1
|
Shahalaei M, Azad AK, Sulaiman WMAW, Derakhshani A, Mofakham EB, Mallandrich M, Kumarasamy V, Subramaniyan V. A review of metallic nanoparticles: present issues and prospects focused on the preparation methods, characterization techniques, and their theranostic applications. Front Chem 2024; 12:1398979. [PMID: 39206442 PMCID: PMC11351095 DOI: 10.3389/fchem.2024.1398979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
Metallic nanoparticles (MNPs) have garnered significant attention due to their ability to improve the therapeutic index of medications by reducing multidrug resistance and effectively delivering therapeutic agents through active targeting. In addition to drug delivery, MNPs have several medical applications, including in vitro and in vivo diagnostics, and they improve the biocompatibility of materials and nutraceuticals. MNPs have several advantages in drug delivery systems and genetic manipulation, such as improved stability and half-life in circulation, passive or active targeting into the desired target selective tissue, and gene manipulation by delivering genetic materials. The main goal of this review is to provide current information on the present issues and prospects of MNPs in drug and gene delivery systems. The current study focused on MNP preparation methods and their characterization by different techniques, their applications to targeted delivery, non-viral vectors in genetic manipulation, and challenges in clinical trial translation.
Collapse
Affiliation(s)
- Mona Shahalaei
- Biomaterial Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| | - Abul Kalam Azad
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College of MAIWP International (UCMI), Kuala Lumpur, Malaysia
| | - Wan Mohd Azizi Wan Sulaiman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College of MAIWP International (UCMI), Kuala Lumpur, Malaysia
| | - Atefeh Derakhshani
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Banaee Mofakham
- Biomaterial Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| | - Mireia Mallandrich
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| |
Collapse
|
2
|
Wu J, Qiao H. Medical Imaging Technology and Imaging Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1199:15-38. [PMID: 37460725 DOI: 10.1007/978-981-32-9902-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Medical imaging is a technology that studies the interaction between human body and irradiations of X-ray, ultrasound, magnetic field, etc. and represents anatomical structures of human organs/tissues with the implication of irradiation attenuation in the form of grayscales. With these medical images, detailed information on health status and disease diagnosis may be judged by clinical physicians to determine an appropriate therapy approach. This chapter will give a systematic introduction on the modalities, classifications, basic principles, and biomedical applications of traditional medical imaging along with the types, construction, and major features of the corresponding contrast agents or imaging probes.
Collapse
Affiliation(s)
- Jieting Wu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Huanhuan Qiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
| |
Collapse
|
3
|
Methylene Blue-Loaded Mesoporous Silica-Coated Gold Nanorods on Graphene Oxide for Synergistic Photothermal and Photodynamic Therapy. Pharmaceutics 2022; 14:pharmaceutics14102242. [PMID: 36297675 PMCID: PMC9612258 DOI: 10.3390/pharmaceutics14102242] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/01/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022] Open
Abstract
Photo-nanotheranostics integrates near-infrared (NIR) light-triggered diagnostics and therapeutics, which are combined into a novel all-in-one phototheranostic nanomaterial that holds great promise for the early detection and precise treatment of cancer. In this study, we developed methylene blue-loaded mesoporous silica-coated gold nanorods on graphene oxide (MB-GNR@mSiO2-GO) as an all-in-one photo-nanotheranostic agent for intracellular surface-enhanced Raman scattering (SERS) imaging-guided photothermal therapy (PTT)/photodynamic therapy (PDT) for cancer. Amine functionalization of the MB-GNR@mSiO2 surfaces was performed using 3-aminopropyltriethoxysilane (APTES), which was well anchored on the carboxyl groups of graphene oxide (GO) nanosheets uniformly, and showed a remarkably higher photothermal conversion efficiency (48.93%), resulting in outstanding PTT/PDT for cancer. The in vitro photothermal/photodynamic effect of MB-GNR@mSiO2-GO with laser irradiation showed significantly reduced cell viability (6.32%), indicating that MB-GNR@mSiO2-GO with laser irradiation induced significantly more cell deaths. Under laser irradiation, MB-GNR@mSiO2-GO showed a strong SERS effect, which permits accurate cancer cell detection by SERS imaging. Subsequently, the same Raman laser can focus on highly detected MDA-MB-23l cells for a prolonged time to perform PTT/PDT. Therefore, MB-GNR@mSiO2-GO has great potential for precise SERS imaging-guided synergistic PTT/PDT for cancer.
