1
|
Lan Y, Zou Z, Yang Z. Single Cell mass spectrometry: Towards quantification of small molecules in individual cells. Trends Analyt Chem 2024; 174:117657. [PMID: 39391010 PMCID: PMC11465888 DOI: 10.1016/j.trac.2024.117657] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Studying cell heterogeneity can provide a deeper understanding of biological activities, but appropriate studies cannot be performed using traditional bulk analysis methods. The development of diverse single cell bioanalysis methods is in urgent need and of great significance. Mass spectrometry (MS) has been recognized as a powerful technique for bioanalysis for its high sensitivity, wide applicability, label-free detection, and capability for quantitative analysis. In this review, the general development of single cell mass spectrometry (SCMS) field is covered. First, multiple existing SCMS techniques are described and compared. Next, the development of SCMS field is discussed in a chronological order. Last, the latest quantification studies on small molecules using SCMS have been described in detail.
Collapse
Affiliation(s)
| | | | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
2
|
Sun X, Yu Y, Qian K, Wang J, Huang L. Recent Progress in Mass Spectrometry-Based Single-Cell Metabolic Analysis. SMALL METHODS 2024; 8:e2301317. [PMID: 38032130 DOI: 10.1002/smtd.202301317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/10/2023] [Indexed: 12/01/2023]
Abstract
Single-cell analysis enables the measurement of biomolecules at the level of individual cells, facilitating in-depth investigations into cellular heterogeneity and precise interpretation of the related biological mechanisms. Among these biomolecules, cellular metabolites exhibit remarkable sensitivity to environmental and biochemical changes, unveiling a hidden world underlying cellular heterogeneity and allowing for the determination of cell physiological states. However, the metabolic analysis of single cells is challenging due to the extremely low concentrations, substantial content variations, and rapid turnover rates of cellular metabolites. Mass spectrometry (MS), characterized by its high sensitivity, wide dynamic range, and excellent selectivity, is employed in single-cell metabolic analysis. This review focuses on recent advances and applications of MS-based single-cell metabolic analysis, encompassing three key steps of single-cell isolation, detection, and application. It is anticipated that MS will bring profound implications in biomedical practices, serving as advanced tools to depict the single-cell metabolic landscape.
Collapse
Affiliation(s)
- Xuming Sun
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, P. R. China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang Medical University, Xinxiang, 453003, P. R. China
- Xinxiang Key Laboratory of Neurobiosensor, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Yi Yu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, P. R. China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang Medical University, Xinxiang, 453003, P. R. China
- Xinxiang Key Laboratory of Neurobiosensor, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Kun Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| |
Collapse
|
3
|
Knappert J, Nolte J, Friese N, Yang Y, Lindenberger C, Rauh C, McHardy C. Decay of Trichomes of Arthrospira platensis After Permeabilization Through Pulsed Electric Fields (PEFs) Causes the Release of Phycocyanin. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.934552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cyanobacterium Arthrospira platensis is a promising source of edible proteins and other highly valuable substances such as the blue pigment-protein complex phycocyanin. Pulsed electric field (PEF) technology has recently been studied as a way of permeabilizing the cell membrane, thereby enhancing the mass transfer of water-soluble cell metabolites. Unfortunately, the question of the release mechanism is not sufficiently clarified in published literature. In this study, the degree of cell permeabilization (cell disintegration index) was directly measured by means of a new method using fluorescent dye propidium iodide (PI). The method allows for conclusions to be drawn about the effects of treatment time, electric field strength, and treatment temperature. Using a self-developed algorithm for image segmentation, disintegration of trichomes was observed over a period of 3 h. This revealed a direct correlation between cell disintegration index and decay of trichomes. This decay, in turn, could be brought into a direct temporal relationship with the release of phycocyanin. For the first time, this study reveals the relationship between permeabilization and the kinetics of particle decay and phycocyanin extraction, thus contributing to a deeper understanding of the release of cell metabolites in response to PEF. The results will facilitate the design of downstream processes to produce sustainable products from Arthrospira platensis.
