1
|
Ullah M, R R, Kanjariya P, Chahar M, Chohan JS, Tirth V, Alqahtani H, Algahtani A, Al-Mughanam T, Zhengxin L. Preparation of ultra-sensitive and selective hydrogen peroxide-based colorimetric sensor using highly exfoliated g-C 3N 4 nanosheets with peroxidase-like activity. Mikrochim Acta 2024; 191:706. [PMID: 39467865 DOI: 10.1007/s00604-024-06777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
A highly sensitive, portable, rapid, and accurate colorimetric sensing method is presented. It is based upon exfoliated g-C3N4 nanosheets (E-g-C3N4 NSs), having peroxidase nanozyme-like properties. The as-prepared catalyst (E-g-C3N4 NSs) tends to oxidize the colorless tetramethyl-benzidine (TMB) into oxidized-TMB in the presence of hydrogen peroxide (H2O2) generating a dark blue color and corresponding ultraviolet visible-spectral changes following a Michaelis-Menten kinetic. The prepared colorimetric sensor exhibited response within the range 0.001-0.450 μM having R2 value of 0.999 and a detective limit (LOD) of 0.15 ± 0.04 nM. Furthermore, the sensor also displayed outstanding selectivity, ample stability (10 weeks), and excellent practicability in real sample applications. All these outstanding properties were highly attributed to the large surface area with exposed actives sites, high surface energy, and large conductive structure of E-g-C3N4 NSs. For comparison of the catalytic study, we have also explored the sensing mechanism of B-g-C3N4, using the same optimized experimental conditions. Resultantly, we concluded that the proposed sensor (E-g-C3N4 NSs) will gain considerable attention for on-site environmental and health monitoring in future endeavor.
Collapse
Affiliation(s)
- Mohib Ullah
- School of Material Science and Engineering, Henan University of Technology Zhengzhou, Zhengzhou, 450001, Henan, China.
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Prakash Kanjariya
- Department of Physics, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering and Technology, NIMS University Rajasthan, Jaipur, India
| | - Jasgurpreet Singh Chohan
- School of Mechanical Engineering, Rayat Bahra University, Mohali, India
- Faculty of Engineering, Sohar University, Sohar, Oman
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Asir, Kingdom of Saudi Arabia
- Centre for Engineering and Technology Innovations, King Khalid University, Abha, 61421, Asir, Kingdom of Saudi Arabia
| | - Hassan Alqahtani
- Department of Mechanical Engineering, Taibah University, 42353, Medina, Saudi Arabia
| | - Ali Algahtani
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Asir, Kingdom of Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Guraiger, Abha, 61413, Asir, Kingdom of Saudi Arabia
| | - Tawfiq Al-Mughanam
- Department of Mechanical Engineering, College of Engineering, King Faisal University, P.O. Box 380, 31982, Al-Ahsa, Saudi Arabia
| | - Li Zhengxin
- School of Material Science and Engineering, Henan University of Technology Zhengzhou, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
2
|
Wei P, Li Y, Wu Y, Zhang Y, Xiang Y, Chen J. Supramolecular self-assembled gold nanoparticle clusters for synergistic photothermal-chemo tumor therapy. J Mater Chem B 2024; 12:3521-3532. [PMID: 38525839 DOI: 10.1039/d3tb02822d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The combination of photothermal therapy and chemotherapy has emerged as a promising strategy to improve cancer therapeutic efficacy. However, developing a versatile nanoplatform that simultaneously possesses commendable photothermal effect and high drug encapsulation efficiency remains a challenging problem yet to be addressed. Herein, we report a facile supramolecular self-assembly strategy to construct gold nanoparticle clusters (AuNCs) for synergistic photothermal-chemo therapy. By utilizing the functional polysaccharide as a targeted ligand, hyaluronic acid-enriched AuNCs were endowed with targeting CD44 receptor overexpressed on the B16 cancer cells. Importantly, these hyaluronic acid modified AuNCs can shelter therapeutic cargo of doxorubicin (DOX) to aggregate larger nanoparticles via a host-guest interaction with the anchored β-cyclodextrin, as a "nanocluster-bomb" (DOX@AuNCs). The in vitro results revealed that these DOX@AuNCs showed light-triggered drug release behavior and synergistic photothermal-chemo therapy. The improved efficacy of synergistic therapy was further demonstrated by treating a xenografted B16 tumor model in vivo. We envision that our multipronged design of DOX@AuNCs provides a potent theranostic platform for precise cancer therapy and could be further enriched by introducing different imaging probes and therapeutic drugs as appropriate suitable guest molecules.
