1
|
Peters SJ, Mitrovic SM, Rodgers KJ, Bishop DP. Bioaccumulation of β-methylamino-L-alanine (BMAA) by mussels exposed to the cyanobacteria Microcystis aeruginosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125081. [PMID: 39374762 DOI: 10.1016/j.envpol.2024.125081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Cyanobacterial blooms are increasingly common in aquatic environments, raising concerns about the health impacts associated with the toxins they produce. One of these toxins is β-methylamino-L-alanine (BMAA), a neurotoxin linked to neurodegenerative diseases. Monitoring BMAA levels in the environment is challenging due to trace concentrations and complex matrices, and new approaches are needed for assessing exposure risk. In this laboratory study, Australian freshwater mussels, Velesunio ambiguus, were exposed to a BMAA-producing cyanobacterium, Microcystis aeruginosa, to assess its accumulation of the toxin over time. A sample preparation and analysis method was developed to allow accurate quantification of BMAA in the mussels at concentrations as low as 0.4 ng/g. Mussels exposed to M. aeruginosa accumulated BMAA, with concentrations increasing over the exposure period. Rapid depuration occurred after exposure to the cyanobacterium ended, with concentrations of BMAA quickly returning to pre-exposure levels. These results demonstrate the potential for mussels to be used as bioindicators in the field for monitoring BMAA levels over time, where rapid depuration is unlikely.
Collapse
Affiliation(s)
- Siobhan J Peters
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Simon M Mitrovic
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kenneth J Rodgers
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - David P Bishop
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
2
|
Yan G, Qiu J, Li A, Wu G, Li M, Zheng X. Spatiotemporal distribution of neurotoxin β-N-methylamino-L-alanine and 2,4-diaminobutyric acid in offshore aquaculture area of Shandong province, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135970. [PMID: 39342849 DOI: 10.1016/j.jhazmat.2024.135970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) has been widely detected in aquatic environments and got the public's attention due to its potential risk to human neurodegenerative diseases. Three cruises in spring, summer and autumn seasons were carried out in Laizhou Bay (LZB), Sishili Bay (SSLB), Sanggou Bay (SGB), Jiaozhou Bay (JZB) and Haizhou Bay (HZB) in 2023. Results showed that the temporal distribution pattern of BMAA in plankton varied in the survey bays. In LZB, the highest average concentration of BMAA in phytoplankton occurred in spring. The highest average concentration of BMAA in phytoplankton was detected in summer in SSLB, JZB and HZB. However, BMAA was only detected in phytoplankton at the R2 station in SGB in spring. The highest average concentration of BMAA in zooplankton was observed in spring in LZB, SSLB and SGB. Zooplankton accumulated the highest average concentration of BMAA in JZB and HZB in summer and autumn, respectively. The BMAA was widely detected in marine mollusks throughout the investigative period. In addition, Mantel test and RDA analysis results indicated that DIN/DIP strongly impacted on the spatiotemporal distribution of BMAA in phytoplankton, in JZB and SSLB. The spatiotemporal distribution of BMAA in plankton was correlated with temperature and DO in JZB. More field cruises should be conducted to explore the environmental drivers of the neurotoxin BMAA in marine ecosystems in future studies.
Collapse
Affiliation(s)
- Guowang Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Guangyao Wu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Min Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xianyao Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
3
|
Gawankar S, Masten SJ, Lahr RH. Review of the occurrence, treatment technologies, and detection methods for saxitoxins in freshwaters. JOURNAL OF WATER AND HEALTH 2024; 22:1472-1490. [PMID: 39212282 DOI: 10.2166/wh.2024.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
The increasing occurrence of saxitoxins in freshwaters is becoming a concern for water treatment facilities owing to its structural properties which make it resistant to oxidation at pH < 8. Hence, it is crucial to be able to monitor these toxins in surface and drinking water to protect public health. This review aims to outline the current state of knowledge related to the occurrence of saxitoxins in freshwaters and its removal strategies and provide a critical assessment of the detection methods to provide a basis for further development. Temperature and nutrient content are some of the factors that influence the production of saxitoxins in surface waters. A high dose of sodium hypochlorite with sufficient contact time or activated carbon has been shown to efficiently remove extracellular saxitoxins to meet the drinking water guidelines. While HILIC-MS has proven to be a powerful technology for more sensitive and reliable detection of saxitoxin and variants after solid phase extraction, ELISA is cost-effective and easy to use and is used by Ohio EPA for surveillance with a limit of detection of 0.015 μg/L. However, there is a need for the development of cost-effective and sensitive techniques that can quantify the variants of saxitoxin.
Collapse
Affiliation(s)
- Shardula Gawankar
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA E-mail:
| | - Susan J Masten
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Rebecca H Lahr
- The City of Ann Arbor, Department of Water Treatment, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Mohamed ZA, Elnour RO, Alamri S, Hashem M, Campos A, Vasconcelos V, Badawye H. Presence of the neurotoxin β-N-methylamino-L-alanine in irrigation water and accumulation in cereal grains with human exposure risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31479-31491. [PMID: 38635096 DOI: 10.1007/s11356-024-33188-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
The present study demonstrates the presence of the neurotoxin β-N-methylamino-L-alanine and its cyanobacterial producers in irrigation water and grains of some cereal plants from farmlands irrigated with Nile River water in Egypt. BMAA detected by LC-MS/MS in phytoplankton samples was found at higher concentrations of free form (0.84-11.4 μg L-1) than of protein-bound form (0.16-1.6 μg L-1), in association with the dominance of cyanobacteria in irrigation water canals. Dominant cyanobacterial species isolated from these irrigation waters including Aphanocapsa planctonica, Chroococcus minutus, Dolichospermum lemmermanni, Nostoc commune, and Oscillatoria tenuis were found to produce different concentrations of free (4.8-71.1 µg g-1 dry weight) and protein-bound (0.1-11.4 µg g-1 dry weight) BMAA. In the meantime, BMAA was also detected in a protein-bound form only in grains of corn (3.87-4.51 µg g-1 fresh weight) and sorghum (5.1-7.1 µg g-1 fresh weight) plants, but not in wheat grains. The amounts of BMAA accumulated in these grains correlated with BMAA concentrations detected in relevant irrigation water canals. The presence of BMAA in cereal grains would constitute a risk to human and animal health upon consumption of contaminated grains. The study, therefore, suggests continuous monitoring of BMAA and other cyanotoxins in irrigation waters and edible plants to protect the public against exposure to such potent toxins.