Collapse
|
4
|
Advances in measuring cancer cell metabolism with subcellular resolution. Nat Methods 2022; 19:1048-1063. [PMID: 36008629 DOI: 10.1038/s41592-022-01572-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 07/05/2022] [Indexed: 11/08/2022]
Abstract
Characterizing metabolism in cancer is crucial for understanding tumor biology and for developing potential therapies. Although most metabolic investigations analyze averaged metabolite levels from all cell compartments, subcellular metabolomics can provide more detailed insight into the biochemical processes associated with the disease. Methodological limitations have historically prevented the wider application of subcellular metabolomics in cancer research. Recently, however, ways to distinguish and identify metabolic pathways within organelles have been developed, including state-of-the-art methods to monitor metabolism in situ (such as mass spectrometry-based imaging, Raman spectroscopy and fluorescence microscopy), to isolate key organelles via new approaches and to use tailored isotope-tracing strategies. Herein, we examine the advantages and limitations of these developments and look to the future of this field of research.
Collapse
|
5
|
Simultaneous Thermal and Spectroscopic Screening of Morphologically Complex Theranostic Gold Nanoparticles. JOURNAL OF NANOTHERANOSTICS 2022. [DOI: 10.3390/jnt3020007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gold nanoparticles absorb light energy and convert it to thermal energy that transfers to the surrounding environment, making them potentially useful for the hyperthermic treatments well known as photothermal therapy (PTT). Further, it is well documented that noble metal nanoparticles are capable of significantly enhancing the Raman scattering of molecules attached to their surfaces, a technique which is termed surface-enhanced Raman scattering (SERS). SERS combined with PTT has the ability to locate nanoparticles at depth and trigger heat production, providing an effective methodology to both seek and destroy diseased tissues. While PTT and SERS are often used in tandem and there are several ways of individually measuring SERS and thermal output, there is currently no method available that pre-screens both properties prior to in vitro or in vivo application. In this work, we have designed a 3D printed platform capable of coupling a commercially available Raman probe to a sample cuvette for SERS and heat output to be monitored simultaneously. We have compared the performance of morphologically complex gold nanoparticles, nanostars (AuNSs) and nanoplates (AuNPLs), which are both well utilized in SERS and photothermal experiments; and measured the SERS activity originating from common Raman reporter analytes 4-mercaptobenzoic acid (MBA) and 1,4-benzenedithiol (BDT). We were able to show that the system effectively measures the thermal output and SERS activity of the particles and can evaluate the effect that multiple irradiation cycles have on the SERS signal.
Collapse
|
6
|
Wen C, Wang L, Liu L, Shen XC, Chen H. Surface-enhanced Raman probes based on gold nanomaterials for in vivo diagnosis and imaging. Chem Asian J 2022; 17:e202200014. [PMID: 35178878 DOI: 10.1002/asia.202200014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/17/2022] [Indexed: 11/11/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has received considerable attention from researchers due to its high molecular specificity, high sensitivity, non-invasive and multiplexing. Recently, various metal substrates have been exploited for SERS analysis and imaging. Among them, gold nanomaterials are important SERS substrates with outstanding surface plasmon resonance effects, structural adjustability and good biocompatibility, making them widely used in biomedical diagnosis and clinical fields. In this minireview, we discuss the latest progress about the application of gold-based nanomaterials as SERS probes in biomedical research, primarily for in vivo disease diagnosis and imaging. This review mainly includes the basic shapes and morphologies of gold based SERS probes, such as gold nanoparticles (AuNPs), gold nanorods (AuNRs), gold nanostars (AuNSs), as well as other gold nanostructures. Finally, a brief outlook for the future development of SERS technique in the context of efficient diagnostics and therapy guidance is provided. We hope that this minireview will facilitate the design and future development of Surface-enhanced Raman probes based on gold nanomaterials.
