1
|
Hofman‐Caris R, Dingemans M, Reus A, Shaikh SM, Muñoz Sierra J, Karges U, der Beek TA, Nogueiro E, Lythgo C, Parra Morte JM, Bastaki M, Serafimova R, Friel A, Court Marques D, Uphoff A, Bielska L, Putzu C, Ruggeri L, Papadaki P. Guidance document on the impact of water treatment processes on residues of active substances or their metabolites in water abstracted for the production of drinking water. EFSA J 2023; 21:e08194. [PMID: 37644961 PMCID: PMC10461463 DOI: 10.2903/j.efsa.2023.8194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
This guidance document provides a tiered framework for risk assessors and facilitates risk managers in making decisions concerning the approval of active substances (AS) that are chemicals in plant protection products (PPPs) and biocidal products, and authorisation of the products. Based on the approaches presented in this document, a conclusion can be drawn on the impact of water treatment processes on residues of the AS or its metabolites in surface water and/or groundwater abstracted for the production of drinking water, i.e. the formation of transformation products (TPs). This guidance enables the identification of actual public health concerns from exposure to harmful compounds generated during the processing of water for the production of drinking water, and it focuses on water treatment methods commonly used in the European Union (EU). The tiered framework determines whether residues from PPP use or residues from biocidal product use can be present in water at water abstraction locations. Approaches, including experimental methods, are described that can be used to assess whether harmful TPs may form during water treatment and, if so, how to assess the impact of exposure to these water treatment TPs (tTPs) and other residues including environmental TPs (eTPs) on human and domesticated animal health through the consumption of TPs via drinking water. The types of studies or information that would be required are described while avoiding vertebrate testing as much as possible. The framework integrates the use of weight-of-evidence and, when possible alternative (new approach) methods to avoid as far as possible the need for additional testing.
Collapse
|
2
|
Meng Q, Yeung K, Kwok ML, Chung CT, Hu XL, Chan KM. Toxic effects and transcriptome analyses of zebrafish (Danio rerio) larvae exposed to benzophenones. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114857. [PMID: 32497821 DOI: 10.1016/j.envpol.2020.114857] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Sunscreen chemicals, such as benzophenones (BPs), are common environmental contaminants that are posing a growing health concern due to their increasing presence in water, fish, and human systems. Benzoresorcinol (BP1), oxybenzone (BP3), and dioxybenzone (BP8) are the most commonly used BPs for their ability to protect from sunburn by absorbing a broad spectrum of ultraviolet radiation. In this study, zebrafish larvae were used as an in vivo model to investigate the potential risks and molecular mechanisms of the toxic effects of BPs. The effects of these BPs on the gene expression in the aryl hydrocarbon receptor pathway, estrogen receptor pathway, and sex differentiation were detected using quantitative real-time PCR. All BPs were found to function as agonists of the estrogen receptors α and β1, indicating that these BPs likely undergo similar molecular metabolism in vivo, whereby they can activate cytochrome P450 genes and promote the expression of CYP19A and DMRT1. Furthermore, the gene expression profile of larvae after BP3 exposure was evaluated using a whole transcriptome sequencing approach. BP3 affected estradiol biosynthesis and sex differentiation. It also regulated gonadotropin-releasing hormone, thus interfering with the endocrine system. As a xenobiotic toxicant, BP3 upregulated the expression of cytochrome P450 genes (CYP1A and CYP3A65) and glutathione metabolism-related genes (GSTA, GSTM, and GSTP). It also interfered with the nervous system by regulating the calcium signaling pathway. These findings will be useful for understanding the toxicity mechanisms and metabolism of BPs in aquatic organisms and promote the regulation of these chemicals in the environment.
Collapse
Affiliation(s)
- Qi Meng
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong
| | - Karen Yeung
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong
| | - Man Long Kwok
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong
| | - Chun Ting Chung
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong
| | - Xue Lei Hu
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong
| | - King Ming Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong.
