The main objective of this study focuses on exploration of the feasibility of Al30 polyoxocations for preparation of a novel sorbent material for a solid-phase extraction (SPE) method by selective adsorption and extraction of a class of compounds considering the type of interactions involved in the adsorption process. Accordingly, first Al30 polyoxocations were synthesized and their composite was prepared with graphene oxide (GO) nanosheets as a suitable substrate to be introduced as a SPE sorbent material. Then, the prepared composite was incorporated into polycaprolactone (PCL) nanofibers via electrospinning to present an alternative sorbent for SPE-based on a GO/Al30 nanocomposite (GO/Al30 NC) creating no need for filtering or centrifuging steps. Intercalation of Al30 polyoxocations into the GO layers and the incorporation of GO/Al30 NC into PCL nanofibers was successfully confirmed through FE-SEM, TEM, EDX, XRD, BET, TGA, IR spectroscopy, and zeta potential determination. For investigating the types of probable interactions involved in the adsorption process of different compounds on the proposed sorbents, four statin drugs, cholesterol-lowering agents with various polarity and ionization properties, were selected as model analytes. Factors affecting the extraction efficiency of dispersive SPE and immersed SPE methods using GO/Al30 NC and GO/Al30 NC-PCL nanofibers, respectively, were investigated and optimized. Under optimal conditions, acceptable analytical figures of merit were obtained for both SPE methods. A comparison of extraction efficiencies of the target drugs by the two proposed sorbents, as well as GO nanosheets and PCL nanofibers, was accomplished to study the types of interactions as well as the adsorption mechanism. The results revealed that GO/Al30 NC, having many polar and anion exchange sites caused by Al30 polyoxocations, is a good selective sorbent for acidic polar compounds which their extraction by nonpolar sorbents is not desirable. Additionally, GO/Al30 NC-PCL nanofibers exhibited extraction capability for a wide range of compounds from acidic polar to nonpolar and nonionizable ones.
Collapse
Affiliation(s)
- Elham Tahmasebi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), P.O. Box 45195-1159, Zanjan, Iran.
| |
Collapse
|
40
|
Hashemi B, Zohrabi P, Raza N, Kim KH. Metal-organic frameworks as advanced sorbents for the extraction and determination of pollutants from environmental, biological, and food media. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.08.015] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Magnetic Adsorbents for the Recovery of Precious Metals from Leach Solutions and Wastewater. METALS 2017. [DOI: 10.3390/met7120529] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Hou X, Lu X, Tang S, Wang L, Guo Y. Graphene oxide reinforced ionic liquid-functionalized adsorbent for solid-phase extraction of phenolic acids. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1072:123-129. [PMID: 29149736 DOI: 10.1016/j.jchromb.2017.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 10/18/2022]
Abstract
An environmental friendly sorbent of polymeric ionic liquids modified graphene oxide-grafted silica (PILs@GO@Sil) was synthesized for solid-phase extraction (SPE) of phenolic acids. The sorbent was prepared via a chemical layer-to-layer fabrication including amidation reaction, surface radical chain-transfer polymerization and in situ anion exchange. After modification with PILs, the silica surface had higher positive potential so that it would exhibit stronger electrostatic interaction for acidic compounds compared with GO@Sil. The adsorption performance of phenolic acids was investigated through the theoretical calculation and static, kinetic state adsorption experiments. Under the optimized conditions, wide linear ranges were obtained with correlation coefficients ranging from 0.9912 to 0.9998, and limits of detection were in the range of 0.20-0.50μgL-1. Compared with other reported methods, the proposed PILs@GO@Sil-SPE-HPLC showed higher extraction efficiency. Finally, the black wolfberry yogurt and urine were analyzed as real samples and good recoveries spiked with standard solution were obtained.
Collapse
Affiliation(s)
- Xiudan Hou
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofeng Lu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Sheng Tang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Licheng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yong Guo
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
43
|
Development and optimization of a novel sample preparation method cored on functionalized nanofibers mat-solid-phase extraction for the simultaneous efficient extraction of illegal anionic and cationic dyes in foods. Anal Bioanal Chem 2017; 409:5697-5709. [DOI: 10.1007/s00216-017-0510-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/20/2017] [Accepted: 07/05/2017] [Indexed: 12/22/2022]
|
44
|
He M, Huang L, Zhao B, Chen B, Hu B. Advanced functional materials in solid phase extraction for ICP-MS determination of trace elements and their species - A review. Anal Chim Acta 2017; 973:1-24. [DOI: 10.1016/j.aca.2017.03.047] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 12/17/2022]
|
45
|
Metal-organic frameworks as novel sorbents in dispersive-based microextraction approaches. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.03.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
SiO 2 -coated magnetic graphene oxide modified with polypyrrole–polythiophene: A novel and efficient nanocomposite for solid phase extraction of trace amounts of heavy metals. Talanta 2017; 167:607-616. [DOI: 10.1016/j.talanta.2017.02.066] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 01/30/2023]
|
47
|
Extraction and determination of trace amounts of gold(III), palladium(II), platinum(II) and silver(I) with the aid of a magnetic nanosorbent made from Fe3O4-decorated and silica-coated graphene oxide modified with a polypyrrole-polythiophene copolymer. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2170-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Hou X, Wang X, Sun Y, Wang L, Guo Y. Graphene oxide for solid-phase extraction of bioactive phenolic acids. Anal Bioanal Chem 2017; 409:3541-3549. [DOI: 10.1007/s00216-017-0291-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 02/20/2017] [Accepted: 03/01/2017] [Indexed: 11/29/2022]
|
49
|
Płotka-Wasylka J, Marć M, Szczepańska N, Namieśnik J. New Polymeric Materials for Solid Phase Extraction. Crit Rev Anal Chem 2017; 47:373-383. [DOI: 10.1080/10408347.2017.1298987] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Mariusz Marć
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Natalia Szczepańska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
50
|
Magnetic solid phase extraction with CoFe2O4/oleic acid nanoparticles coupled to gas chromatography-mass spectrometry for the determination of alkylphenols in baby foods. Food Chem 2017; 221:76-81. [DOI: 10.1016/j.foodchem.2016.10.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/06/2016] [Accepted: 10/08/2016] [Indexed: 12/18/2022]
|