Collapse
Affiliation(s)
| | | | - Li Liu
- Guangxi Normal University, chemistry, CHINA
| | | | - Hua Chen
- Guangxi Normal University, school of chemistry, 15 Yucai Road, 541004, Guilin, CHINA
| |
Collapse
|
7
|
Sarbadhikary P, George BP, Abrahamse H. Recent Advances in Photosensitizers as Multifunctional Theranostic Agents for Imaging-Guided Photodynamic Therapy of Cancer. Theranostics 2021; 11:9054-9088. [PMID: 34522227 PMCID: PMC8419035 DOI: 10.7150/thno.62479] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
In recent years tremendous effort has been invested in the field of cancer diagnosis and treatment with an overall goal of improving cancer management, therapeutic outcome, patient survival, and quality of life. Photodynamic Therapy (PDT), which works on the principle of light-induced activation of photosensitizers (PS) leading to Reactive Oxygen Species (ROS) mediated cancer cell killing has received increased attention as a promising alternative to overcome several limitations of conventional cancer therapies. Compared to conventional therapies, PDT offers the advantages of selectivity, minimal invasiveness, localized treatment, and spatio-temporal control which minimizes the overall therapeutic side effects and can be repeated as needed without interfering with other treatments and inducing treatment resistance. Overall PDT efficacy requires proper planning of various parameters like localization and concentration of PS at the tumor site, light dose, oxygen concentration and heterogeneity of the tumor microenvironment, which can be achieved with advanced imaging techniques. Consequently, there has been tremendous interest in the rationale design of PS formulations to exploit their theranostic potential to unleash the imperative contribution of medical imaging in the context of successful PDT outcomes. Further, recent advances in PS formulations as activatable phototheranostic agents have shown promising potential for finely controlled imaging-guided PDT due to their propensity to specifically turning on diagnostic signals simultaneously with photodynamic effects in response to the tumor-specific stimuli. In this review, we have summarized the recent progress in the development of PS-based multifunctional theranostic agents for biomedical applications in multimodal imaging combined with PDT. We also present the role of different imaging modalities; magnetic resonance, optical, nuclear, acoustic, and photoacoustic in improving the pre-and post-PDT effects. We anticipate that the information presented in this review will encourage future development and design of PSs for improved image-guided PDT for cancer treatment.
Collapse
Affiliation(s)
| | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | | |
Collapse
|
8
|
Liu H, Lu C, Han L, Zhang X, Song G. Optical – Magnetic probe for evaluating cancer therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Kapara A, Brunton VG, Graham D, Faulds K. Characterisation of estrogen receptor alpha (ERα) expression in breast cancer cells and effect of drug treatment using targeted nanoparticles and SERS. Analyst 2021; 145:7225-7233. [PMID: 33164013 DOI: 10.1039/d0an01532f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The detection and identification of estrogen receptor alpha (ERα), one of the main biomarkers in breast cancer, is crucial for the clinical diagnosis and therapy of the disease. Here, we use a non-destructive approach for detecting and localising ERα expression at the single cell level using surface enhanced Raman spectroscopy (SERS) combined with functionalised gold nanoparticles (AuNPs). Antibody functionalised nanotags (ERα-AuNPs) showed excellent biocompatibility and enabled the spatial and temporal understanding of ERα location in breast cancer cell lines with different ERα expression status. Additionally, we developed an approach based on the percentage area of SERS response to qualitatively measure expression level in ERα positive (ERα+) breast cancer cells. Specifically, the calculation of relative SERS response demonstrated that MCF-7 cells (ERα+) exhibited higher nanotag accumulation resulting in a 4.2-times increase in SERS signal area in comparison to SKBR-3 cells (ERα-). These results confirmed the strong targeting effect of ERα-AuNPs towards the ERα receptor. The functionalised ERα-AuNP nanotags were also used to investigate the activity of fulvestrant, the first-in-class approved selective estrogen receptor degrader (SERD). SERS mapping confirmed that ERα degradation occurred after fulvestrant treatment since a weaker SERS signal, and hence accumulation of nanotags, was observed in MCF-7 cells treated with fulvestrant. Most importantly, a correlation coefficient of 0.9 between the SERS response and the ERα expression level, obtained by western blot, was calculated. These results confirmed the strong relationship between the two approaches and open up the possibilities of using SERS as a tool for the estimation of ERα expression levels, without the requirement of destructive and time-consuming techniques. Therefore, the potential of using SERS as a rapid and sensitive method to understand the activity of SERDs in breast cancer is demonstrated.