Collapse
|
4
|
Sandmann M, Münzberg M, Bressel L, Reich O, Hass R. Inline monitoring of high cell density cultivation of Scenedesmus rubescens in a mesh ultra-thin layer photobioreactor by photon density wave spectroscopy. BMC Res Notes 2022; 15:54. [PMID: 35168633 PMCID: PMC8845379 DOI: 10.1186/s13104-022-05943-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/01/2022] [Indexed: 11/30/2022] Open
Abstract
Objective Due to multiple light scattering that occurs inside and between cells, quantitative optical spectroscopy in turbid biological suspensions is still a major challenge. This includes also optical inline determination of biomass in bioprocessing. Photon Density Wave (PDW) spectroscopy, a technique based on multiple light scattering, enables the independent and absolute determination of optical key parameters of concentrated cell suspensions, which allow to determine biomass during cultivation. Results A unique reactor type, called “mesh ultra-thin layer photobioreactor” was used to create a highly concentrated algal suspension. PDW spectroscopy measurements were carried out continuously in the reactor without any need of sampling or sample preparation, over 3 weeks, and with 10-min time resolution. Conventional dry matter content and coulter counter measurements have been employed as established offline reference analysis. The PBR allowed peak cell dry weight (CDW) of 33.4 g L−1. It is shown that the reduced scattering coefficient determined by PDW spectroscopy is strongly correlated with the biomass concentration in suspension and is thus suitable for process understanding. The reactor in combination with the fiber-optical measurement approach will lead to a better process management. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-05943-2.
Collapse
|
5
|
Sandmann M, Smetana S, Heinz V, Rohn S. Comparative life cycle assessment of a mesh ultra-thin layer photobioreactor and a tubular glass photobioreactor for the production of bioactive algae extracts. BIORESOURCE TECHNOLOGY 2021; 340:125657. [PMID: 34332441 DOI: 10.1016/j.biortech.2021.125657] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
This study aimed at the comparison of two different photobioreactors with focus on technology and sustainability. The mesh ultra-thin layer photobioreactor (MUTL-PBR) exhibited around 3-fold biomass based space-time-yield and an around 10-fold specific antioxidant capacity than the traditional reference photobioreactor. Life cycle assessment (LCA) was done under autotrophic conditions in both pilot scale reactors with focus on biomass production and on antioxidant capacity of the biomass, respectively. Biomass production within the reference reactor showed a lower environmental impact in most categories. A significantly higher energy demand for mixing and cooling of the cell suspension within the MUTL-PBR is the major reason for its environmental burden. This relates to high impacts in the categories "non-renewable energy" and "global warming potential" per kg biomass. Comparing algal antioxidant capacity, environmental impact of the MUTL cultivation was 5-10 times lower. This clearly illustrates the potential of MUTL-PBR for sustainable production of bioactive substances.
Collapse
Affiliation(s)
- Michael Sandmann
- University of Applied Sciences Neubrandenburg, Brodaer Straße 2, D-17033 Neubrandenburg, Germany.
| | - Sergiy Smetana
- German Institute of Food Technologies - DIL e.V., Prof.-von-Klitzing-Str. 7, D-49610 Quakenbrueck, Germany
| | - Volker Heinz
- German Institute of Food Technologies - DIL e.V., Prof.-von-Klitzing-Str. 7, D-49610 Quakenbrueck, Germany
| | - Sascha Rohn
- Institute for Food and Environmental Research ILU e.V., Papendorfer Weg 3, 14806 Bad Belzig, Germany; Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Department of Food Chemistry and Analysis, TIB 4/3-1, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
6
|
Xiao J, Tian M, Su L, Bao Y, Niu L, Zhang X. Detection of the effect of polydopamine (PDA)-coated polydimethylsiloxane (PDMS) substrates on the release of H 2O 2 from a single HeLa cell. Analyst 2021; 146:6445-6449. [PMID: 34585688 DOI: 10.1039/d1an01506k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Endogenous H2O2 generated by a single HeLa cell that was adhered on the PDA-coated PDMS substrates under 25 mM glucose culture conditions was detected using a home-built photoelectric dual detection platform. With PMA as the stimulus, the cell released a small amount of H2O2 and its mitochondrial membrane potential (MMP) decrease was smaller, compared with that on the PDMS substrates.