Collapse
Affiliation(s)
- Zakaria A Mohamed
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | - Rehab O Elnour
- Biology Department, Faculty of Sciences and Arts, Dahran Al-Janoub, King Khalid University, Abha, Saudi Arabia
| | - Saad Alamri
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohamed Hashem
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- Departament of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal
| | - Hanan Badawye
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| |
Collapse
|
5
|
Rocha MF, Vieira Magalhães-Ghiotto GA, Bergamasco R, Gomes RG. Cyanobacteria and cyanotoxins in the environment and water intakes: Reports, diversity of congeners, detection by mass spectrometry and their impact on health. Toxicon 2024; 238:107589. [PMID: 38160739 DOI: 10.1016/j.toxicon.2023.107589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Cyanobacteria are aquatic microorganisms of high interest for research due to the production of secondary metabolites, among which the most popular are cyanotoxins, responsible for causing severe poisoning in humans and animals through ingestion or contact with contaminated water bodies. Monitoring the number of cyanobacteria in water and concentrations of secreted cyanotoxins with the aid of sensitive and reliable methods is considered the primary action for evaluating potentially toxic blooms. There is a great diversity of methods to detect and identify these types of micro contaminants in water, differing by the degree of sophistication and information provided. Mass Spectrometry stands out for its accuracy and sensitivity in identifying toxins, making it possible to identify and characterize toxins produced by individual species of cyanobacteria, in low quantities. In this review, we seek to update some information about cyanobacterial peptides, their effects on biological systems, and the importance of the main Mass Spectrometry methods used for detection, extraction, identification and monitoring of cyanotoxins.
Collapse
Affiliation(s)
- Mariana Fernandes Rocha
- Department of Biotechnology, Genetics and Cell Biology, Biological Sciences Center, State University of Maringá, Maringá, Paraná, 87020-900, Brazil.
| | - Grace Anne Vieira Magalhães-Ghiotto
- Department of Biotechnology, Genetics and Cell Biology, Biological Sciences Center, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Rosângela Bergamasco
- Department of Chemical Engineering, Technology Center, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Raquel Guttierres Gomes
- Department of Food Engineering, Technology Center, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| |
Collapse
|
6
|
Lee HHL, Ha SK, Kim Y, Hur J. Simultaneous analysis of advanced glycation end products using dansyl derivatization. Food Chem 2024; 432:137186. [PMID: 37657336 DOI: 10.1016/j.foodchem.2023.137186] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/29/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
Herein, new pre-column derivatization based on dansylation is present to resolve analytical difficulties, such as chromatographic separation difficulty, in identifying and quantifying advanced glycation end products (AGEs) owing to their high hydrophilicity, wide variety, and structural similarity. The proposed analytical method facilitated the separation of 14 AGEs, including structural isomers. Limits of detection of 1.0-43.3 ng/mL and linear ranges of the double- or triple-digit were achieved. Intra- and inter-day precisions of 1.1-3.0% and 1.3-3.1%, respectively, were achieved for standard solutions, while those for food specimens were 1.4-11.2% and 1.7-15.7%, respectively. The matrix effect was insignificant with regard to the percent recoveries and differences between slopes for both the standard solutions and food specimens. Furthermore, the quantitation results of AGEs in foods (coffee, beer, and sausage) and glycated proteins revealed the potential applicability of the developed method in various fields of food chemistry and biochemistry.
Collapse
Affiliation(s)
- Hyun Hee L Lee
- Agency for Defense Development, Daejeon 34186, Republic of Korea.
| | - Sang Keun Ha
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Yoonsook Kim
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jinyoung Hur
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
7
|
Lopicic S, Svirčev Z, Palanački Malešević T, Kopitović A, Ivanovska A, Meriluoto J. Environmental Neurotoxin β- N-Methylamino-L-alanine (BMAA) as a Widely Occurring Putative Pathogenic Factor in Neurodegenerative Diseases. Microorganisms 2022; 10:2418. [PMID: 36557671 PMCID: PMC9781992 DOI: 10.3390/microorganisms10122418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
In the present review we have discussed the occurrence of β-N-methylamino-L-alanine (BMAA) and its natural isomers, and the organisms and sample types in which the toxin(s) have been detected. Further, the review discusses general pathogenic mechanisms of neurodegenerative diseases, and how modes of action of BMAA fit in those mechanisms. The biogeography of BMAA occurrence presented here contributes to the planning of epidemiological research based on the geographical distribution of BMAA and human exposure. Analysis of BMAA mechanisms in relation to pathogenic processes of neurodegeneration is used to critically assess the potential significance of the amino acid as well as to identify gaps in our understanding. Taken together, these two approaches provide the basis for the discussion on the potential role of BMAA as a secondary factor in neurodegenerative diseases, the rationale for further research and possible directions the research can take, which are outlined in the conclusions.
Collapse
Affiliation(s)
- Srdjan Lopicic
- Faculty of Medicine, University of Belgrade, Dr Subotića Starijeg 8, 11000 Belgrade, Serbia
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| | - Tamara Palanački Malešević
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Aleksandar Kopitović
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Aleksandra Ivanovska
- Innovation Center of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Jussi Meriluoto
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| |
Collapse
|
8
|
Courtier A, Potheret D, Giannoni P. Environmental bacteria as triggers to brain disease: Possible mechanisms of toxicity and associated human risk. Life Sci 2022; 304:120689. [DOI: 10.1016/j.lfs.2022.120689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022]
|
9
|
Abbes S, Vo Duy S, Munoz G, Dinh QT, Simon DF, Husk B, Baulch HM, Vinçon-Leite B, Fortin N, Greer CW, Larsen ML, Venkiteswaran JJ, Martínez Jerónimo FF, Giani A, Lowe CD, Tromas N, Sauvé S. Occurrence of BMAA Isomers in Bloom-Impacted Lakes and Reservoirs of Brazil, Canada, France, Mexico, and the United Kingdom. Toxins (Basel) 2022; 14:251. [PMID: 35448860 PMCID: PMC9026818 DOI: 10.3390/toxins14040251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 11/21/2022] Open
Abstract
The neurotoxic alkaloid β-N-methyl-amino-l-alanine (BMAA) and related isomers, including N-(2-aminoethyl glycine) (AEG), β-amino-N-methyl alanine (BAMA), and 2,4-diaminobutyric acid (DAB), have been reported previously in cyanobacterial samples. However, there are conflicting reports regarding their occurrence in surface waters. In this study, we evaluated the impact of amending lake water samples with trichloroacetic acid (0.1 M TCA) on the detection of BMAA isomers, compared with pre-existing protocols. A sensitive instrumental method was enlisted for the survey, with limits of detection in the range of 5−10 ng L−1. Higher detection rates and significantly greater levels (paired Wilcoxon’s signed-rank tests, p < 0.001) of BMAA isomers were observed in TCA-amended samples (method B) compared to samples without TCA (method A). The overall range of B/A ratios was 0.67−8.25 for AEG (up to +725%) and 0.69−15.5 for DAB (up to +1450%), with absolute concentration increases in TCA-amended samples of up to +15,000 ng L−1 for AEG and +650 ng L−1 for DAB. We also documented the trends in the occurrence of BMAA isomers for a large breadth of field-collected lakes from Brazil, Canada, France, Mexico, and the United Kingdom. Data gathered during this overarching campaign (overall, n = 390 within 45 lake sampling sites) indicated frequent detections of AEG and DAB isomers, with detection rates of 30% and 43% and maximum levels of 19,000 ng L−1 and 1100 ng L−1, respectively. In contrast, BAMA was found in less than 8% of the water samples, and BMAA was not found in any sample. These results support the analyses of free-living cyanobacteria, wherein BMAA was often reported at concentrations of 2−4 orders of magnitude lower than AEG and DAB. Seasonal measurements conducted at two bloom-impacted lakes indicated limited correlations of BMAA isomers with total microcystins or chlorophyll-a, which deserves further investigation.