Collapse
Affiliation(s)
- Anastasia Kapara
- Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, Scotland G1 1RD, UK.
| | | | | | | |
Collapse
|
10
|
Das A, Arunagiri V, Tsai HC, Prasannan A, Lai JY, Da-Hong P, Moirangthem RS. Investigation of dual plasmonic core-shell Ag@CuS nanoparticles for potential surface-enhanced Raman spectroscopy-guided photothermal therapy. Nanomedicine (Lond) 2021; 16:909-923. [PMID: 33928793 DOI: 10.2217/nnm-2020-0385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To prepare efficient metal-semiconductor nanoparticles as noninvasive, real-time imaging probes for photothermal therapy (PTT) applications. Materials & methods: A bottom-up approach was used to fabricate core-shell Ag@CuS nanoparticles (NPs). PTT and Raman mapping were done using HeLa cells. Theoretical simulation of electric field enhancement and heat dissipation density of Ag@CuS NPs was performed. Results: PTT-induced hyperthermia was achieved under 940 nm near-infrared light irradiation. Surface-enhanced Raman spectroscopy (SERS) signals of dye molecules were observed when conjugated with Ag@CuS NPs. Conclusion: Ag@CuS NPs are found to be efficient for SERS imaging and localized heating under laser irradiation, making a promising candidate for SERS-guided PTT.
Collapse
Affiliation(s)
- Anindita Das
- Department of Physics, Nanophotonics Lab, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India
| | - Vinothini Arunagiri
- Graduate Institute of Applied Science & Technology, National Taiwan University of Science & Technology, Taipei, 106, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science & Technology, National Taiwan University of Science & Technology, Taipei, 106, Taiwan.,Advanced Membrane Materials Center, National Taiwan University of Science & Technology, Taipei, Taiwan, 106, ROC.,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Tao-Yuan, 320, Taiwan
| | - Adhimoorthy Prasannan
- Department of Materials Science & Engineering, National Taiwan University of Science & Technology, Taipei, 106, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science & Technology, National Taiwan University of Science & Technology, Taipei, 106, Taiwan.,Advanced Membrane Materials Center, National Taiwan University of Science & Technology, Taipei, Taiwan, 106, ROC.,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Tao-Yuan, 320, Taiwan
| | - Po Da-Hong
- Department of Materials Science & Engineering, National Taiwan University of Science & Technology, Taipei, 106, Taiwan
| | - Rakesh S Moirangthem
- Department of Physics, Nanophotonics Lab, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India
| |
Collapse
|
11
|
Tang P, Xing M, Xing X, Tao Q, Cheng W, Liu S, Lu X, Zhong L. Receptor-mediated photothermal/photodynamic synergistic anticancer nanodrugs with SERS tracing function. Colloids Surf B Biointerfaces 2021; 199:111550. [PMID: 33385819 DOI: 10.1016/j.colsurfb.2020.111550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/01/2020] [Accepted: 12/19/2020] [Indexed: 01/08/2023]
Abstract
Phototherapy, especially the photothermal therapy (PTT) and the photodynamic therapy (PDT), have become very promising in cancer treatment due to its low invasiveness and high efficacy. Both PTT and PDT involve the utilization of light energy, and their synergistic treatment should be a good solution for cancer treatment by ingenious design. The therapeutic effect of phototherapy is closely associated with the amount and location of anticancer-nanodrugs accumulated in tumor cells, and the receptor-mediated endocytosis should be an excellent candidate for enhancing anticancer-nanodrugs internalization. Surface enhanced Raman spectroscopy (SERS) imaging is suitable for tracing nanodrugs due to its high selectivity, sensitivity and reliability. In this paper, we hope to construct a receptor-mediated PTT/PDT synergistic anticancer nanodrugs and evaluate the corresponding efficacy through SERS tracing function. Here, the receptor-mediated PTT/PDT synergistic anticancer nanodrugs are prepared by the chemical modification of gold nanorods (GNRs), involving protoporphyrin IX (PpIX), 4-mecaptobenzoic acid (MBA), and folic acid (FA). The achieved results show that the receptor-mediated endocytosis can greatly facilitate the internalized amount and intracellular distribution of the nanodrugs, thus lead to the anti-cancer efficacy improvement. Importantly, this receptor-mediated PTT/PDT synergistic treatment with SERS tracing function will provide a simple and effective strategy for the design and application of anticancer phototherapy nanodrugs.
Collapse
Affiliation(s)
- Ping Tang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Meishuang Xing
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Xinyue Xing
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Qiao Tao
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Wendai Cheng
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Shengde Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Xiaoxu Lu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Liyun Zhong
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangdong University of Technology, Guangzhou 510004, China.
