1
|
Chen Y, Li Y, Wang W, Jiang L, Yin S, Guo Z, Wu W, Wang C, Lu S, Wang F, Chen X. A fluorescent NBD "turn-on" probe for the rapid and on-site analysis of fructose in food. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124612. [PMID: 38857548 DOI: 10.1016/j.saa.2024.124612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
High fructose intake is an important cause of metabolic disease. Due to the increasing prevalence of metabolic diseases worldwide, the development of an accurate and efficient tool for monitoring fructose in food is urgently needed to control the intake of fructose. Herein, a new fluorescent probe NBD-PQ-B with 7-nitrobenz-2-oxa-1, 3-diazole (NBD) as the fluorophore, piperazine (PQ) as the bridging group and phenylboronic acid (B) as the recognition receptor, was synthesized to detect fructose. The fluorescence of NBD-PQ-B increased linearly at 550 nm at an excitation wavelength of 497 nm with increasing fructose concentration from 0.1 to 20 mM. The limit of detection (LOD) of fructose was 40 μM. The pKa values of NBD-PQ-B and its fructose complexes were 4.1 and 10.0, respectively. In addition, NBD-PQ-B bound to fructose in a few seconds. The present technique was applied to determine the fructose content in beverages, honey, and watermelon with satisfactory results. Finally, the system could not only be applied in an aqueous solution with a spectrophotometer, but also be fabricated as a NBD-PQ-B/polyvinyl oxide (PEO) film by electrospinning for on-site food analysis simply with the assistance of a smartphone.
Collapse
Affiliation(s)
- Yanan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Yajing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Wenjing Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Long Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Shaojie Yin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Ziwei Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Wenyan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Chongqing Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Sheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Fang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
2
|
Yin B, Xie W, Fang S, He S, Ma W, Liang L, Yin Y, Zhou D, Wang Z, Wang D. Research Progress on Saccharide Molecule Detection Based on Nanopores. SENSORS (BASEL, SWITZERLAND) 2024; 24:5442. [PMID: 39205136 PMCID: PMC11360570 DOI: 10.3390/s24165442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Saccharides, being one of the fundamental molecules of life, play essential roles in the physiological and pathological functions of cells. However, their intricate structures pose challenges for detection. Nanopore technology, with its high sensitivity and capability for single-molecule-level analysis, has revolutionized the identification and structural analysis of saccharide molecules. This review focuses on recent advancements in nanopore technology for carbohydrate detection, presenting an array of methods that leverage the molecular complexity of saccharides. Biological nanopore techniques utilize specific protein binding or pore modifications to trigger typical resistive pulses, enabling the high-sensitivity detection of monosaccharides and oligosaccharides. In solid-state nanopore sensing, boronic acid modification and pH gating mechanisms are employed for the specific recognition and quantitative analysis of polysaccharides. The integration of artificial intelligence algorithms can further enhance the accuracy and reliability of analyses. Serving as a crucial tool in carbohydrate detection, we foresee significant potential in the application of nanopore technology for the detection of carbohydrate molecules in disease diagnosis, drug screening, and biosensing, fostering innovative progress in related research domains.
Collapse
Affiliation(s)
- Bohua Yin
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; (B.Y.); (Z.W.)
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Wanyi Xie
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Shaoxi Fang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Shixuan He
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Wenhao Ma
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400714, China
| | - Liyuan Liang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Yajie Yin
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Daming Zhou
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; (B.Y.); (Z.W.)
| | - Deqiang Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; (B.Y.); (Z.W.)