Collapse
Affiliation(s)
- Jingyu Xiao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Meng Tian
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lei Su
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518037, P.R. China, P. R. China.
| | - Yu Bao
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Li Niu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518037, P.R. China, P. R. China.
| |
Collapse
|
7
|
Recent advances in single-cell analysis: Encapsulation materials, analysis methods and integrative platform for microfluidic technology. Talanta 2021; 234:122671. [PMID: 34364472 DOI: 10.1016/j.talanta.2021.122671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/27/2022]
Abstract
Traditional cell biology researches on cell populations by their origin, tissue, morphology, and secretions. Because of the heterogeneity of cells, research at the single-cell level can obtain more accurate and comprehensive information that reflects the physiological state and process of the cell, increasing the significance of single-cell analysis. The application of single-cell analysis is faced with the problem of contaminated or damaged cells caused by cell sample transportation. Reversible encapsulation of a single cell can protect cells from the external environment and open the encapsulation shell to release cells, thus preserving cell integrity and improving extraction efficiency of analytes. Meanwhile, microfluidic single cell analysis (MSCA) exhibits integration, miniaturization, and high throughput, which can considerably improve the efficiency of single-cell analysis. The researches on single-cell reversible encapsulation materials, single-cell analysis methods, and the MSCA integration platform are analyzed and summarized in this review. The problems of single-cell viability, network of single-cell signal, and simultaneous detection of multiple biotoxins in food based on single-cell are proposed for future research.
Collapse
|
8
|
Qin W, Stärk HJ, Müller S, Reemtsma T, Wagner S. Determination of elemental distribution and evaluation of elemental concentration in single Saccharomyces cerevisiae cells using single cell-inductively coupled plasma mass spectrometry. Metallomics 2021; 13:6292270. [PMID: 34086951 DOI: 10.1093/mtomcs/mfab032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/12/2021] [Accepted: 05/20/2021] [Indexed: 11/12/2022]
Abstract
Single-cell analysis using inductively coupled plasma mass spectrometry (SC-ICP-MS) is a method to obtain qualitative and quantitative information of the elemental content and distribution of single cells. Six intrinsic target elements were analyzed in yeast cells at different cell growth phases cultured in medium with different phosphorus concentrations (0, 7, 14 mM) to study its effect on cell growth and composition. SC-ICP-MS results were compared with those obtained by the acid digestion and the average ratio was 0.81. The limits of detection of this method were 0.08, 2.54, 12.5, 0.02, 0.02, and 0.08 fg cell-1 for Mg, P, K, Mn, Cu, and Zn, respectively. During the exponential growth phase, the cells exhibited higher elemental contents, wider distribution for most elements, and larger cell size in comparison to the stationary growth phase. Phosphorus-free conditions reduced the average P content in single cells of stationary growth phase from 650 to 80 fg. Phosphorus deficiency led to decreasing intracellular concentrations not only of P but also of K and Cu, and to increasing Zn concentration after 48 h. Mg maintained its concentration at ∼0.11 fg µm-3 and did not change significantly under the three investigated conditions after 48 h. Accordingly, Mg content was successfully used to estimate the intracellular concentration of other intrinsic elements in single yeast cells. SC-ICP-MS is suited to determine target elements in single yeast cells, and allows the study of heterogeneity of cell composition and effects of stressors on the elemental content, distribution, and concentrations of intrinsic elements.
Collapse
Affiliation(s)
- Wen Qin
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Hans-Joachim Stärk
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Susann Müller
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany.,Institute of Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany
| | - Stephan Wagner
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
9
|
Wang Y, Dai J, Liao R, Zhou J, Meng F, Yao Y, Chen H, Tao Y, Ma H. Characterization of physiological states of the suspended marine microalgae using polarized light scattering. APPLIED OPTICS 2020; 59:1307-1312. [PMID: 32225388 DOI: 10.1364/ao.377332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Physiological states of marine microalgal cells can influence photosynthesis efficiency, which affects approximately half of global carbon fixation. The detection of the algae physiological profiles is important for marine ecology and economy. In this paper, we propose a polarized light-scattering method to detect sensitive changes in the physiological states of the suspended marine microalgal cells. Our experimental setup is designed to measure the scattered polarization parameters of the cells suspended individually in the seawater. Two species of microalgal cells cultured in the laboratory were measured for several days. Experimental results showed that both species display distinctive changes in their polarized photon scattering features corresponding to changes in their physiological states. The changes are far more prominent than those displayed in unpolarized light scattering. Microscopy observations, simulations for microspheres of different diameters and refractive indices, or different shapes, indicated that the polarization features of the scattered photons are sensitive to the submicrometer microstructures of the cells. This study demonstrates the potential of the polarized light-scattering technique to characterize the physiological states of suspended marine microalgae.