Collapse
Affiliation(s)
- Safa Abbes
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| | - Quoc Tuc Dinh
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| | - Dana F. Simon
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| | - Barry Husk
- BlueLeaf Inc., Drummondville, QC J2B 5E9, Canada;
| | - Helen M. Baulch
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK S7N 3H5, Canada;
| | | | - Nathalie Fortin
- National Research Council Canada, Energy, Mining, and Environment, Montréal, QC H4P 2R2, Canada; (N.F.); (C.W.G.)
| | - Charles W. Greer
- National Research Council Canada, Energy, Mining, and Environment, Montréal, QC H4P 2R2, Canada; (N.F.); (C.W.G.)
| | - Megan L. Larsen
- Faculty of Science, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada; (M.L.L.); (J.J.V.)
| | - Jason J. Venkiteswaran
- Faculty of Science, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada; (M.L.L.); (J.J.V.)
| | | | - Alessandra Giani
- Department of Botany, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Chris D. Lowe
- Centre for Ecology and Conservation, University of Exeter, Exeter TR10 9FE, UK;
| | - Nicolas Tromas
- Department of Biological Sciences, Université de Montréal, Montréal, QC H2V 0B3, Canada;
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| |
Collapse
|
10
|
Multiclass cyanotoxin analysis in reservoir waters: Tandem solid-phase extraction followed by zwitterionic hydrophilic interaction liquid chromatography-mass spectrometry. Talanta 2022; 237:122929. [PMID: 34736666 DOI: 10.1016/j.talanta.2021.122929] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 11/21/2022]
Abstract
The presence of cyanobacteria and cyanotoxins in all water bodies, including ocean water and fresh water sources, represents a risk for human health as eutrophication and climate change are enhancing their level of proliferation. For risk assessment and studies on occurrence, the development of reliable and sensitive analytical approaches able to cover a wide range of cyanotoxins is essential. This work describes the development of an HILIC-MS/MS multiclass method for the simultaneous analysis of eight cyanotoxins in reservoir water samples belonging to three different classes according to their chemical structure: cyclic peptides (microcystin-LR, microcystin-RR and nodularin), alkaloids (cylindrospermopsin, anatoxin-a) and three non-protein amino acids isomers such as β-methylamino-L-alanine, 2,4-diaminobutyric acid and N-(2-aminoethyl)glycine). A SeQuant ZIC-HILIC column was employed to achieve the chromatographic separation in less than 12 min. Previously, a novel sample treatment based on a tandem solid-phase extraction (SPE) system using mixed cation exchange (MCX) and Strata-X cartridges was investigated with the aim of extracting and preconcentrating this chemically diverse group of cyanotoxins. The Strata-X cartridge, which was configured first in the line of sample flow, retained the low polar compounds and the MCX cartridge, which was at the bottom of the dual system, retained mainly the non-protein amino acids. The optimization procedure highlighted the importance of sample ion content for the recoveries of some analytes such as the isomers β-N-methylamino-L-alanine and 2-4-diaminobutyric acid. Method validation was carried out in terms of linearity, limit of detection (LOD) and quantification (LOQ), recoveries, matrix effect and precision in terms of repeatability and intermediate precision. This work represents the first analytical method for the simultaneous analysis of these multiclass cyanotoxins in reservoir water samples, achieving LOQs in the very low range of 7·10-3 - 0.1 μg L-1. Despite high recoveries obtained at the LOQ concentration levels (101.0-70.9%), relative standard deviations lower than 17.5% were achieved.
Collapse
|
11
|
Fast screening of saxitoxin, neosaxitoxin, and decarbamoyl analogues in fresh and brackish surface waters by on-line enrichment coupled to HILIC-HRMS. Talanta 2022; 241:123267. [DOI: 10.1016/j.talanta.2022.123267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 01/31/2023]
|
12
|
A Generic LC-HRMS Screening Method for Marine and Freshwater Phycotoxins in Fish, Shellfish, Water, and Supplements. Toxins (Basel) 2021; 13:toxins13110823. [PMID: 34822607 PMCID: PMC8619867 DOI: 10.3390/toxins13110823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Phycotoxins occur in various marine and freshwater environments, and can accumulate in edible species such as fish, crabs, and shellfish. Human exposure to these toxins can take place, for instance, through consumption of contaminated species or supplements and through the ingestion of contaminated water. Symptoms of phycotoxin intoxication include paralysis, diarrhea, and amnesia. When the cause of an intoxication cannot directly be found, a screening method is required to identify the causative toxin. In this work, such a screening method was developed and validated for marine and freshwater phycotoxins in different matrices: fish, shellfish, water, and food supplements. Two LC methods were developed: one for hydrophilic and one for lipophilic phycotoxins. Sample extracts were measured in full scan mode with an Orbitrap high resolution mass spectrometer. Additionally, a database was created to process the data. The method was successfully validated for most matrices, and in addition, regulated lipophilic phycotoxins, domoic acid, and some paralytic shellfish poisoning toxins could be quantified in shellfish. The method showed limitations for hydrophilic phycotoxins in sea water and for lipophilic phycotoxins in food supplements. The developed method is a screening method; in order to confirm suspected compounds, comparison with a standard or an additional analysis such as NMR is required.
Collapse
|
13
|
Yang Y, Yu G, Chen Y, Jia N, Li R. Four decades of progress in cylindrospermopsin research: The ins and outs of a potent cyanotoxin. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124653. [PMID: 33321325 DOI: 10.1016/j.jhazmat.2020.124653] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The cyanotoxin cylindrospermopsin (CYN), a toxic metabolite from cyanobacteria, is of particular concern due to its cosmopolitan occurrence, aquatic bioaccumulation, and multi-organ toxicity. CYN is the second most often recorded cyanotoxin worldwide, and cases of human morbidity and animal mortality are associated with ingestion of CYN contaminated water. The toxin poses a great challenge for drinking water treatment plants and public health authorities. CYN, with the major toxicity manifested in the liver, is cytotoxic, genotoxic, immunotoxic, neurotoxic and may be carcinogenic. Adverse effects are also reported for endocrine and developmental processes. We present a comprehensive review of CYN over the past four decades since its first reported poisoning event, highlighting its global occurrence, biosynthesis, toxicology, removal, and monitoring. In addition, current data gaps are identified, and future directions for CYN research are outlined. This review is beneficial for understanding the ins and outs of this environmental pollutant, and for robustly assessing health hazards posed by CYN exposure to humans and other organisms.