Collapse
Affiliation(s)
- Ping Wei
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China.
| | - Ying Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China.
| | - Yaling Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China.
| | - Yirang Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China.
| | - Yanan Xiang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China.
| | - Jingxiao Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China.
| |
Collapse
|
3
|
Nishan U, Zahra T, Badshah A, Muhammad N, Afridi S, Shah M, Khan N, Asad M, Ullah R, Ali EA, Chen K. Colorimetric sensing of hydrogen peroxide using capped Morus nigra-sawdust deposited zinc oxide nanoparticles via Trigonella foenum extract. Front Bioeng Biotechnol 2024; 12:1338920. [PMID: 38390362 PMCID: PMC10882077 DOI: 10.3389/fbioe.2024.1338920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Hydrogen peroxide (H2O2) is one of the main byproducts of most enzymatic reactions, and its detection is very important in disease conditions. Due to its essential role in healthcare, the food industry, and environmental research, accurate H2O2 determination is a prerequisite. In the present work, Morus nigra sawdust deposited zinc oxide (ZnO) nanoparticles (NPs) were synthesized by the use of Trigonella foenum extract via a hydrothermal process. The synthesized platform was characterized by various techniques, including UV-Vis, FTIR, XRD, SEM, EDX, etc. FTIR confirmed the presence of a Zn‒O characteristic peak, and XRD showed the hexagonal phase of ZnO NPs with a 35 nm particle size. The EDX analysis confirmed the presence of Zn and O. SEM images showed that the as-prepared nanoparticles are distributed uniformly on the surface of sawdust. The proposed platform (acetic acid-capped ZnO NPs deposited sawdust) functions as a mimic enzyme for the detection of H2O2 in the presence of 3,3',5,5'-tetramethylbenzidine (TMB) colorimetrically. To get the best results, many key parameters, such as the amount of sawdust-deposited nanoparticles, TMB concentration, pH, and incubation time were optimized. With a linear range of 0.001-0.360 μM and an R2 value of 0.999, the proposed biosensor's 0.81 nM limit of quantification (LOQ) and 0.24 nM limit of detection (LOD) were predicted, respectively. The best response for the proposed biosensor was observed at pH 7, room temperature, and 5 min of incubation time. The acetic acid-capped sawdust deposited ZnO NPs biosensor was also used to detect H2O2 in blood serum samples of diabetic patients and suggest a suitable candidate for in vitro diagnostics and commercial purposes.
Collapse
Affiliation(s)
- Umar Nishan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Tabassum Zahra
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Amir Badshah
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical Sciences Khyber Medical University, Peshawar, Pakistan
| | - Saifullah Afridi
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Naeem Khan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Asad
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Essam A Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh, Riyadh, Saudi Arabia
| | - Ke Chen
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Du Y, Zhang X, Liu P, Yu DG, Ge R. Electrospun nanofiber-based glucose sensors for glucose detection. Front Chem 2022; 10:944428. [PMID: 36034672 PMCID: PMC9403008 DOI: 10.3389/fchem.2022.944428] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a chronic, systemic metabolic disease that leads to multiple complications, even death. Meanwhile, the number of people with diabetes worldwide is increasing year by year. Sensors play an important role in the development of biomedical devices. The development of efficient, stable, and inexpensive glucose sensors for the continuous monitoring of blood glucose levels has received widespread attention because they can provide reliable data for diabetes prevention and diagnosis. Electrospun nanofibers are new kinds of functional nanocomposites that show incredible capabilities for high-level biosensing. This article reviews glucose sensors based on electrospun nanofibers. The principles of the glucose sensor, the types of glucose measurement, and the glucose detection methods are briefly discussed. The principle of electrospinning and its applications and advantages in glucose sensors are then introduced. This article provides a comprehensive summary of the applications and advantages of polymers and nanomaterials in electrospun nanofiber-based glucose sensors. The relevant applications and comparisons of enzymatic and non-enzymatic nanofiber-based glucose sensors are discussed in detail. The main advantages and disadvantages of glucose sensors based on electrospun nanofibers are evaluated, and some solutions are proposed. Finally, potential commercial development and improved methods for glucose sensors based on electrospinning nanofibers are discussed.