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| |
Collapse
|
3
|
Shaposhnikov LA, Chikurova NY, Chernobrovkina AV, Tishkov VI, Pometun AA. Development of an approach to determining enzymatic activity of ribonucleoside hydrolase c using hydrophilic interaction liquid chromatography. J Chromatogr A 2024; 1715:464561. [PMID: 38154259 DOI: 10.1016/j.chroma.2023.464561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Ribonucleoside hydrolase C (RihC, EC 3.2.2.1-3.2.2.3, 3.2.2.7, 3.2.2.8) belongs to the family of ribonucleoside hydrolases that catalyze the cleavage of both purine and pyrimidine ribonucleosides to nitrogenous bases and ribose. Its most efficient reaction is the cleavage of uridine with the highest reaction rate. The reaction cannot be detected by a simple spectrophotometric method because of the same absorption maximum for the substrate and reaction product or requires time- and labor-consuming sample preparation for ribose. Reversed-phase HPLC is currently used to register enzymatic activity, where the time of one chromatographic run takes about 10 min. Since a large number of analyses is required to measure the kinetics of an enzymatic reaction, the total time is significant. In this work, we obtained new recombinant RihC from Limosilactobacillus reuteri by gene cloning and expression in E.coli cells. We proposed a new approach for determining the enzymatic activity of the new RihC using hydrophilic interaction liquid chromatography (HILIC). The novel column was developed for this procedure providing the determination of uracil and uridine with high efficiency and retention times of 0.9 and 1.7 min, respectively. Kinetic parameters for RihC uridine cleavage were determined. The proposed approach provided significant rapidity for measurement of the enzyme kinetics being 5 times faster as compared to reversed-phase HPLC.
Collapse
Affiliation(s)
- L A Shaposhnikov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Avenue, 33-22, Moscow 119071, Russia; Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russia
| | - N Yu Chikurova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Avenue, 33-22, Moscow 119071, Russia; Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russia
| | - A V Chernobrovkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russia
| | - V I Tishkov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Avenue, 33-22, Moscow 119071, Russia; Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russia
| | - A A Pometun
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Avenue, 33-22, Moscow 119071, Russia; Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russia; Institute of Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba, Miklukho-Maklaya, 8, Moscow, 117198, Russia.
| |
Collapse
|
4
|
Yang M, Wang H, Cheng J. Continuous monitoring of multiple biomarkers with an ultrasensitive 3D-structured wearable biosensor. CELL REPORTS METHODS 2023; 3:100579. [PMID: 37751686 PMCID: PMC10545935 DOI: 10.1016/j.crmeth.2023.100579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/17/2023] [Accepted: 08/10/2023] [Indexed: 09/28/2023]
Abstract
Chronic diseases call for routine management of frequent monitoring of specific biomarkers. Traditional in vitro diagnostics technologies suffer from complex sampling processes and long detection intervals, which cannot meet the need of continuous monitoring. Wearable devices taking advantage of compact size, rapid detection process, and small sample consumption are promising to take the place of endpoint detection, providing more comprehensive information about human health. Here, we proposed a fully integrated wearable system with an ultrasensitive 3D-structured biosensor for real-time monitoring of multiple metabolites. The 3D-structured biosensor shows wide linear ranges of 400-1,400 μM and 0.1-8 mM and high sensitivities of 460.5 and 283.09 μA/(mM·cm2) for lactate and glucose detection, respectively. We have conducted in vivo animal experiments, and the proposed wearable biosensor demonstrated high consistency with established methods. We envision that this system could provide a real-time wearable detection platform for multiple biomarker detection.
Collapse
Affiliation(s)
- Muqun Yang
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China; Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Han Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Jing Cheng
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China.
| |
Collapse
|
5
|
Fiedorova K, Augustynek M, Kubicek J, Kudrna P, Bibbo D. Review of present method of glucose from human blood and body fluids assessment. Biosens Bioelectron 2022; 211:114348. [DOI: 10.1016/j.bios.2022.114348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022]
|
6
|
Chen LF, Lin MT, Noreldeen HA, Peng HP, Deng HH, He SB, Chen W. Fructose oxidase-like activity of CuO nanoparticles supported by phosphate for a tandem catalysis-based fructose sensor. Anal Chim Acta 2022; 1220:340064. [DOI: 10.1016/j.aca.2022.340064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
|
7
|
Progress in the pretreatment and analysis of carbohydrates in food: An update since 2013. J Chromatogr A 2021; 1655:462496. [PMID: 34492577 DOI: 10.1016/j.chroma.2021.462496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 11/21/2022]
Abstract
Carbohydrates in foods and other matrices plays vital roles in their diverse biological functions. Carbohydrates serve not only as functional substances but also as structural materials, such as components of membranes, and participate in cellular recognition. The fact that carbohydrates are indispensable has contributed to the need for pretreatment and analytical methods to be developed for their characterization. The aim of this review is to provide a comprehensive overview of carbohydrate pretreatment and determination methods in various matrices. The pretreatment methods include simple and more developed approaches (e.g., solid phase extraction, supercritical fluid extraction, and different microextraction methods, among others). The analytical methods include those by liquid chromatography (including high-performance anion-exchange chromatography), capillary electrophoresis, gas chromatography and supercritical fluid chromatography, and others. Different pretreatment methods and determination approaches are updated, compared, and discussed. Moreover, we discuss and compare the strengths and weaknesses of different methods and suggest their future prospects.