| |
Collapse
|
12
|
Tabish TA, Dey P, Mosca S, Salimi M, Palombo F, Matousek P, Stone N. Smart Gold Nanostructures for Light Mediated Cancer Theranostics: Combining Optical Diagnostics with Photothermal Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903441. [PMID: 32775148 PMCID: PMC7404179 DOI: 10.1002/advs.201903441] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/24/2020] [Indexed: 05/13/2023]
Abstract
Nanotheranostics, which combines optical multiplexed disease detection with therapeutic monitoring in a single modality, has the potential to propel the field of nanomedicine toward genuine personalized medicine. Currently employed mainstream modalities using gold nanoparticles (AuNPs) in diagnosis and treatment are limited by a lack of specificity and potential issues associated with systemic toxicity. Light-mediated nanotheranostics offers a relatively non-invasive alternative for cancer diagnosis and treatment by using AuNPs of specific shapes and sizes that absorb near infrared (NIR) light, inducing plasmon resonance for enhanced tumor detection and generating localized heat for tumor ablation. Over the last decade, significant progress has been made in the field of nanotheranostics, however the main biological and translational barriers to nanotheranostics leading to a new paradigm in anti-cancer nanomedicine stem from the molecular complexities of cancer and an incomplete mechanistic understanding of utilization of Au-NPs in living systems. This work provides a comprehensive overview on the biological, physical and translational barriers facing the development of nanotheranostics. It will also summarise the recent advances in engineering specific AuNPs, their unique characteristics and, importantly, tunability to achieve the desired optical/photothermal properties.
Collapse
Affiliation(s)
| | - Priyanka Dey
- School of Physics and AstronomyUniversity of ExeterExeterEX4 4QLUK
| | - Sara Mosca
- Central Laser FacilitySTFC Rutherford Appleton LaboratoryOxfordOX11 0QXUK
| | - Marzieh Salimi
- School of Physics and AstronomyUniversity of ExeterExeterEX4 4QLUK
| | | | - Pavel Matousek
- Central Laser FacilitySTFC Rutherford Appleton LaboratoryOxfordOX11 0QXUK
| | - Nicholas Stone
- School of Physics and AstronomyUniversity of ExeterExeterEX4 4QLUK
| |
Collapse
|
13
|
Wang J, Liang D, Jin Q, Feng J, Tang X. Bioorthogonal SERS Nanotags as a Precision Theranostic Platform for in Vivo SERS Imaging and Cancer Photothermal Therapy. Bioconjug Chem 2020; 31:182-193. [PMID: 31940174 DOI: 10.1021/acs.bioconjchem.0c00022] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Precise detection and effective treatment are crucial to prolong cancer patients' lives. Surface-enhanced Raman scattering (SERS) imaging coupled with photothermal therapy has been considered a precise and effective strategy for cancer theranostics. Nevertheless, Raman reporters employed in the literature usually possessed multiple shift peaks in the fingerprint region, which are overlapped with background signals from endogenous biological molecules. Herein, we fabricated a new kind of bioorthogonal Raman reporter and aptamer functionalized SERS nanotags. The SERS nanotags demonstrated a strong Raman signal at 2205 cm-1 in the biologically Raman-silent region and recognized MCF-7 breast cancer cells for Raman imaging with high specificity. Laser irradiation induced serious toxicity of MCF-7 cells due to the excellent photothermal capability of the SERS nanotags. After intravenous administration of the SERS nanotags, tumor Raman spectral detection and mapping in living mice were successfully achieved. Further in vivo antitumor experiments manifested that the aptamer-modified SERS nanotags significantly restrained tumor growth after laser irradiation with 99% inhibition rate and good biocompatibility. These results clearly revealed that the SERS nanotags could serve as a novel and precise theranostic platform for in vivo cancer diagnosis and photothermal therapy.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd. , Beijing 100191 , P.R. China
| | - Duanwei Liang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd. , Beijing 100191 , P.R. China
| | - Qingqing Jin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd. , Beijing 100191 , P.R. China
| | - Jie Feng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd. , Beijing 100191 , P.R. China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd. , Beijing 100191 , P.R. China
| |
Collapse
|
14
|
Dey P, Thurecht KJ, Fredericks PM, Blakey I. Tagged Core-Satellite Nanoassemblies: Role of Assembling Sequence on Surface-Enhanced Raman Scattering (SERS) Performance. APPLIED SPECTROSCOPY 2019; 73:1428-1435. [PMID: 31124368 DOI: 10.1177/0003702819856666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plasmonic nanoassemblies with amplified optical responses are attractive as chemo/bio sensors and diagnostic tracking agents. For real-life implementation, such nanostructures require a well-designed and controlled formation for maximizing the optical amplification. Forming these nanoassemblies typically requires numerous steps; however, the importance of the sequence of the steps is typically not discussed. Thus, here we have investigated the role of the sequence of tagging (or labeling, barcoding) of such plasmonic nanoassemblies with Raman active molecules in a quest to maximize the surface-enhanced Raman scattering (SERS) enhancement that could be achieved from the nanoassemblies. We have chosen the core-satellite nanoassembly arrangement to study the role of tagging sequence because it allows us to keep structural parameters constant that would otherwise influence the SERS amplification. We demonstrate that incorporating the tag molecule at an assembly point before formation of the nanojunctions leads to more tag molecules being positioned at the core-satellite nanojunctions, thereby resulting in higher SERS signal enhancement. This will thus prove to be a useful tool in fully utilizing the nanoassembly morphology generated hot-spot and maximizing its SERS performance.