Collapse
Affiliation(s)
- Yutong Du
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Xinyi Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
- Institute of Orthopaedic Basic and Clinical Transformation, University of Shanghai for Science and Technology, Shanghai, China
- Shidong Hospital, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Ruiliang Ge
- Department of Outpatient, the Third Afiliated Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
5
|
Dai R, Zhang Y, Huang K, Peng X. Recent advances in the visual detection of ions and molecules based on gold and silver nanoclusters. ANALYTICAL METHODS 2022; 14:2820-2832. [PMID: 35843220 DOI: 10.1039/d2ay00618a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gold and silver nanoclusters (Au/AgNCs) exhibit excellent application potential in optical biosensors because of their low toxicity, excellent biocompatibility, and unique optical properties. Au/AgNCs-based visual analysis methods have emerged as powerful tools for detecting various targets with convenient readout. In this review, the applications of Au/AgNCs in the visual detection and bioimaging of metal ions, inorganic anions, small molecules, and biomacromolecules in various devices are summarized. Furthermore, this review also discusses the future perspectives of the field.
Collapse
Affiliation(s)
- Rui Dai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Yixin Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Giaretta J, Duan H, Oveissi F, Farajikhah S, Dehghani F, Naficy S. Flexible Sensors for Hydrogen Peroxide Detection: A Critical Review. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20491-20505. [PMID: 35486920 PMCID: PMC9104121 DOI: 10.1021/acsami.1c24727] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Hydrogen peroxide (H2O2) is a common chemical used in many industries and can be found in various biological environments, water, and air. Yet, H2O2 in a certain range of concentrations can be hazardous and toxic. Therefore, it is crucial to determine its concentration at different conditions for safety and diagnostic purposes. This review provides an insight about different types of sensors that have been developed for detection of H2O2. Their flexibility, stability, cost, detection limit, manufacturing, and challenges in their applications have been compared. More specifically the advantages and disadvantages of various flexible substrates that have been utilized for the design of H2O2 sensors were discussed. These substrates include carbonaceous substrates (e.g., reduced graphene oxide films, carbon cloth, carbon, and graphene fibers), polymeric substrates, paper, thin glass, and silicon wafers. Many of these substrates are often decorated with nanostructures composed of Pt, Au, Ag, MnO2, Fe3O4, or a conductive polymer to enhance the performance of sensors. The impact of these nanostructures on the sensing performance of resulting flexible H2O2 sensors has been reviewed in detail. In summary, the detection limits of these sensors are within the range of 100 nM-1 mM, which makes them potentially, but not necessarily, suitable for applications in health, food, and environmental monitoring. However, the required sample volume, cost, ease of manufacturing, and stability are often neglected compared to other detection parameters, which hinders sensors' real-world application. Future perspectives on how to address some of the substrate limitations and examples of application-driven sensors are also discussed.