Collapse
Affiliation(s)
- Yiming Yang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Youxin Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Nannan Jia
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renhui Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
14
|
Hughes CC. Chemical labeling strategies for small molecule natural product detection and isolation. Nat Prod Rep 2021; 38:1684-1705. [PMID: 33629087 DOI: 10.1039/d0np00034e] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: Up to 2020.It is widely accepted that small molecule natural products (NPs) evolved to carry out a particular ecological function and that these finely-tuned molecules can sometimes be appropriated for the treatment of disease in humans. Unfortunately, for the natural products chemist, NPs did not evolve to possess favorable physicochemical properties needed for HPLC-MS analysis. The process known as derivatization, whereby an NP in a complex mixture is decorated with a nonnatural moiety using a derivatizing agent (DA), arose from this sad state of affairs. Here, NPs are freed from the limitations of natural functionality and endowed, usually with some degree of chemoselectivity, with additional structural features that make HPLC-MS analysis more informative. DAs that selectively label amines, carboxylic acids, alcohols, phenols, thiols, ketones, and aldehydes, terminal alkynes, electrophiles, conjugated alkenes, and isocyanides have been developed and will be discussed here in detail. Although usually employed for targeted metabolomics, chemical labeling strategies have been effectively applied to uncharacterized NP extracts and may play an increasing role in the detection and isolation of certain classes of NPs in the future.
Collapse
Affiliation(s)
- Chambers C Hughes
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany 72076.
| |
Collapse
|
15
|
Ra D, Sa B, Sl B, Js M, Sj M, DA D, Ew S, O K, Eb B, Ad C, Vx T, Gg G, Pa C, Dc M, Wg B. Is Exposure to BMAA a Risk Factor for Neurodegenerative Diseases? A Response to a Critical Review of the BMAA Hypothesis. Neurotox Res 2021; 39:81-106. [PMID: 33547590 PMCID: PMC7904546 DOI: 10.1007/s12640-020-00302-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
In a literature survey, Chernoff et al. (2017) dismissed the hypothesis that chronic exposure to β-N-methylamino-L-alanine (BMAA) may be a risk factor for progressive neurodegenerative disease. They question the growing scientific literature that suggests the following: (1) BMAA exposure causes ALS/PDC among the indigenous Chamorro people of Guam; (2) Guamanian ALS/PDC shares clinical and neuropathological features with Alzheimer's disease, Parkinson's disease, and ALS; (3) one possible mechanism for protein misfolds is misincorporation of BMAA into proteins as a substitute for L-serine; and (4) chronic exposure to BMAA through diet or environmental exposures to cyanobacterial blooms can cause neurodegenerative disease. We here identify multiple errors in their critique including the following: (1) their review selectively cites the published literature; (2) the authors reported favorably on HILIC methods of BMAA detection while the literature shows significant matrix effects and peak coelution in HILIC that may prevent detection and quantification of BMAA in cyanobacteria; (3) the authors build alternative arguments to the BMAA hypothesis, rather than explain the published literature which, to date, has been unable to refute the BMAA hypothesis; and (4) the authors erroneously attribute methods to incorrect studies, indicative of a failure to carefully consider all relevant publications. The lack of attention to BMAA research begins with the review's title which incorrectly refers to BMAA as a "non-essential" amino acid. Research regarding chronic exposure to BMAA as a cause of human neurodegenerative diseases is emerging and requires additional resources, validation, and research. Here, we propose strategies for improvement in the execution and reporting of analytical methods and the need for additional and well-executed inter-lab comparisons for BMAA quantitation. We emphasize the need for optimization and validation of analytical methods to ensure that they are fit-for-purpose. Although there remain gaps in the literature, an increasingly large body of data from multiple independent labs using orthogonal methods provides increasing evidence that chronic exposure to BMAA may be a risk factor for neurological illness.
Collapse
Affiliation(s)
- Dunlop Ra
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA.
| | - Banack Sa
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Bishop Sl
- Lewis Research Group, Faculty of Science, University of Calgary, Alberta, Canada
| | - Metcalf Js
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Murch Sj
- Department of Chemistry, University of British Columbia, Kelowna, BC, Canada
| | - Davis DA
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Stommel Ew
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Karlsson O
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Brittebo Eb
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | - Tan Vx
- Department of Biological Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie University, Ryde, Australia
| | - Guillemin Gg
- Department of Biological Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie University, Ryde, Australia
| | - Cox Pa
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Mash Dc
- Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Bradley Wg
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
16
|
Lepoutre A, Hervieux J, Faassen EJ, Zweers AJ, Lurling M, Geffard A, Lance E. Usability of the bivalves Dreissena polymorpha and Anodonta anatina for a biosurvey of the neurotoxin BMAA in freshwater ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113885. [PMID: 31926392 DOI: 10.1016/j.envpol.2019.113885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/22/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
The environmental neurotoxin β-methylamino-L-alanine (BMAA) may represent a risk for human health in case of chronic exposure or after short-term exposure during embryo development. BMAA accumulates in freshwater and marine organisms consumed by humans. It is produced by marine and freshwater phytoplankton species, but the range of producers remains unknown. Therefore, analysing the phytoplankton composition is not sufficient to inform about the risk of freshwater contamination by BMAA. Filter-feeders mussels have accumulation capacities and therefore appear to be relevant to monitor various pollutants in aquatic ecosystems. We investigated the suitability of the freshwater mussels Dreissena polymorpha and Anodonta anatina for monitoring BMAA in water. Both species were exposed to 1, 10, and 50 μg of dissolved BMAA/L daily for 21 days, followed by 42 days of depuration in clean water. On days 0, 1, 7, 14, and 21 of exposure and 1, 7, 14, 21 and 42 of depuration, whole D. polymorpha and digestive glands of A. anatina were sampled, and the total BMAA concentration was measured. D. polymorpha accumulated BMAA earlier (from day 1 at all concentrations) and at higher tissue concentrations than A. anatina, which accumulated BMAA from day 14 when exposed to 10 μg BMAA/L and from day 7 when exposed to 50 μg BMAA/L. As BMAA accumulation by D. polymorpha was time and concentration-dependent, with a significant elimination during the depuration period, this species may be able to reflect the levels and dynamics of water contamination by dissolved BMAA. The species A. anatina could be used for monitoring water concentrations above 10 μg BMAA/L.