Collapse
|
8
|
Investigation of key chemical species from durian peduncles and their correlations with durian maturity. Sci Rep 2021; 11:13301. [PMID: 34172759 PMCID: PMC8233394 DOI: 10.1038/s41598-021-92492-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/10/2021] [Indexed: 12/26/2022] Open
Abstract
The popularity and high price of durian make quality control in terms of ripeness very important, which in turn depends heavily on harvesting at an appropriate maturity stage. To date, reports on data-driven methods for maturity prediction are scarce, with many rather focusing on ripeness prediction. Herein, we report the first disclosure of key molecular markers in the liquid extract of durian peduncle that can be a predictive tool for maturity. Multiple chromatographic and spectroscopic techniques including TLC, HPLC, PS-MS, LC-MS/MS, and NMR, were used to characterize chemical profiles of the aqueous extracts from peduncles at different ages. Four compounds that show positive correlations with maturity were identified as sucrose, asparagine, arginine, and pipecolic acid, with asparagine as the most abundant species. This finding paves the way for more research of high impact such as the relationship between biochemical reactions in peduncle and pulp, and the development of accurate and non-destructive sensors for maturity prediction.
Collapse
|
9
|
An Overview of the Factors Influencing Apple Cider Sensory and Microbial Quality from Raw Materials to Emerging Processing Technologies. Processes (Basel) 2021. [DOI: 10.3390/pr9030502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Given apple, an easily adapted culture, and a large number of apple varieties, the production of apple cider is widespread globally. Through the fermentation process, a series of chemical changes take place depending on the apple juice composition, type of microorganism involved and technology applied. Following both fermentations, alcoholic and malo-lactic, and during maturation, the sensory profile of cider changes. This review summarises the current knowledge about the influence of apple variety and microorganisms involved in cider fermentation on the sensory and volatile profiles of cider. Implications of both Saccharomyces, non-Saccharomyces yeast and lactic acid bacteria, respectively, are discussed. Also are presented the emerging technologies applied to cider processing (pulsed electric field, microwave extraction, enzymatic, ultraviolet and ultrasound treatments, high-pressure and pulsed light processing) and the latest trends for a balanced production in terms of sustainability, authenticity and consumer preferences.
Collapse
|
10
|
1H NMR quantification of spray dried and spray freeze-dried saccharide carriers in dry powder inhaler formulations. Int J Pharm 2019; 564:318-328. [DOI: 10.1016/j.ijpharm.2019.03.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 12/24/2022]
|
11
|
Sasaki Y, Zhang Z, Minami T. A Saccharide Chemosensor Array Developed Based on an Indicator Displacement Assay Using a Combination of Commercially Available Reagents. Front Chem 2019; 7:49. [PMID: 30859095 PMCID: PMC6397832 DOI: 10.3389/fchem.2019.00049] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/18/2019] [Indexed: 11/25/2022] Open
Abstract
Herein, a very simple colorimetric chemosensor array is reported for saccharides (D-glucose, D-fructose, D-xylose, D-galactose, D-mannose, L-rhamnose, and N-acetyl-D-gluosamine). While various types of chemosensors for saccharides have been investigated extensively to-this-date, tremendous additional efforts are still required on a regular basis for the syntheses of new chemosensors. Complicated syntheses would be a bottleneck, given that artificial receptor-based chemosensing systems are not so popular in comparison to biomaterial-based (e.g., enzyme-based) sensing systems. Toward this end, chemosensor array systems using molecular self-assembled materials can avoid the abovementioned synthetic efforts and achieve simultaneous qualitative and quantitative detection of a number of guest saccharides. Using a practical approach, we focus on an indicator displacement assay (IDA) to fabricate a chemosensor array for colorimetric saccharide sensing. On this basis, 3-nitrophenylboronic acid (3-NPBA) spontaneously reacts with catechol dyes such as alizarin red S (ARS), bromopyrogallol red (BPR), pyrogallol red (PR), and pyrocatechol violet (PV), and yields boronate ester derivatives with color changes. The addition of saccharides into the aqueous solution of the boronate esters induces color recovery owing to the higher binding affinity of 3-NPBA for saccharides, thus resulting in the release of dyes. By employing this system, we have succeeded in discriminating saccharides qualitatively and quantitatively with a classification success rate of 100%. Most importantly, our chemosensor array has been fabricated by only mixing low cost commercially available reagents in situ, which means that complicated synthetic processes are avoided for saccharide sensing. We believe this simple colorimetric assay that uses only commercially available reagents can create new, user-friendly supramolecular sensing pathways for saccharides.