Collapse
Affiliation(s)
- Priyanka Dey
- Centre of Physics, Chemistry and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Current affiliation: School of Physics and Astronomy, University of Exeter, Exeter, UK
| | - Kristofer J Thurecht
- Australian Institute of Bioengineering and Nanotechnology and Centre of Advanced Imaging, University of Queensland, St. Lucia, QLD, Australia
| | - Peter M Fredericks
- Centre of Physics, Chemistry and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Idriss Blakey
- Australian Institute of Bioengineering and Nanotechnology and Centre of Advanced Imaging, University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
15
|
Darienzo RE, Wang J, Chen O, Sullivan M, Mironava T, Kim H, Tannenbaum R. Surface-Enhanced Raman Spectroscopy Characterization of Breast Cell Phenotypes: Effect of Nanoparticle Geometry. ACS APPLIED NANO MATERIALS 2019; 2:6960-6970. [PMID: 34308266 PMCID: PMC8297918 DOI: 10.1021/acsanm.9b01436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of surface-enhanced Raman spectroscopy (SERS) to delineate between the breast epithelial cell lines MCF10A, SK-BR-3, and MDA-MB-231 is explored utilizing varied morphologies of gold nanoparticles. The nanoparticles studied had spherical, star-like, and quasi-fractal (nanocaltrop) morphologies and possessed varying degrees of surface inhomogeneity and complexity. The efficacy of Raman enhancement of these nanoparticles was a function of their size, their surface morphology, and the associated density of "hot spots," as well as their cellular uptake. The spherical and star-like nanoparticles provided strong signal enhancement that allowed for the discernment among the three cell phenotypes based solely on the acquired Raman spectra. The presence of overlapping Raman band spectral regions, as well as unique spectral bands, suggests that the underlying biological differences between these cells can be accessed without the need for tagging the nanoparticles or for specific cell targeting, demonstrating the potential ubiquity of this technique in imaging any cancer. This work provides clear evidence for the potential application of SERS as a tool for mapping cancerous lesions, possibly during surgery and under histopathological analysis.
Collapse
Affiliation(s)
- Richard E. Darienzo
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jingming Wang
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, 11794, United States
| | - Olivia Chen
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Maurinne Sullivan
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Tatsiana Mironava
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Hyungjin Kim
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, 11794, United States
| | - Rina Tannenbaum
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
16
|
Lenzi E, Jimenez de Aberasturi D, Liz-Marzán LM. Surface-Enhanced Raman Scattering Tags for Three-Dimensional Bioimaging and Biomarker Detection. ACS Sens 2019; 4:1126-1137. [PMID: 31046243 DOI: 10.1021/acssensors.9b00321] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have recently witnessed a major improvement in the quality of nanoparticles encoded with Raman-active molecules (SERS tags). Such progress relied mainly on a major improvement of fabrication methods for building-blocks, resulting in widespread application of this powerful tool in various fields, with the potential to replace commonly used techniques, such as those based on fluorescence. We present hereby a brief Perspective on surface enhanced Raman scattering (SERS) tags, regarding their composition, morphology, and structure, and describe our own selection from the current state-of-the-art. We then focus on the main bioimaging applications of SERS tags, showing a gradual evolution from two-dimensional studies to three-dimensional analysis. Recent improvements in sensitivity and multiplexing ability have enabled great advancements toward in vivo applications, e.g., highlighting tumor boundaries to guide surgery. In addition, the high level of biomolecule sensitivity reached by SERS tags promises an expansion toward biomarker detection in cases for which traditional methods offer limited reliability, as a consequence of the frequently low analyte concentrations.
