1
|
Bissen A, Yunussova N, Myrkhiyeva Z, Salken A, Tosi D, Bekmurzayeva A. Unpacking the packaged optical fiber bio-sensors: understanding the obstacle for biomedical application. Front Bioeng Biotechnol 2024; 12:1401613. [PMID: 39144482 PMCID: PMC11322460 DOI: 10.3389/fbioe.2024.1401613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
A biosensor is a promising alternative tool for the detection of clinically relevant analytes. Optical fiber as a transducer element in biosensors offers low cost, biocompatibility, and lack of electromagnetic interference. Moreover, due to the miniature size of optical fibers, they have the potential to be used in microfluidic chips and in vivo applications. The number of optical fiber biosensors are extensively growing: they have been developed to detect different analytes ranging from small molecules to whole cells. Yet the widespread applications of optical fiber biosensor have been hindered; one of the reasons is the lack of suitable packaging for their real-life application. In order to translate optical fiber biosensors into clinical practice, a proper embedding of biosensors into medical devices or portable chips is often required. A proper packaging approach is frequently as challenging as the sensor architecture itself. Therefore, this review aims to give an unpack different aspects of the integration of optical fiber biosensors into packaging platforms to bring them closer to actual clinical use. Particularly, the paper discusses how optical fiber sensors are integrated into flow cells, organized into microfluidic chips, inserted into catheters, or otherwise encased in medical devices to meet requirements of the prospective applications.
Collapse
Affiliation(s)
- Aidana Bissen
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Nigara Yunussova
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Zhuldyz Myrkhiyeva
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | | | - Daniele Tosi
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | | |
Collapse
|
2
|
Zhang Y, Li J, Jiao S, Li Y, Zhou Y, Zhang X, Maryam B, Liu X. Microfluidic sensors for the detection of emerging contaminants in water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172734. [PMID: 38663621 DOI: 10.1016/j.scitotenv.2024.172734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/22/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
In recent years, numerous emerging contaminants have been identified in surface water, groundwater, and drinking water. Developing novel sensing methods for detecting diverse emerging pollutants in water is urgently needed, as even at low concentrations, these pollutants can pose a serious threat to human health and environmental safety. Traditional testing methods are based on laboratory equipment, which is highly sensitive but complex to operate, costly, and not suitable for on-site monitoring. Microfluidic sensors offer several benefits, including rapid evaluation, minimal sample usage, accurate liquid manipulation, compact size, automation, and in-situ detection capabilities. They provide promising and efficient analytical tools for high-performance sensing platforms in monitoring emerging contaminants in water. In this paper, recent research advances in microfluidic sensors for the detection of emerging contaminants in water are reviewed. Initially, a concise overview is provided about the various substrate materials, corresponding microfabrication techniques, different driving forces, and commonly used detection techniques for microfluidic devices. Subsequently, a comprehensive analysis is conducted on microfluidic detection methods for endocrine-disrupting chemicals, pharmaceuticals and personal care products, microplastics, and perfluorinated compounds. Finally, the prospects and future challenges of microfluidic sensors in this field are discussed.
Collapse
Affiliation(s)
- Yihao Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Jiaxuan Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Shipu Jiao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yang Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yu Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Xu Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Bushra Maryam
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
3
|
Kurdadze T, Lamadie F, Nehme KA, Teychené S, Biscans B, Rodriguez-Ruiz I. On-Chip Photonic Detection Techniques for Non-Invasive In Situ Characterizations at the Microfluidic Scale. SENSORS (BASEL, SWITZERLAND) 2024; 24:1529. [PMID: 38475065 DOI: 10.3390/s24051529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Microfluidics has emerged as a robust technology for diverse applications, ranging from bio-medical diagnostics to chemical analysis. Among the different characterization techniques that can be used to analyze samples at the microfluidic scale, the coupling of photonic detection techniques and on-chip configurations is particularly advantageous due to its non-invasive nature, which permits sensitive, real-time, high throughput, and rapid analyses, taking advantage of the microfluidic special environments and reduced sample volumes. Putting a special emphasis on integrated detection schemes, this review article explores the most relevant advances in the on-chip implementation of UV-vis, near-infrared, terahertz, and X-ray-based techniques for different characterizations, ranging from punctual spectroscopic or scattering-based measurements to different types of mapping/imaging. The principles of the techniques and their interest are discussed through their application to different systems.