Collapse
Affiliation(s)
- A Lepoutre
- UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques UFR Sciences, Exactes et Naturelles Moulin de la Housse BP 1039 51687 Reims Cedex 2, France
| | - J Hervieux
- UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques UFR Sciences, Exactes et Naturelles Moulin de la Housse BP 1039 51687 Reims Cedex 2, France
| | - E J Faassen
- Wageningen Food Safety Research, Wageningen Research, Akkermaalsbos 2, 6708, WB, Wageningen, the Netherlands; Aquatic Ecology and Water Quality Management Group, Wageningen University, Droevendaalsesteeg 3a, 6708, PB, Wageningen, the Netherlands
| | - A J Zweers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708, PB, Wageningen, the Netherlands
| | - M Lurling
- Aquatic Ecology and Water Quality Management Group, Wageningen University, Droevendaalsesteeg 3a, 6708, PB, Wageningen, the Netherlands
| | - A Geffard
- UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques UFR Sciences, Exactes et Naturelles Moulin de la Housse BP 1039 51687 Reims Cedex 2, France
| | - E Lance
- UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques UFR Sciences, Exactes et Naturelles Moulin de la Housse BP 1039 51687 Reims Cedex 2, France; Equipe Cyanobactéries, Cyanotoxines et Environnement, UMR Molécules de Communication et Adaptation des Microorganismes (MCAM), Museum National Histoire Naturelle, CNRS, 12 rue Buffon CP 39 75231 PARIS Cedex 05, France.
| |
Collapse
|
17
|
Bishop SL, Murch SJ. A systematic review of analytical methods for the detection and quantification of β-N-methylamino-l-alanine (BMAA). Analyst 2019; 145:13-28. [PMID: 31742261 DOI: 10.1039/c9an01252d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are influenced by environmental factors such as exposure to toxins including the cyanotoxin β-N-methylamino-l-alanine (BMAA) that can bioaccumulate in common food sources such as fish, mussels and crabs. Accurate and precise analytical methods are needed to detect and quantify BMAA to minimize human health risks. The objective of this review is to provide a comprehensive overview of the methods used for BMAA analysis from 2003 to 2019 and to evaluate the reported performance characteristics for each method to determine the consensus data for each analytical approach and different sample matrices. Detailed searches of the database Web of Science™ (WoS) were performed between August 21st, 2018 and April 5th, 2019. Eligible studies included analytical methods for the detection and quantification of BMAA in cyanobacteria and bioaccumulated BMAA in higher trophic levels, in phytoplankton and zooplankton and in human tissues and fluids. This systematic review has limitations in that only the English language literature is included and it did not include standard operating protocols nor any method validation data that have not been made public. We identified 148 eligible studies, of which a positive result for BMAA in one or more samples analyzed was reported in 84% (125 out of 148) of total studies, 57% of HILIC studies, 92% of RPLC studies and 71% of other studies. The largest discrepancy between different methods arose from the analysis of cyanobacteria samples, where BMAA was detected in 95% of RPLC studies but only in 25% of HILIC studies. Without sufficient published validation of each method's performance characteristics, it is difficult to establish each method as fit for purpose for each sample matrix. The importance of establishing methods as appropriate for their intended use is evidenced by the inconsistent reporting of BMAA across environmental samples, despite its prevalence in diverse ecosystems and food webs.
Collapse
Affiliation(s)
- Stephanie L Bishop
- Chemistry, University of British Columbia, Kelowna, British Columbia, CanadaV1V 1V7.
| | | |
Collapse
|
18
|
A Single Laboratory Validation for the Analysis of Underivatized β-N-Methylamino-L-Alanine (BMAA). Neurotox Res 2019; 39:49-71. [PMID: 31823228 DOI: 10.1007/s12640-019-00137-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
β-N-Methylamino-L-alanine (BMAA) is a non-protein amino acid produced by cyanobacteria that can accumulate in ecosystems and food webs. Human exposure to cyanobacterial and algal blooms may be a risk factor for neurodegenerative diseases such as Alzheimer's disease and amyotrophic lateral sclerosis. Analytical chemists have struggled to find reliable methods for BMAA analysis in complex sample matrices. Analysis of BMAA is complicated by at least 3 naturally occurring isomers: N-(2-aminoethyl)glycine (AEG), 2,4-diaminobutyric acid (DAB), and β-aminomethyl-L-alanine (BAMA). More than 350 publications have reported detection and quantification of BMAA and its isomers, but varying results have led to controversy in the literature. The objective of this study was to perform a single laboratory validation (SLV) of a frequently published method for BMAA analysis using a ZIC-HILIC column. We investigated the selectivity, linearity, accuracy, precision, and sensitivity of the method and our data show that this HILIC method fails many of the criteria for a validated method. The method fails the criterion for selectivity as the chromatography does not separate BMAA from its isomer BAMA. Sensitivity of the method greatly decreased over the experimental period and it demonstrated a higher limit of detection (LOD) (7.5 pg on column) and a higher lower limit of quantification (LLOQ) (30 pg on column) than other published validated methods. The method demonstrated poor precision of repeated injections of standards of BMAA with % relative standard deviation (%RSD) values that ranged from 37 to 107% while HorRat values for BMAA had a fail rate of 80% and BAMA had a fail rate of 73%. No HorRat values between 0.5 and 2 were found for repeated injections of standards of AEG and DAB. Recovery of 13C3,15N2-BMAA in a cyanobacterial matrix was < 10% in experiments and we were also unable to accurately detect other protein amino acids including methionine, cysteine, or alanine, indicating matrix effects. The results of this study demonstrate that the ZIC-HILIC column is not fit for purpose for the analysis of BMAA in cyanobacterial matrices and further provides explanations for the high level of negative results reported by researchers using this method.
Collapse
|
19
|
Racine M, Saleem A, Pick FR. Metabolome Variation between Strains of Microcystis aeruginosa by Untargeted Mass Spectrometry. Toxins (Basel) 2019; 11:E723. [PMID: 31835794 PMCID: PMC6950387 DOI: 10.3390/toxins11120723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022] Open
Abstract
Cyanobacteria are notorious for their potential to produce hepatotoxic microcystins (MCs), but other bioactive compounds synthesized in the cells could be as toxic, and thus present interest for characterization. Ultra performance liquid chromatography and high-resolution accurate mass spectrometry (UPLC-QTOF-MS/MS) combined with untargeted analysis was used to compare the metabolomes of five different strains of the common bloom-forming cyanobacterium, Microcystis aeruginosa. Even in microcystin-producing strains, other classes of oligopeptides including cyanopeptolins, aeruginosins, and aerucyclamides, were often the more dominant compounds. The distinct and large variation between strains of the same widespread species highlights the need to characterize the metabolome of a larger number of cyanobacteria, especially as several metabolites other than microcystins can affect ecological and human health.
Collapse
Affiliation(s)
- Marianne Racine
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.S.); (F.R.P.)