Collapse
Affiliation(s)
- Jacopo
E. Giaretta
- School
of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Haowei Duan
- School
of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Farshad Oveissi
- School
of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Syamak Farajikhah
- School
of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
- The
University of Sydney, Sydney Nano Institute, Camperdown, 2006 New South Wales, Australia
- Institute
of Photonics and Optical Sciences (IPOS), School of Physics, The University of Sydney, Camperdown, 2006 New South Wales, Australia
| | - Fariba Dehghani
- School
of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
- The
University of Sydney, Sydney Nano Institute, Camperdown, 2006 New South Wales, Australia
- F.D. ()
| | - Sina Naficy
- School
of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
- The
University of Sydney, Sydney Nano Institute, Camperdown, 2006 New South Wales, Australia
- S.N. ()
| |
Collapse
|
7
|
Casteleiro B, Martinho JMG, Farinha JPS. Encapsulation of gold nanoclusters: stabilization and more. NANOSCALE 2021; 13:17199-17217. [PMID: 34622909 DOI: 10.1039/d1nr04939a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gold nanoparticles with only a few atoms, known as gold nanoclusters (AuNCs), have dimensions below 2 nm and feature singular properties such as size dependent luminescence. AuNCs are also highly photostable and have catalytic activity, low toxicity and good biocompatibility. With these properties, they are extremely promising candidates for application in bioimaging, sensing and catalysis. However, when stabilized only with small capping ligands, their use is hindered by lack of colloidal stability. Encapsulation of the AuNCs can contribute to provide a more robust protection and even to improve their properties. Here, we review the encapsulation of AuNCs in polymers, silica and metal organic frameworks (MOFs) for applications in bioimaging, sensing and catalysis.
Collapse
Affiliation(s)
- Bárbara Casteleiro
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal.
| | - José Manuel Gaspar Martinho
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal.
| | - José Paulo Sequeira Farinha
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal.
| |
Collapse
|
8
|
Fan Q, Gao Y, Mazur F, Chandrawati R. Nanoparticle-based colorimetric sensors to detect neurodegenerative disease biomarkers. Biomater Sci 2021; 9:6983-7007. [PMID: 34528639 DOI: 10.1039/d1bm01226f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurodegenerative disorders (NDDs) are progressive, incurable health conditions that primarily affect brain cells, and result in loss of brain mass and impaired function. Current sensing technologies for NDD detection are limited by high cost, long sample preparation, and/or require skilled personnel. To overcome these limitations, optical sensors, specifically colorimetric sensors, have garnered increasing attention towards the development of a cost-effective, simple, and rapid alternative approach. In this review, we evaluate colorimetric sensing strategies of NDD biomarkers (e.g. proteins, neurotransmitters, bio-thiols, and sulfide), address the limitations and challenges of optical sensor technologies, and provide our outlook on the future of this field.
Collapse
Affiliation(s)
- Qingqing Fan
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Yuan Gao
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| |
Collapse
|
9
|
Balusamy B, Senthamizhan A, Celebioglu A, Uyar T. Single nozzle electrospinning promoted hierarchical shell wall structured zinc oxide hollow tubes for water remediation. J Colloid Interface Sci 2021; 593:162-171. [PMID: 33744527 DOI: 10.1016/j.jcis.2021.02.089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Electrospun metal oxide hollow tubes are of great interest owing to their unique structural advantages compared to solid nanofibers. Although intensive research on preparation of hollow tubes have been devoted, formation of hierarchical shells remains a significant challenge. EXPERIMENTS Herein, we demonstrate the fabrication of highly uniform, reproducible and industrially feasible ZnO hollow tubes (ZHT) with two-level hierarchical shells via a simple and versatile single-nozzle electrospinning strategy coupled with subsequent controlled thermal treatment. FINDINGS The morphological investigation reveals that the hollow tubes built from nanostructures which has unique surface structure on their wall. The mechanism by which the composite fibers transferred to hollow tubes is primarily based on the evaporation rate of the polymeric template. Notably, tuning the heating rate from 5 °C to 50 °C/min possess adverse effect on formation of hollow tubes, thus subsequently produced ZnO nanoplates (ZNP). The comparative photocatalytic analysis emphasized that ZHT shows higher photocatalytic activity than ZNP. This finding has made an evident that the inherent abundant defects in the electrospun derived nanostructures are not only sufficient for improving the photocatalytic activity. Studies on bacterial growth inhibition showcased a superior bactericidal effect against Staphylococcus aureus and Escherichia coli implying its potentiality for disinfecting the bacteria from water.