Collapse
Affiliation(s)
- Yui Sasaki
- Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| | - Zhoujie Zhang
- Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
El-Shorbagy HI, Elsebaei F, Hammad SF, Elbrashy AM. Earth-friendly spectrophotometric methods for simultaneous determination of ledipasvir and sofosbuvir: Application to average content and uniformity of dosage unit testing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 205:398-409. [PMID: 30044997 DOI: 10.1016/j.saa.2018.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 07/07/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
Simple, rapid, sensitive, accurate, precise and earth-friendly spectrophotometric methods were developed for the simultaneous analysis of ledipasvir (LED) and sofosbuvir (SOF) without interference of both sunset yellow dye and copovidone excipients (the most probable interferents) in their combined dosage form. These proposed methods were based on measurement of LED in synthetic mixtures and combined dosage form by first derivative (1D) spectrophotometry at 314 nm over the concentration range of 2-50 μg mL-1 with coefficient of determination (R2) > 0.9999, mean percentage recovery of 99.98 ± 0.62. On the other hand, SOF in synthetic mixtures and combined dosage form was determined by five methods. Method I is based on the use of 1D spectrophotometry at 274.2 nm (zero crossing point of LED). Method II involves the application of conventional dual wavelength method (DW) at the absolute difference between SOF zero order amplitudes at 261 nm (λmax of SOF) and 364.7 nm. At these wavelengths, the absolute difference between LED zero order amplitudes was observed to equal zero. Method III depends on isosbestic point method (ISP) in which the total concentration of both drugs was measured at isosbestic point at 262.7 nm. Concentration of SOF could be obtained by subtraction of LED concentration. While, method IV depends on absorbance correction method (absorption factor method), which is based on determination of SOF concentration at 262.7 nm (λISP) and LED at 333 nm (λmax of LED). Finally, method V depends on absorbance ratio method (Q-analysis) in which 262.7 nm (λISP) and 261 nm (λmax of SOF) were selected to determine SOF concentration. The linearity range for all methods for SOF determination was 2-50 μg mL-1 with coefficient of determination (R2) > 0.9999. Methods I, II & III were also applied for determination of SOF concentration in single dosage form. Their mean percentage recoveries were 100.35 ± 1.85, 99.97 ± 0.54 and 100.03 ± 0.49, for the three methods respectively. The proposed methods were validated according to international conference of harmonization (ICH) requirements and statistically compared to published reference methods. The ANOVA test confirmed that there is no significant differences between the proposed methods, and can be used for routine analysis of LED and SOF in commercial tablets. These developed methods were applied to estimate the average content and uniformity of dosage unit for LED/SOF combined dosage form and SOF single dosage form according to British pharmacopeia (BP) requirements.
Collapse
Affiliation(s)
- Hanan I El-Shorbagy
- Pharmaceutical Service Center, Faculty of Pharmacy, Tanta University, Egypt.