- Current address: Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, ON L7S 1A1, Canada
| | - Ammar Saleem
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.S.); (F.R.P.)
| | - Frances R. Pick
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.S.); (F.R.P.)
| |
Collapse
|
20
|
The Diversity of Cyanobacterial Toxins on Structural Characterization, Distribution and Identification: A Systematic Review. Toxins (Basel) 2019; 11:toxins11090530. [PMID: 31547379 PMCID: PMC6784007 DOI: 10.3390/toxins11090530] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 11/19/2022] Open
Abstract
The widespread distribution of cyanobacteria in the aquatic environment is increasing the risk of water pollution caused by cyanotoxins, which poses a serious threat to human health. However, the structural characterization, distribution and identification techniques of cyanotoxins have not been comprehensively reviewed in previous studies. This paper aims to elaborate the existing information systematically on the diversity of cyanotoxins to identify valuable research avenues. According to the chemical structure, cyanotoxins are mainly classified into cyclic peptides, alkaloids, lipopeptides, nonprotein amino acids and lipoglycans. In terms of global distribution, the amount of cyanotoxins are unbalanced in different areas. The diversity of cyanotoxins is more obviously found in many developed countries than that in undeveloped countries. Moreover, the threat of cyanotoxins has promoted the development of identification and detection technology. Many emerging methods have been developed to detect cyanotoxins in the environment. This communication provides a comprehensive review of the diversity of cyanotoxins, and the detection and identification technology was discussed. This detailed information will be a valuable resource for identifying the various types of cyanotoxins which threaten the environment of different areas. The ability to accurately identify specific cyanotoxins is an obvious and essential aspect of cyanobacterial research.
Collapse
|
21
|
Vo Duy S, Munoz G, Dinh QT, Tien Do D, Simon DF, Sauvé S. Analysis of the neurotoxin β-N-methylamino-L-alanine (BMAA) and isomers in surface water by FMOC derivatization liquid chromatography high resolution mass spectrometry. PLoS One 2019; 14:e0220698. [PMID: 31386693 PMCID: PMC6684067 DOI: 10.1371/journal.pone.0220698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/22/2019] [Indexed: 11/18/2022] Open
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA), suspected to trigger neurodegenerative diseases, can be produced during cyanobacterial bloom events and subsequently affect ecosystems and water sources. Some of its isomers including β-amino-N-methylalanine (BAMA), N-(2-aminoethyl) glycine (AEG), and 2,4-diaminobutyric acid (DAB) may show different toxicities than BMAA. Here, we set out to provide a fast and sensitive method for the monitoring of AEG, BAMA, DAB and BMAA in surface waters. A procedure based on aqueous derivatization with 9-fluorenylmethyl chloroformate (FMOC-Cl) was investigated for this purpose. Under optimized conditions, a small aqueous sample aliquot (5 mL) was spiked with BMAA-d3 internal standard, subjected to FMOC-Cl derivatization, centrifuged, and analyzed. The high-throughput instrumental method (10 min per sample) involved on-line pre-concentration and desalting coupled to ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS). Chromatographic gradient and mobile phases were adjusted to obtain suitable separation of the 4 isomers. The method limits of detection were in the range of 2-5 ng L-1. In-matrix validation parameters including linearity range, accuracy, precision, and matrix effects were assessed. The method was applied to surface water samples (n = 82) collected at a large spatial scale in lakes and rivers in Canada. DAB was found in >70% of samples at variable concentrations (<3-1,900 ng L-1), the highest concentrations corresponding to lake samples in cyanobacterial bloom periods. BMAA was only reported (110 ng L-1) at one HAB-impacted location. This is one of the first studies to report on the profiles of AEG, BAMA, DAB, and BMAA in background and impacted surface waters.
Collapse
Affiliation(s)
- Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Quoc Tuc Dinh
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Dat Tien Do
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Dana F. Simon
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
22
|
Rutkowska M, Płotka-Wasylka J, Majchrzak T, Wojnowski W, Mazur-Marzec H, Namieśnik J. Recent trends in determination of neurotoxins in aquatic environmental samples. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
Beri J, Kirkwood KI, Muddiman DC, Bereman MS. A novel integrated strategy for the detection and quantification of the neurotoxin β-N-methylamino-L-alanine in environmental samples. Anal Bioanal Chem 2018; 410:2597-2605. [PMID: 29455280 DOI: 10.1007/s00216-018-0930-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/18/2018] [Accepted: 01/30/2018] [Indexed: 11/26/2022]
Abstract
We describe a set of new tools for the detection and quantification of β-N-methylamino-L-alanine (BMAA) which includes a novel stable isotope-labeled BMAA standard (13C3,15N2) and a chip-based capillary electrophoresis mass spectrometry platform for separation and detection. Baseline resolution of BMAA from its potentially confounding structural isomers N-2-aminoethylglycine (AEG) and 2,4-diaminobutyric acid (2,4-DAB) is achieved using the chip-based CE-MS system in less than 1 min. Detection and linearity of response are demonstrated across > 3.5 orders of dynamic range using parallel reaction monitoring (PRM). The lower limit of detection and quantification were calculated for BMAA detection at 40 nM (4.8 ng/mL) and 400 nM (48 ng/mL), respectively. Finally, the strategy was applied to detect BMAA in seafood samples purchased at a local market in Raleigh, NC where their harvest location was known. BMAA was detected in a sea scallop sample. Because the BMAA/stable isotope-labeled 13C3,15N2-BMAA (SIL-BMAA) ratio in the scallop sample was below the limit of quantification, a semiquantitative analysis of BMAA content was carried out, and BMAA content was estimated to be approximately 820 ng BMAA/1 g of wet scallop tissue. Identification was verified by high mass measurement accuracy of precursor (< 5 ppm) and product ions (< 10 ppm), comigration with SIL-BMAA spike-in standard, and conservation of ion abundance ratios for product ions between BMAA and SIL-BMAA. Interestingly, BMAA was not identified in the free protein fraction but only detected after protein hydrolysis which suggests that BMAA is tightly bound by and/or incorporated into proteins. Graphical abstract Utilization of novel 13C3,15N2-BMAA and chip-based CE-MS/MS for detection and quantification of BMAA in environmental samples.
Collapse
Affiliation(s)
- Joshua Beri
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kaylie I Kirkwood
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - David C Muddiman
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
| | - Michael S Bereman
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA.
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA.