Collapse
Affiliation(s)
- Brabu Balusamy
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey.
| | - Anitha Senthamizhan
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey.
| | - Asli Celebioglu
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Tamer Uyar
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey; Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
10
|
Application trends of nanofibers in analytical chemistry. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115992
expr 834212330 + 887677890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
11
|
|
12
|
Balusamy B, Celebioglu A, Senthamizhan A, Uyar T. Progress in the design and development of "fast-dissolving" electrospun nanofibers based drug delivery systems - A systematic review. J Control Release 2020; 326:482-509. [PMID: 32721525 DOI: 10.1016/j.jconrel.2020.07.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Electrospinning has emerged as most viable approach for the fabrication of nanofibers with several beneficial features that are essential to various applications ranging from environment to biomedicine. The electrospun nanofiber based drug delivery systems have shown tremendous advancements over the controlled and sustained release complemented from their high surface area, tunable porosity, mechanical endurance, offer compatible environment for drug encapsulation, biocompatibility, high drug loading and tailorable release characteristics. The dosage formulation of poorly water-soluble drugs often faces several challenges including complete dissolution with maximum therapeutic efficiency over a short period of time especially through oral administration. In this context, challenges associated with the dosage formulation of poorly-water soluble drugs can be addressed through combining the beneficial features of electrospun nanofibers. This review describes major developments progressed in the preparation of electrospun nanofibers based "fast dissolving" drug delivery systems by employing variety of polymers, drug molecules and encapsulation approaches with primary focus on oral delivery. Furthermore, the review also highlights current scientific challenges and provide an outlook with regard to future prospectus.
Collapse
Affiliation(s)
- Brabu Balusamy
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA.
| | - Asli Celebioglu
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA
| | - Anitha Senthamizhan
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA
| | - Tamer Uyar
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
13
|
Balusamy B, Senthamizhan A, Uyar T. Functionalized Electrospun Nanofibers as a Versatile Platform for Colorimetric Detection of Heavy Metal Ions in Water: A Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2421. [PMID: 32466258 PMCID: PMC7288479 DOI: 10.3390/ma13102421] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 01/09/2023]
Abstract
The increasing heavy metal pollution in the aquatic ecosystem mainly driven by industrial activities has raised severe concerns over human and environmental health that apparently necessitate the design and development of ideal strategies for the effective monitoring of heavy metals. In this regard, colorimetric detection provides excellent opportunities for the easy monitoring of heavy metal ions, and especially, corresponding solid-state sensors enable potential opportunities for their applicability in real-world monitoring. As a result of the significant interest originating from their simplicity, exceptional characteristics, and applicability, the electrospun nanofiber-based colorimetric detection of heavy metal ions has undergone radical developments in the recent decade. This review illustrates the range of various approaches and functional molecules employed in the fabrication of electrospun nanofibers intended for the colorimetric detection of various metal ions in water. We highlight relevant investigations on the fabrication of functionalized electrospun nanofibers encompassing different approaches and functional molecules along with their sensing performance. Furthermore, we discuss upcoming prospectus and future opportunities in the exploration of designing electrospun nanofiber-based colorimetric sensors for real-world applications.