Collapse
Affiliation(s)
- Elisa Lenzi
- CIC biomaGUNE and CIBER-BBN, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | | | - Luis M. Liz-Marzán
- CIC biomaGUNE and CIBER-BBN, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
17
|
Yu Q, Wang Y, Mei R, Yin Y, You J, Chen L. Polystyrene Encapsulated SERS Tags as Promising Standard Tools: Simple and Universal in Synthesis; Highly Sensitive and Ultrastable for Bioimaging. Anal Chem 2019; 91:5270-5277. [DOI: 10.1021/acs.analchem.9b00038] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qian Yu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Rongchao Mei
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yingchao Yin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Jinmao You
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lingxin Chen
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
18
|
Khlebtsov BN, Burov AM, Pylaev TE, Khlebtsov NG. Polydopamine-coated Au nanorods for targeted fluorescent cell imaging and photothermal therapy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:794-803. [PMID: 31019866 PMCID: PMC6466791 DOI: 10.3762/bjnano.10.79] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/07/2019] [Indexed: 05/06/2023]
Abstract
Au nanorods (AuNRs) have attracted a great interest as a platform for constructing various composite core/shell nanoparticles for theranostics applications. However, the development of robust methods for coating AuNRs with a biocompatible shell of high loading capacity and with functional groups still remains challenging. Here, we coated AuNRs with a polydopamine (PDA) shell and functionalized AuNR-PDA particles with folic acid and rhodamine 123 (R123) to fabricate AuNR-PDA-R123-folate nanocomposites. To the best of our knowledge, such AuNR-PDA-based composites combining fluorescent imaging and plasmonic phothothermal abilities have not been reported previously. The multifunctional nanoparticles were stable in cell buffer, nontoxic and suitable for targeted fluorescent imaging and photothermal therapy of cancer cells. We demonstrate the enhanced accumulation of folate-functionalized nanoparticles in folate-positive HeLa cells in contrast to the folate-negative HEK 293 cells using fluorescent microscopy. The replacement of folic acid with polyethylene glycol (PEG) leads to a decrease in nanoparticle uptake by both folate-positive and folate-negative cells. We performed NIR light-mediated targeted phototherapy using AuNR-PDA-R123-folate and obtained a remarkable cancer cell killing efficiency in vitro in comparison with only weak-efficient nontargeted PEGylated nanoparticles. Our work illustrates that AuNR-PDA could be a promising nanoplatform for multifunctional tumor theranostics in the future.
Collapse
Affiliation(s)
- Boris Nikolayevich Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
- Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410026, Russia
| | - Andrey Mikhailovich Burov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Timofey Evgenevich Pylaev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Nikolai G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
- Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410026, Russia
| |
Collapse
|
19
|
Auner GW, Koya SK, Huang C, Broadbent B, Trexler M, Auner Z, Elias A, Mehne KC, Brusatori MA. Applications of Raman spectroscopy in cancer diagnosis. Cancer Metastasis Rev 2018; 37:691-717. [PMID: 30569241 PMCID: PMC6514064 DOI: 10.1007/s10555-018-9770-9] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Novel approaches toward understanding the evolution of disease can lead to the discovery of biomarkers that will enable better management of disease progression and improve prognostic evaluation. Raman spectroscopy is a promising investigative and diagnostic tool that can assist in uncovering the molecular basis of disease and provide objective, quantifiable molecular information for diagnosis and treatment evaluation. This technique probes molecular vibrations/rotations associated with chemical bonds in a sample to obtain information on molecular structure, composition, and intermolecular interactions. Raman scattering occurs when light interacts with a molecular vibration/rotation and a change in polarizability takes place during molecular motion. This results in light being scattered at an optical frequency shifted (up or down) from the incident light. By monitoring the intensity profile of the inelastically scattered light as a function of frequency, the unique spectroscopic fingerprint of a tissue sample is obtained. Since each sample has a unique composition, the spectroscopic profile arising from Raman-active functional groups of nucleic acids, proteins, lipids, and carbohydrates allows for the evaluation, characterization, and discrimination of tissue type. This review provides an overview of the theory of Raman spectroscopy, instrumentation used for measurement, and variation of Raman spectroscopic techniques for clinical applications in cancer, including detection of brain, ovarian, breast, prostate, and pancreatic cancers and circulating tumor cells.
Collapse
Affiliation(s)
- Gregory W Auner
- Michael and Marian Ilitch Department of Surgery, School of Medicine, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA.
- Department of Biomedical Engineering, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA.
- Smart Sensors and Integrated Microsystems Program, Wayne State University, Detroit, MI, 48202, USA.