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
24
|
Genotoxic and Cytotoxic Effects on the Immune Cells of the Freshwater Bivalve Dreissena polymorpha Exposed to the Environmental Neurotoxin BMAA. Toxins (Basel) 2018; 10:toxins10030106. [PMID: 29494483 PMCID: PMC5869394 DOI: 10.3390/toxins10030106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/14/2018] [Accepted: 02/23/2018] [Indexed: 01/13/2023] Open
Abstract
The environmental neurotoxin β-N-Methylamino-l-alanine (BMAA) has been pointed out to be involved in human neurodegenerative diseases. This molecule is known to be bioaccumulated by bivalves. However, little data about its toxic effects on freshwater mussels is available, particularly on the hemolymphatic compartment and its hemocyte cells involved in various physiological processes such as immune defenses, digestion and excretion, tissue repair, and shell production. Here we exposed Dreissena polymorpha to dissolved BMAA, at the environmental concentration of 7.5 µg of /mussel/3 days, during 21 days followed by 14 days of depuration in clear water, with the objective of assessing the BMAA presence in the hemolymphatic compartment, as well as the impact of the hemocyte cells in terms of potential cytotoxicity, immunotoxicity, and genotoxiciy. Data showed that hemocytes were in contact with BMAA. The presence of BMAA in hemolymph did not induce significant effect on hemocytes phagocytosis activity. However, significant DNA damage on hemocytes occurred during the first week (days 3 and 8) of BMAA exposure, followed by an increase of hemocyte mortality after 2 weeks of exposure. Those effects might be an indirect consequence of the BMAA-induced oxidative stress in cells. However, DNA strand breaks and mortality did not persist during the entire exposure, despite the BMAA persistence in the hemolymph, suggesting potential induction of some DNA-repair mechanisms.
Collapse
|
25
|
Occurrence of β-N-methylamino-l-alanine (BMAA) and Isomers in Aquatic Environments and Aquatic Food Sources for Humans. Toxins (Basel) 2018; 10:toxins10020083. [PMID: 29443939 PMCID: PMC5848184 DOI: 10.3390/toxins10020083] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 12/13/2022] Open
Abstract
The neurotoxin β-N-methylamino-l-alanine (BMAA), a non-protein amino acid produced by terrestrial and aquatic cyanobacteria and by micro-algae, has been suggested to play a role as an environmental factor in the neurodegenerative disease Amyotrophic Lateral Sclerosis-Parkinsonism-Dementia complex (ALS-PDC). The ubiquitous presence of BMAA in aquatic environments and organisms along the food chain potentially makes it public health concerns. However, the BMAA-associated human health risk remains difficult to rigorously assess due to analytical challenges associated with the detection and quantification of BMAA and its natural isomers, 2,4-diamino butyric acid (DAB), β-amino-N-methyl-alanine (BAMA) and N-(2-aminoethyl) glycine (AEG). This systematic review, reporting the current knowledge on the presence of BMAA and isomers in aquatic environments and human food sources, was based on a selection and a score numbering of the scientific literature according to various qualitative and quantitative criteria concerning the chemical analytical methods used. Results from the best-graded studies show that marine bivalves are to date the matrix containing the higher amount of BMAA, far more than most fish muscles, but with an exception for shark cartilage. This review discusses the available data in terms of their use for human health risk assessment and identifies knowledge gaps requiring further investigations.
Collapse
|
26
|
Yan B, Liu Z, Huang R, Xu Y, Liu D, Lin TF, Cui F. Optimization of the Determination Method for Dissolved Cyanobacterial Toxin BMAA in Natural Water. Anal Chem 2017; 89:10991-10998. [DOI: 10.1021/acs.analchem.7b02867] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Boyin Yan
- State
Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiquan Liu
- State
Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Rui Huang
- State
Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yongpeng Xu
- State
Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dongmei Liu
- State
Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tsair-Fuh Lin
- Department
of Environmental Engineering, National Cheng Kung University, Tainan City 701, Taiwan
| | - Fuyi Cui
- State
Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
27
|
Rodgers KJ, Main BJ, Samardzic K. Cyanobacterial Neurotoxins: Their Occurrence and Mechanisms of Toxicity. Neurotox Res 2017; 33:168-177. [DOI: 10.1007/s12640-017-9757-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022]
|
28
|
Roy-Lachapelle A, Solliec M, Bouchard MF, Sauvé S. Detection of Cyanotoxins in Algae Dietary Supplements. Toxins (Basel) 2017; 9:E76. [PMID: 28245621 PMCID: PMC5371831 DOI: 10.3390/toxins9030076] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 11/16/2022] Open
Abstract
Algae dietary supplements are marketed worldwide as natural health products. Although their proprieties have been claimed as beneficial to improve overall health, there have been several previous reports of contamination by cyanotoxins. These products generally contain non-toxic cyanobacteria, but the methods of cultivation in natural waters without appropriate quality controls allow contamination by toxin producer species present in the natural environment. In this study, we investigated the presence of total microcystins, seven individual microcystins (RR, YR, LR, LA, LY, LW, LF), anatoxin-a, dihydroanatoxin-a, epoxyanatoxin-a, cylindrospermopsin, saxitoxin, and β-methylamino-l-alanine in 18 different commercially available products containing Spirulina or Aphanizomenon flos-aquae. Total microcystins analysis was accomplished using a Lemieux oxidation and a chemical derivatization using dansyl chloride was needed for the simultaneous analysis of cylindrospermopsin, saxitoxin, and β-methylamino-l-alanine. Moreover, the use of laser diode thermal desorption (LDTD) and ultra-high performance liquid chromatography (UHPLC) both coupled to high resolution mass spectrometry (HRMS) enabled high performance detection and quantitation. Out of the 18 products analyzed, 8 contained some cyanotoxins at levels exceeding the tolerable daily intake values. The presence of cyanotoxins in these algal dietary supplements reinforces the need for a better quality control as well as consumer's awareness on the potential risks associated with the consumption of these supplements.
Collapse
Affiliation(s)
| | - Morgan Solliec
- Department of Chemistry, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| | - Maryse F Bouchard
- Department of Environmental and Occupational Health, Université de Montréal, Montréal, QC H3T 1A8, Canada.
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
29
|
Buratti FM, Manganelli M, Vichi S, Stefanelli M, Scardala S, Testai E, Funari E. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch Toxicol 2017; 91:1049-1130. [DOI: 10.1007/s00204-016-1913-6] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
|
30
|
Quantitative determination of the neurotoxin β-N-methylamino-L-alanine (BMAA) by capillary electrophoresis-tandem mass spectrometry. Anal Bioanal Chem 2016; 409:1481-1491. [PMID: 27909777 DOI: 10.1007/s00216-016-0091-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/31/2016] [Accepted: 11/09/2016] [Indexed: 12/28/2022]
Abstract
Recent reports of the widespread occurrence of the neurotoxin β-N-methylamino-L-alanine (BMAA) in cyanobacteria and particularly seafood have raised concerns for public health. LC-MS/MS is currently the analytical method of choice for BMAA determinations but incomplete separation of isomeric and isobaric compounds, matrix suppression and conjugated forms are plausible limitations. In this study, capillary electrophoresis (CE) coupled with MS/MS has been developed as an alternative method for the quantitative determination of free BMAA. Using a bare fused silica capillary, a phosphate buffer (250 mM, pH 3.0) and UV detection, it was possible to separate BMAA from four isomers, but the limit of detection (LOD) of 0.25 μg mL-1 proved insufficient for analysis of typical samples. Coupling the CE to a triple quadrupole MS was accomplished using a custom sheath-flow interface. The best separation was achieved with a 5 M formic acid in water/acetonitrile (9:1) background electrolyte. Strong acid hydrolysis of lyophilized samples was used to release BMAA from conjugated forms. Field-amplified stacking after injection was achieved by lowering sample ionic strength with a cation-exchange cleanup procedure. Quantitation was accomplished using isotope dilution with deuterium-labelled BMAA as internal standard. An LOD for BMAA in solution of 0.8 ng mL-1 was attained, which was equivalent to 16 ng g-1 dry mass in samples using the specified extraction procedure. This was comparable with LC-MS/MS methods. The method displayed excellent resolution of amino acid isomers and had no interference from matrix components. The presence of BMAA in cycad, mussel and lobster samples was confirmed by CE-MS/MS, but not in an in-house cyanobacterial reference material, with quantitative results agreeing with those from LC-MS/MS. Graphical Abstract CE-MS separation and detection of BMAA, its isomers and the internal standard BMAA-d3.