Collapse
Affiliation(s)
- Brabu Balusamy
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA
| | - Anitha Senthamizhan
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA
| | - Tamer Uyar
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
14
|
Recent progress on designing electrospun nanofibers for colorimetric biosensing applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2019.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
MIP-Based Impedimetric Sensor for Detecting Dengue Fever Biomarker. Appl Biochem Biotechnol 2020; 191:1384-1394. [DOI: 10.1007/s12010-020-03285-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/13/2020] [Indexed: 12/26/2022]
|
16
|
Balusamy B, Senthamizhan A, Uyar T. Functionalized Electrospun Nanofibers as Colorimetric Sensory Probe for Mercury Detection: A Review. SENSORS (BASEL, SWITZERLAND) 2019; 19:E4763. [PMID: 31684017 PMCID: PMC6864735 DOI: 10.3390/s19214763] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/20/2019] [Accepted: 10/30/2019] [Indexed: 01/09/2023]
Abstract
Mercury is considered the most hazardous pollutant of aquatic resources; it exerts numerous adverse effects on environmental and human health. To date, significant progress has been made in employing a variety of nanomaterials for the colorimetric detection of mercury ions. Electrospun nanofibers exhibit several beneficial features, including a large surface area, porous nature, and easy functionalization; thus, providing several opportunities to encapsulate a variety of functional materials for sensing applications with enhanced sensitivity and selectivity, and a fast response. In this review, several examples of electrospun nanofiber-based sensing platforms devised by utilizing the two foremost approaches, namely, direct incorporation and surface decoration envisioned for detection of mercury ions are provided. We believe these examples provide sufficient evidence for the potential use and progress of electrospun nanofibers toward colorimetric sensing of mercury ions. Furthermore, the summary of the review is focused on providing an insight into the future directions of designing electrospun nanofiber-based, metal ion colorimetric sensors for practical applications.
Collapse
Affiliation(s)
- Brabu Balusamy
- Fondazione Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy.
| | - Anitha Senthamizhan
- Fondazione Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy.
| | - Tamer Uyar
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
17
|
Zhao L, Zhang Z, Chen M, Liu Y, Wang T, Li X. Fluorescent fibrous mats assembled with self-propagating probes for visual sensing of hydrogen peroxide and choline. Analyst 2019; 144:5624-5636. [PMID: 31432883 DOI: 10.1039/c9an01120j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Challenges remain in the facile, rapid and sensitive detection of substances at ultralow levels. In the current study, visual sensors of hydrogen peroxide (H2O2) and choline are developed via the integration of an ultrafine fibrous substrate and self-propagating and aggregation-induced emission (AIE) probes. Self-immolative probes (SIPs) composed of phenylboronic acid triggers and choline units are grafted on electrospun polyethylene terephthalate (PET) fibers, followed by electrostatic adsorption of tetraphenylethene derivatives (TPE-SO3) to obtain fluorescent PET-Ch/TPE fibers. Choline oxidase (ChOX) is immobilized on polystyrene-co-maleic anhydride (PSMA) fibers to obtain PSMA-ChOX, followed by assembly into PET-Ch/TPE@PSMA-ChOX composite mats. The presence of H2O2 initiates the cleavage of phenylboronic acid triggers in SIPs to release choline and choline/TPE complexes from PET-Ch/TPE fibers. The released choline is oxidized by PSMA-ChOX fibers to generate H2O2 that then activates a cascade of self-propagating reactions until the release of all choline/TPE complexes, leading to the alleviation of AIE effect and gradual fluorescence fading of fibrous mats. Thus, the hydrogen peroxide and choline concentrations can be read out from the fluorescence fading time of fibrous mats with a detection limit of 0.5 μM H2O2 within 30 min, providing potential self-test devices for a real-time, naked-eye and sensitive detection of bioactive substances.
Collapse
Affiliation(s)
- Long Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China.