Collapse
Affiliation(s)
- Tamar Kurdadze
- CEA, DES, ISEC, DMRC, Univ Montpellier, 30207 Bagnols-sur-Ceze, Marcoule, France
| | - Fabrice Lamadie
- CEA, DES, ISEC, DMRC, Univ Montpellier, 30207 Bagnols-sur-Ceze, Marcoule, France
| | - Karen A Nehme
- Laboratoire de Génie Chimique, CNRS, UMR 5503, 4 Allée Emile Monso, 31432 Toulouse, France
| | - Sébastien Teychené
- Laboratoire de Génie Chimique, CNRS, UMR 5503, 4 Allée Emile Monso, 31432 Toulouse, France
| | - Béatrice Biscans
- Laboratoire de Génie Chimique, CNRS, UMR 5503, 4 Allée Emile Monso, 31432 Toulouse, France
| | - Isaac Rodriguez-Ruiz
- Laboratoire de Génie Chimique, CNRS, UMR 5503, 4 Allée Emile Monso, 31432 Toulouse, France
| |
Collapse
|
4
|
Hengoju S, Shvydkiv O, Tovar M, Roth M, Rosenbaum MA. Advantages of optical fibers for facile and enhanced detection in droplet microfluidics. Biosens Bioelectron 2022; 200:113910. [PMID: 34974260 DOI: 10.1016/j.bios.2021.113910] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/01/2021] [Accepted: 12/20/2021] [Indexed: 11/02/2022]
Abstract
Droplet microfluidics offers a unique opportunity for ultrahigh-throughput experimentation with minimal sample consumption and thus has obtained increasing attention, particularly for biological applications. Detection and measurements of analytes or biomarkers in tiny droplets are essential for proper analysis of biological and chemical assays like single-cell studies, cytometry, nucleic acid detection, protein quantification, environmental monitoring, drug discovery, and point-of-care diagnostics. Current detection setups widely use microscopes as a central device and other free-space optical components. However, microscopic setups are bulky, complicated, not flexible, and expensive. Furthermore, they require precise optical alignments, specialized optical and technical knowledge, and cumbersome maintenance. The establishment of efficient, simple, and cheap detection methods is one of the bottlenecks for adopting microfluidic strategies for diverse bioanalytical applications and widespread laboratory use. Together with great advances in optofluidic components, the integration of optical fibers as a light guiding medium into microfluidic chips has recently revolutionized analytical possibilities. Optical fibers embedded in a microfluidic platform provide a simpler, more flexible, lower-cost, and sensitive setup for the detection of several parameters from biological and chemical samples and enable widespread, hands-on application much beyond thriving point-of-care developments. In this review, we examine recent developments in droplet microfluidic systems using optical fiber as a light guiding medium, primarily focusing on different optical detection methods such as fluorescence, absorbance, light scattering, and Raman scattering and the potential applications in biochemistry and biotechnology that are and will be arising from this.
Collapse
Affiliation(s)
- Sundar Hengoju
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745, Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University, 07743, Jena, Germany
| | - Oksana Shvydkiv
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745, Jena, Germany
| | - Miguel Tovar
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745, Jena, Germany
| | - Martin Roth
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745, Jena, Germany
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745, Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University, 07743, Jena, Germany.
| |
Collapse
|
5
|
Davis JJ, Foster SW, Grinias JP. Low-cost and open-source strategies for chemical separations. J Chromatogr A 2021; 1638:461820. [PMID: 33453654 PMCID: PMC7870555 DOI: 10.1016/j.chroma.2020.461820] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Abstract
In recent years, a trend toward utilizing open access resources for laboratory research has begun. Open-source design strategies for scientific hardware rely upon the use of widely available parts, especially those that can be directly printed using additive manufacturing techniques and electronic components that can be connected to low-cost microcontrollers. Open-source software eliminates the need for expensive commercial licenses and provides the opportunity to design programs for specific needs. In this review, the impact of the "open-source movement" within the field of chemical separations is described, primarily through a comprehensive look at research in this area over the past five years. Topics that are covered include general laboratory equipment, sample preparation techniques, separations-based analysis, detection strategies, electronic system control, and software for data processing. Remaining hurdles and possible opportunities for further adoption of open-source approaches in the context of these separations-related topics are also discussed.