Collapse
|
10
|
He S, Fang S, Xie W, Zhang P, Li Z, Zhou D, Zhang Z, Guo J, Du C, Du J, Wang D. Assessment of physiological responses and growth phases of different microalgae under environmental changes by Raman spectroscopy with chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:287-294. [PMID: 29945111 DOI: 10.1016/j.saa.2018.06.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/21/2018] [Accepted: 06/16/2018] [Indexed: 06/08/2023]
Abstract
The assessment for cell physiology and growth phases of microalgae plays important roles in ecological and environmental fields since it can be used to forecast water eutrophication level worldwidely. Herein, growth phases and environmental conditions of microalgae were assessed by combining resonance Raman mapping spectroscopy with multivariate analysis methods. And, primary Raman characteristic peaks of microalgae were mined with two-dimensional synchronous spectra. Thereafter, algal growth phases and environmental conditions of microalgae were preliminary classified with different tendencies of characteristic Raman peaks by unsupervised principal component analysis (PCA) and support vector machine (SVM) methods. Our results demonstrated that resonance Raman mapping spectroscopy with PCA and SVM classification models can be used to assess algal growth phases and preliminary predict environmental conditions with characteristic Raman spectra of microalgae in water bodies.
Collapse
Affiliation(s)
- Shixuan He
- Physics Department, Sichuan University, Chengdu 610064, PR China; Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China.
| | - Shaoxi Fang
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Wanyi Xie
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Ping Zhang
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, PR China
| | - Zhe Li
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Daming Zhou
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Zhiyou Zhang
- Physics Department, Sichuan University, Chengdu 610064, PR China.
| | - Jinsong Guo
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, PR China
| | - Chunlei Du
- Physics Department, Sichuan University, Chengdu 610064, PR China; Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Jinglei Du
- Physics Department, Sichuan University, Chengdu 610064, PR China
| | - Deqiang Wang
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China.
| |
Collapse
|
11
|
Sandmann M, Dörrbecker B, Hertel C, Heinz V, Rohn S. Einfluss der Hochspannungsimpulstechnologie (HSI) auf die Zellphysiologie von Cyanobakterien und eukaryotischen Mikroorganismen. CHEM-ING-TECH 2018. [DOI: 10.1002/cite.201855331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- M. Sandmann
- Institut für Lebensmittel- und Umweltforschung e.V. (ILU); Arthur-Scheunert-Allee 40 - 41 14558 Nuthetal Deutschland
| | - B. Dörrbecker
- Deutsches Institut für Lebensmitteltechnik e.V. (DIL); Prof.-von-Klitzing-Straße 7 49610 Quakenbrück Deutschland
| | - C. Hertel
- Deutsches Institut für Lebensmitteltechnik e.V. (DIL); Prof.-von-Klitzing-Straße 7 49610 Quakenbrück Deutschland
| | - V. Heinz
- Deutsches Institut für Lebensmitteltechnik e.V. (DIL); Prof.-von-Klitzing-Straße 7 49610 Quakenbrück Deutschland
| | - S. Rohn
- Institut für Lebensmittel- und Umweltforschung e.V. (ILU); Arthur-Scheunert-Allee 40 - 41 14558 Nuthetal Deutschland
| |
Collapse
|
12
|
Analysis of population structures of the microalga Acutodesmus obliquus during lipid production using multi-dimensional single-cell analysis. Sci Rep 2018; 8:6242. [PMID: 29674634 PMCID: PMC5908859 DOI: 10.1038/s41598-018-24638-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/03/2018] [Indexed: 02/08/2023] Open
Abstract
Microalgae bear a great potential to produce lipids for biodiesel, feed, or even food applications. To understand the still not well-known single-cell dynamics during lipid production in microalgae, a novel single-cell analytical technology was applied to study a well-established model experiment. Multidimensional single-cell dynamics were investigated with a non-supervised image analysis technique that utilizes data from epi-fluorescence microscopy. Reliability of this technique was successfully proven via reference analysis. The technique developed was used to determine cell size, chlorophyll amount, neutral lipid amount, and deriving properties on a single-cellular level in cultures of the biotechnologically promising alga Acutodesmus obliquus. The results illustrated a high correlation between cell size and chlorophyll amount, but a very low and dynamic correlation between cell size, lipid amount, and lipid density. During growth conditions under nitrogen starvation, cells with low chlorophyll content tend to start the lipid production first and the cell suspension differentiated in two subpopulations with significantly different lipid contents. Such quantitative characterization of single-cell dynamics of lipid synthesizing algae was done for the first time and the potential of such simple technology is highly relevant to other biotechnological applications and to deeper investigate the process of microalgal lipid accumulation.
Collapse
|