| | | | | | | | | | | |
Collapse
|
18
|
Balusamy B, Sarioglu OF, Senthamizhan A, Uyar T. Rational Design and Development of Electrospun Nanofibrous Biohybrid Composites. ACS APPLIED BIO MATERIALS 2019; 2:3128-3143. [DOI: 10.1021/acsabm.9b00308] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Brabu Balusamy
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Omer Faruk Sarioglu
- E-Kalite Software, METU Technopolis Twin Blocks, Middle East Technical University, 06800 Ankara, Turkey
| | | | - Tamer Uyar
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
19
|
One-step synthesis of enzyme-stabilized gold nanoclusters for fluorescent ratiometric detection of hydrogen peroxide, glucose and uric acid. Microchem J 2018. [DOI: 10.1016/j.microc.2018.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Hao YB, Yuan D, Chang YX, Song WJ, Wang HS. Fluorescent Disulfide-functional Coordination Polymers for Sensitive Detection of Hydrogen Peroxide. ANAL SCI 2018; 34:1379-1384. [PMID: 30146543 DOI: 10.2116/analsci.18p283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A new type of fluorescent coordination polymer (NCPCd) based on disulfide carboxylate ligand was prepared by using one-pot synthesis for sensitive detection of reactive oxygen species (ROS). With the reaction between NCPCd and ROS, the morphology of the NCPCd was transformed from nanorods to hexagon particles, then broken into nano-fragments. Meanwhile, the fluorescence of NCPCd (at 421 nm) was quenched accordingly. For designing the highly sensitive probe for ROS, Rhodamine 6G (R6G) was doped in NCPCd. In the presence of ROS, the fluorescence of NCPCd moiety at 421 nm was quenched, but the R6G moiety was released from the broken nanorods and the fluorescence at 555 nm from R6G moiety was recovered. The R6G doped NCPCd (NCPCd-R) can be used as a highly sensitive and selective probe for hydrogen peroxide (H2O2) with detection limit of 12.4 nM. Moreover, the NCPCd-R was further extended to the glucose sensing combined with glucose oxidase (GOx) to oxidate glucose and generate H2O2, demonstrating the potential for practical applications.
Collapse
Affiliation(s)
- Ya-Bo Hao
- Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce
| | - Dong Yuan
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education
| | - Yu-Xiang Chang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education
| | - Wen-Jun Song
- Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce
| | - Huai-Song Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education
| |
Collapse
|
21
|
Coordination-induced decomposition of luminescent gold nanoparticles: sensitive detection of H2O2 and glucose. Anal Bioanal Chem 2016; 409:1635-1641. [DOI: 10.1007/s00216-016-0108-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/27/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022]
|
22
|
Wang HS. Development of fluorescent and luminescent probes for reactive oxygen species. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.09.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
23
|
Zhang QM, Berg D, Duan J, Mugo SM, Serpe MJ. Optical Devices Constructed from Ferrocene-Modified Microgels for H 2O 2 Sensing. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27264-27269. [PMID: 27680293 DOI: 10.1021/acsami.6b11462] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ferrocene-modified poly(N-isopropylacrylamide)-based microgels were synthesized, characterized, and used to construct optical devices (etalons). The response of the microgels and etalons to H2O2 was investigated, and we show that both the microgel diameter and the optical properties of the etalons depend on the solution concentration of H2O2 from 0.6 to 35 mM. This behavior is a direct result of the oxidation of ferrocene, which influences the microgel diameter. This was also demonstrated by electrochemical-mediated oxidation/reduction of ferrocene using cyclic voltammetry. We go on to show that these materials could be used to monitor H2O2 that is generated from enzymatic reactions. Specifically, we show that the H2O2 generated from the oxidation of glucose catalyzed by glucose oxidase could be quantified. Finally, the devices can be reused multiple times via a regeneration process. This investigation illustrates the versatility of the etalon system to detect species of broad relevance and how they could potentially be used to quantify products of biological reactions.
Collapse
Affiliation(s)
- Qiang Matthew Zhang
- Department of Chemistry, University of Alberta , Edmonton, AB T6G 2G2, Canada
| | - Darren Berg
- Physical Sciences Department, MacEwan University , Edmonton, AB T5J 4S2, Canada
| | - Jiaqi Duan
- Department of Chemistry, University of Alberta , Edmonton, AB T6G 2G2, Canada
| | - Samuel M Mugo
- Physical Sciences Department, MacEwan University , Edmonton, AB T5J 4S2, Canada
| | - Michael J Serpe
- Department of Chemistry, University of Alberta , Edmonton, AB T6G 2G2, Canada
| |
Collapse
|