| | - Fawzi Elsebaei
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sherin F Hammad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Egypt
| | - Amina M Elbrashy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
13
|
Zarifi MH, Wiltshire B, Mahdi N, Kar P, Shankar K, Daneshmand M. Ultraviolet sensing using a TiO 2 nanotube integrated high resolution planar microwave resonator device. NANOSCALE 2018; 10:4882-4889. [PMID: 29480301 DOI: 10.1039/c7nr06869g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper presents a unique integrated UV light sensing concept and introduces a device with a detection limit of 1.96 nW cm-2. The combination of a high quality factor, a microwave planar resonator (Q ∼ 50 000) with a semiconducting nanomaterial enables a revolutionary potential paradigm for photodetection of low light intensities and small form factors. The presenting device employs a high-resolution microwave microstrip resonator as the signal transducer to convert the variant dielectric properties (permittivity and conductivity) of the nanotube membrane into electrical signals such as the resonant frequency, quality factor and resonant amplitude. The microwave resonator has an active feedback loop to improve the initial quality factor of the resonator from 200 to 50 000 and leads to boosting of the sensing resolution by orders of magnitude. Anatase TiO2 nanotubes are assembled on the surface of the microwave resonator. Upon exposure to UV light, electron-hole pair generation, trapping and recombination in the nanotubes are exploited as a unique signature to quantify the UV light intensity. The change of dielectric properties of the nanotube membrane is monitored using the underlying active microwave resonator. The proposed concept enables the detection and monitoring of UV light at high resolution, with very small exposure power and integrated form factors.
Collapse
Affiliation(s)
- Mohammad H Zarifi
- School of Engineering, University of British Columbia, Canada V1V 1V7.
| | | | | | | | | | | |
Collapse
|
14
|
Zavahir JS, Nolvachai Y, Marriott PJ. Molecular spectroscopy – Information rich detection for gas chromatography. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Brown L, Earle MJ, Gîlea MA, Plechkova NV, Seddon KR. Ionic Liquid-Liquid Chromatography: A New General Purpose Separation Methodology. Top Curr Chem (Cham) 2017; 375:74. [PMID: 28799044 PMCID: PMC5552829 DOI: 10.1007/s41061-017-0159-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/01/2017] [Indexed: 12/18/2022]
Abstract
Ionic liquids can form biphasic solvent systems with many organic solvents and water, and these solvent systems can be used in liquid-liquid separations and countercurrent chromatography. The wide range of ionic liquids that can by synthesised, with specifically tailored properties, represents a new philosophy for the separation of organic, inorganic and bio-based materials. A customised countercurrent chromatograph has been designed and constructed specifically to allow the more viscous character of ionic liquid-based solvent systems to be used in a wide variety of separations (including transition metal salts, arenes, alkenes, alkanes, bio-oils and sugars).
Collapse
Affiliation(s)
- Leslie Brown
- AECS-QuikPrep Ltd, 55 Gower Street, London, WC1 6HQ, UK
| | - Martyn J Earle
- The QUILL Research Centre, School of Chemistry, The Queen's University of Belfast, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, UK.
| | - Manuela A Gîlea
- The QUILL Research Centre, School of Chemistry, The Queen's University of Belfast, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, UK
| | - Natalia V Plechkova
- The QUILL Research Centre, School of Chemistry, The Queen's University of Belfast, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, UK
| | - Kenneth R Seddon
- The QUILL Research Centre, School of Chemistry, The Queen's University of Belfast, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, UK
| |
Collapse
|
16
|
Nagy G, Peng T, Pohl NLB. Recent Liquid Chromatographic Approaches and Developments for the Separation and Purification of Carbohydrates. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2017; 9:3579-3593. [PMID: 28824713 PMCID: PMC5558844 DOI: 10.1039/c7ay01094j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Carbohydate purification remains a bottleneck in securing analytical standards from natural sources or by chemical or enzymatic synthesis. This review highlights the scope and remaining limitations of recent approaches and methods development in liquid chromatography for robust and higher-throughput carbohydrate separation and isolation.
Collapse
Affiliation(s)
- Gabe Nagy
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Tianyuan Peng
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Nicola L B Pohl
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
17
|
Brown L, Earle MJ, Gîlea MA, Plechkova NV, Seddon KR. Ionic Liquid–Liquid Separations Using Countercurrent Chromatography: A New General-Purpose Separation Methodology. Aust J Chem 2017. [DOI: 10.1071/ch17004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Liquid–liquid separations based on countercurrent chromatography, in which at least one phase contains an ionic liquid, represent a new empirical approach for the separation of organic, inorganic, or bio-based materials. A custom-designed instrument has been developed and constructed specifically to perform separations (including transition metal salts, arenes, alkenes, alkanes, and sugars) with ionic liquids, and has been demonstrated for use on the 0.1 to 10 g scale.
Collapse
|