| |
Collapse
|
3
|
Li J, Ma LY, Li LS, Xu L. Photodegradation kinetics, transformation, and toxicity prediction of ketoprofen, carprofen, and diclofenac acid in aqueous solutions. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:3232-3239. [PMID: 28718961 DOI: 10.1002/etc.3915] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/20/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
Photodegradation of 3 commonly used nonsteroidal anti-inflammatory drugs, ketoprofen, carprofen, and diclofenac acid, was conducted under ultraviolet (UV) irradiation. The kinetic results showed that the 3 pharmaceuticals obeyed the first-order reaction with decreasing rate constants of 1.54 × 10-4 , 5.91 × 10-5 , and 7.78 × 10-6 s-1 for carprofen, ketoprofen, and diclofenac acid, respectively. Moreover, the main transformation products were identified by ion-pair liquid-liquid extraction combined with injection port derivatization-gas chromatography-mass spectrometry and high-performance liquid chromatography-quadrupole-time of flight mass spectrometric analysis. There were 8, 3, and 6 transformation products identified for ketoprofen, carprofen, and diclofenac acid, respectively. Decarboxylation, dechlorination, oxidation, demethylation, esterification, and cyclization were proposed to be associated with the transformation of the 3 pharmaceuticals. Toxicity prediction of the transformation products was conducted on the EPI Suite software based on ECOSAR model, and the results indicate that some of the transformation products were more toxic than the parent compounds. The present study provides the foundation to understand the transformation behavior of the studied pharmaceuticals under UV irradiation. Environ Toxicol Chem 2017;36:3232-3239. © 2017 SETAC.
Collapse
Affiliation(s)
- Jian Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
- Yichang Central People's Hospital, Yichang, China
| | - Li-Yun Ma
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Lu-Shuang Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Ma L, Li J, Xu L. Aqueous chlorination of fenamic acids: Kinetic study, transformation products identification and toxicity prediction. CHEMOSPHERE 2017; 175:114-122. [PMID: 28211324 DOI: 10.1016/j.chemosphere.2017.02.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/04/2017] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
Fenamic acids, one important type of non-steroidal anti-inflammatory drugs, are ubiquitous in environmental matrices. Thus it is of high significance to know the fate of them during chlorination disinfection considering their potential toxicity to the environment and humans. In the present study, the chlorination kinetics of three fenamic acids, i.e. mefenamic acid (MEF), tolfenamic acid (TOL) and clofenamic acid (CLO), were examined at different pHs, which followed second-order reaction under studied conditions. The studied fenamic acids degraded fast, with the largest apparent second-order rate coefficient (kapp) values of 446.7 M-1 s-1 (pH 7), 393.3 M-1 s-1 (pH 8) and 360.0 M-1 s-1 (pH 6) for MEF, TOL and CLO, respectively. The transformation products (TPs) were identified by solid-phase extraction-liquid chromatography-mass spectrometer and ion-pair liquid-liquid extraction and injection port derivatization-gas chromatography-mass spectrometer. Despite different numbers of TPs were detected for each studied fenamic acid through these two analytical methods, the types of TPs were almost the same; chlorine substitution, oxidation and the joint oxidation with chlorine substitution are transformation reactions involved in chlorination. Moreover, the total toxicity of the TPs was assayed based on luminescent bacteria. Under different pHs, the different types of TPs might form, resulting in the varied total toxicity. The toxicity of all three fenamic acids chlorinated at pH of 8 was greater than those at pHs of 6 and 7. This study provided the information about the kinetics, transformation and toxicity of three fenamic acids during water chlorination, which is important to the drinking water safety.
Collapse
Affiliation(s)
- Liyun Ma
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
5
|
Yu Q, Wei D, Liu W, Du Y. Acute toxicity variation of hydroxyl benzophenone UV filters during photoinduction-chlorination disinfection processes. J Environ Sci (China) 2017; 54:48-55. [PMID: 28391948 DOI: 10.1016/j.jes.2016.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/29/2016] [Accepted: 05/09/2016] [Indexed: 06/07/2023]
Abstract
Benzophenones (BPs), a group of widely used UV filters, exert multiple, significant toxicity effects. The 11 BPs were selected as target compounds, and the photobacterium acute toxicity test and an index for acute toxicity formation potential (ATFP) were used to evaluate the toxicity variation of BPs before and after a photoinduction-chlorination disinfection process. Orthogonal experiments were performed at different pH values and chlorine dosages. The characteristics of ATFP values for 11 BPs after a photoinduction-chlorination process can be summarized as follows: (1) The ATFPs decreased as the hydroxyl group number increased in BPs molecules. (2) For those BPs with the same hydroxyl group number, the ATFPs were higher when the hydroxyl groups were located at the 3- or 4-position than those at the 2-position; the BPs with hydroxyl groups distributed on two benzene rings had higher ATFPs than those on one ring. (3) Introducing a methoxyl group and sulfonic acid group into BP molecules increased the ATFP values. (4) The ATFPs were pH-dependent, the values of which were lowest at the neutral condition and highest at the acid condition. (5) The ATFPs increased and then decreased as the chlorine dosage increased. The results can be used as a reference to scientifically evaluate the environmental fate and potential risk of BPs in photoinduction-chlorination disinfection processes.
Collapse
Affiliation(s)
- Qi Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dongbin Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|