Collapse
Affiliation(s)
- Joshua J Davis
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - Samuel W Foster
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - James P Grinias
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States.
| |
Collapse
|
6
|
Hengoju S, Wohlfeil S, Munser AS, Boehme S, Beckert E, Shvydkiv O, Tovar M, Roth M, Rosenbaum MA. Optofluidic detection setup for multi-parametric analysis of microbiological samples in droplets. BIOMICROFLUIDICS 2020; 14:024109. [PMID: 32547676 PMCID: PMC7148121 DOI: 10.1063/1.5139603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/27/2020] [Indexed: 05/03/2023]
Abstract
High-throughput microbiological experimentation using droplet microfluidics is limited due to the complexity and restricted versatility of the available detection techniques. Current detection setups are bulky, complicated, expensive, and require tedious optical alignment procedures while still mostly limited to fluorescence. In this work, we demonstrate an optofluidic detection setup for multi-parametric analyses of droplet samples by easily integrating micro-lenses and embedding optical fibers for guiding light in and out of the microfluidic chip. The optofluidic setup was validated for detection of absorbance, fluorescence, and scattered light. The developed platform was used for simultaneous detection of multiple parameters in different microbiological applications like cell density determination, growth kinetics, and antibiotic inhibition assays. Combining the high-throughput potential of droplet microfluidics with the ease, flexibility, and simplicity of optical fibers results in a powerful platform for microbiological experiments.
Collapse
Affiliation(s)
| | - S. Wohlfeil
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745 Jena, Germany
| | - A. S. Munser
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745 Jena, Germany
| | - S. Boehme
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745 Jena, Germany
| | - E. Beckert
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745 Jena, Germany
| | - O. Shvydkiv
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| | - M. Tovar
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| | - M. Roth
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| | | |
Collapse
|
7
|
Samper IC, Gowers SAN, Rogers ML, Murray DSRK, Jewell SL, Pahl C, Strong AJ, Boutelle MG. 3D printed microfluidic device for online detection of neurochemical changes with high temporal resolution in human brain microdialysate. LAB ON A CHIP 2019; 19:2038-2048. [PMID: 31094398 PMCID: PMC9209945 DOI: 10.1039/c9lc00044e] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This paper presents the design, optimisation and fabrication of a mechanically robust 3D printed microfluidic device for the high time resolution online analysis of biomarkers in a microdialysate stream at microlitre per minute flow rates. The device consists of a microfluidic channel with secure low volume connections that easily integrates electrochemical biosensors for biomarkers such as glutamate, glucose and lactate. The optimisation process of the microfluidic channel fabrication, including for different types of 3D printer, is explained and the resulting improvement in sensor response time is quantified. The time resolution of the device is characterised by recording short lactate concentration pulses. The device is employed to record simultaneous glutamate, glucose and lactate concentration changes simulating the physiological response to spreading depolarisation events in cerebrospinal fluid dialysate. As a proof-of-concept study, the device is then used in the intensive care unit for online monitoring of a brain injury patient, demonstrating its capabilities for clinical monitoring.
Collapse
Affiliation(s)
| | | | | | | | - Sharon L Jewell
- Department of Basic and Clinical Neuroscience, King's College, London, UK
| | - Clemens Pahl
- Department of Basic and Clinical Neuroscience, King's College, London, UK
| | - Anthony J Strong
- Department of Basic and Clinical Neuroscience, King's College, London, UK
| | | |
Collapse
|
8
|
Patrone PN, Cooksey G, Kearsley A. Dynamic Measurement of Nanoflows: Analysis and Theory of an Optofluidic Flowmeter. PHYSICAL REVIEW APPLIED 2019; 11:10.1103/physrevapplied.11.034025. [PMID: 32166098 PMCID: PMC7067294 DOI: 10.1103/physrevapplied.11.034025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Scientists must overcome fundamental measurement problems if microfluidic devices are to become reliable and commercially viable. In particular, microfluidic devices require precise control over operating conditions such as flow-rate, υυ , which is difficult to measure continuously and in situ. Given the small scales involved, state-of-the-art approaches generally require accurate models to infer υυ on the basis of indirect measurements. However, such methods necessarily introduce model-form errors that dominate at the nL/min scale being targeted by the community. To address these problems, we develop a robust and largely assumption-free scaling method that relates the fluorescence efficiency I of fluorophores to υυ through a dosage parameter ξ, which depends on the flow rate and laser power. Notably, we show that this scaling relationship emerges as a universal feature from a general class of partial differential equations (PDEs) describing the experimental setup, which consists of an excitation beam and fluorescence detector. As a result, our approach avoids uncertainties associated with most modeling assumptions, e.g. the exact system geometry, the flow profile, the physics of fluorescence, etc. Moreover, the corresponding measurements remain valid down to the scale of 10 nL/min, with some devices potentially capable of reaching 1 nL/min. As an added benefit, the measurement procedure is mathematically simple, requiring a few trivial computations, as opposed to the full solution of a PDE. To support these claims, we discuss and quantify uncertainties associated with our method and present experimental results that confirm its validity.
Collapse
|