Collapse
|
31
|
Zhao S, Luo X, Li L. Chemical Isotope Labeling LC-MS for High Coverage and Quantitative Profiling of the Hydroxyl Submetabolome in Metabolomics. Anal Chem 2016; 88:10617-10623. [DOI: 10.1021/acs.analchem.6b02967] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Shuang Zhao
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Xian Luo
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
32
|
Mashile GP, Nomngongo PN. Recent Application of Solid Phase Based Techniques for Extraction and Preconcentration of Cyanotoxins in Environmental Matrices. Crit Rev Anal Chem 2016; 47:119-126. [DOI: 10.1080/10408347.2016.1225255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
33
|
Faassen EJ, Antoniou MG, Beekman-Lukassen W, Blahova L, Chernova E, Christophoridis C, Combes A, Edwards C, Fastner J, Harmsen J, Hiskia A, Ilag LL, Kaloudis T, Lopicic S, Lürling M, Mazur-Marzec H, Meriluoto J, Porojan C, Viner-Mozzini Y, Zguna N. A Collaborative Evaluation of LC-MS/MS Based Methods for BMAA Analysis: Soluble Bound BMAA Found to Be an Important Fraction. Mar Drugs 2016; 14:md14030045. [PMID: 26938542 PMCID: PMC4820299 DOI: 10.3390/md14030045] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/26/2016] [Accepted: 02/06/2016] [Indexed: 12/12/2022] Open
Abstract
Exposure to β-N-methylamino-l-alanine (BMAA) might be linked to the incidence of amyotrophic lateral sclerosis, Alzheimer’s disease and Parkinson’s disease. Analytical chemistry plays a crucial role in determining human BMAA exposure and the associated health risk, but the performance of various analytical methods currently employed is rarely compared. A CYANOCOST initiated workshop was organized aimed at training scientists in BMAA analysis, creating mutual understanding and paving the way towards interlaboratory comparison exercises. During this workshop, we tested different methods (extraction followed by derivatization and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis, or directly followed by LC-MS/MS analysis) for trueness and intermediate precision. We adapted three workup methods for the underivatized analysis of animal, brain and cyanobacterial samples. Based on recovery of the internal standard D3BMAA, the underivatized methods were accurate (mean recovery 80%) and precise (mean relative standard deviation 10%), except for the cyanobacterium Leptolyngbya. However, total BMAA concentrations in the positive controls (cycad seeds) showed higher variation (relative standard deviation 21%–32%), implying that D3BMAA was not a good indicator for the release of BMAA from bound forms. Significant losses occurred during workup for the derivatized method, resulting in low recovery (<10%). Most BMAA was found in a trichloroacetic acid soluble, bound form and we recommend including this fraction during analysis.
Collapse
Affiliation(s)
- Elisabeth J Faassen
- Aquatic Ecology & Water Quality Management Group, Wageningen University, P.O. Box 47, Wageningen 6700 DD, The Netherlands.
| | - Maria G Antoniou
- Department of Environmental Science and Technology, Cyprus University of Technology, 3036 Lemesos, Cyprus.
| | - Wendy Beekman-Lukassen
- Aquatic Ecology & Water Quality Management Group, Wageningen University, P.O. Box 47, Wageningen 6700 DD, The Netherlands.
| | - Lucie Blahova
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Ekaterina Chernova
- Saint-Petersburg Scientific-Research Centre for Ecological Safety, Russian Academy of Sciences, 18, Korpusnaya street, St. Petersburg 197110, Russia.
| | - Christophoros Christophoridis
- Laboratory of Catalytic-Photocatalytic Processes and Environmental Analysis, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Grigoriou & Neapoleos, 15310 Agia Paraskevi, Athens, Greece.
| | - Audrey Combes
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR CBI 8231 ESPCI ParisTech/CNRS, PSL Research University, ESPCI ParisTech, 75005 Paris, France.
| | - Christine Edwards
- Pharmacy & Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK.
| | - Jutta Fastner
- Drinking-Water Resources and Water Treatment, Federal Environment Agency, Schichauweg 58, 12307 Berlin, Germany.
| | - Joop Harmsen
- Alterra, P.O. Box 47, Wageningen 6700 DD, The Netherlands.
| | - Anastasia Hiskia
- Laboratory of Catalytic-Photocatalytic Processes and Environmental Analysis, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Grigoriou & Neapoleos, 15310 Agia Paraskevi, Athens, Greece.
| | - Leopold L Ilag
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Triantafyllos Kaloudis
- Water Quality Department, Division of Quality, Research and Development (R&D), Athens Water Supply and Sewerage Company (EYDAP SA), 156 Oropou str., 11146 Athens, Greece.
| | - Srdjan Lopicic
- Institute for Pathological Physiology, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| | - Miquel Lürling
- Aquatic Ecology & Water Quality Management Group, Wageningen University, P.O. Box 47, Wageningen 6700 DD, The Netherlands.
- NIOO-KNAW, Droevendaalsesteeg 10, Wageningen 6708 PB, The Netherlands.
| | - Hanna Mazur-Marzec
- Department of Marine Biotechnology, University of Gdansk, Al. Marszalka Pilsudskiego 46, Gdynia 81-378, Poland.
| | - Jussi Meriluoto
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A 3rd Floor, Turku 20520, Finland.
| | - Cristina Porojan
- Mass Spectrometry Research Centre (MSRC) and PROTEOBIO Research Groups, Department of Physical Sciences, Cork Institute of Technology, Rossa Avenue, Bishopstown, V92 F9WY, Co. Cork, Ireland.
| | - Yehudit Viner-Mozzini
- Kinneret Limnological Laboratory, Israel Oceanographic & Limnological Research, P.O. Box 447, Migdal 14950, Israel.
| | - Nadezda Zguna
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden.
| |
Collapse
|