- Henry Ford Health Systems, Detroit Institute of Ophthalmology, Grosse Pointe Park, MI, 48230, USA.
| | - S Kiran Koya
- Michael and Marian Ilitch Department of Surgery, School of Medicine, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Department of Biomedical Engineering, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Smart Sensors and Integrated Microsystems Program, Wayne State University, Detroit, MI, 48202, USA
| | - Changhe Huang
- Michael and Marian Ilitch Department of Surgery, School of Medicine, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Department of Biomedical Engineering, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Smart Sensors and Integrated Microsystems Program, Wayne State University, Detroit, MI, 48202, USA
| | - Brandy Broadbent
- Department of Biomedical Engineering, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Smart Sensors and Integrated Microsystems Program, Wayne State University, Detroit, MI, 48202, USA
| | - Micaela Trexler
- Department of Biomedical Engineering, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Smart Sensors and Integrated Microsystems Program, Wayne State University, Detroit, MI, 48202, USA
| | - Zachary Auner
- Smart Sensors and Integrated Microsystems Program, Wayne State University, Detroit, MI, 48202, USA
- Department of Physics & Astronomy, Wayne State University, Detroit, MI, 48202, USA
| | - Angela Elias
- Department of Biomedical Engineering, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Smart Sensors and Integrated Microsystems Program, Wayne State University, Detroit, MI, 48202, USA
| | - Katlyn Curtin Mehne
- Department of Biomedical Engineering, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Smart Sensors and Integrated Microsystems Program, Wayne State University, Detroit, MI, 48202, USA
| | - Michelle A Brusatori
- Michael and Marian Ilitch Department of Surgery, School of Medicine, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Department of Biomedical Engineering, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Smart Sensors and Integrated Microsystems Program, Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|
20
|
Mohammadniaei M, Lee T, Bharate BG, Yoon J, Choi HK, Park SJ, Kim J, Kim J, Choi JW. Bifunctional Au@Bi 2 Se 3 Core-Shell Nanoparticle for Synergetic Therapy by SERS-Traceable AntagomiR Delivery and Photothermal Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802934. [PMID: 30141567 DOI: 10.1002/smll.201802934] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Indexed: 06/08/2023]
Abstract
For the first time, topological insulator bismuth selenide nanoparticles (Bi2 Se3 NP) are core-shelled with gold (Au@Bi2 Se3 ) i) to represent considerably small-sized (11 nm) plasmonic nanoparticles, enabling accurate bioimaging in the near-infrared region; ii) to substantially improve Bi2 Se3 biocompatibility, iii) water dispersibility, and iv) surface functionalization capability through straightforward gold-thiol interaction. The Au@Bi2 Se3 is subsequently functionalized for v) effective targeting of SH-SY5Y cancer cells, vi) disrupting the endosome/lysosome membrane, vii) traceable delivery of antagomiR-152 and further synergetic oncomiR knockdown and photothermal therapy (PTT). Unprecedentedly, it is observed that the Au shell thickness has a significant impact on evoking the exotic plasmonic features of Bi2 Se3 . The Au@Bi2 Se3 possesses a high photothermal conversion efficiency (35.5%) and a remarkable surface plasmonic effect (both properties are approximately twofold higher than those of 50 nm Au nanoparticles). In contrast to the siRNA/miRNA delivery methods, the antagomiR delivery is based on strand displacement, in which the antagomiR-152 is displaced by oncomiR-152 followed by a surface-enhanced Raman spectroscopy signal drop. This enables both cancer cell diagnosis and in vitro real-time monitoring of the antagomiR release. This selective PTT nanoparticle can also efficiently target solid tumors and undergo in vivo PTT, indicating its potential clinical applications.
Collapse
Affiliation(s)
- Mohsen Mohammadniaei
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul, 121-742, Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01897, Republic of Korea
| | - Bapurao G Bharate
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul, 121-742, Republic of Korea
| | - Jinho Yoon
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul, 121-742, Republic of Korea
| | - Hye Kyu Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul, 121-742, Republic of Korea
| | - Soo-Jeong Park
- Research Center for Disease Biophysics of Sogang-Harvard, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul, 121-742, Republic of Korea
| | - Junghoon Kim
- Department of Life Science, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul, 121-742, Republic of Korea
| | - Jungho Kim
- Department of Life Science, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul, 121-742, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul, 121-742, Republic of Korea
| |
Collapse
|
21
|
Zhang Y, Wang G, Yang L, Wang F, Liu A. Recent advances in gold nanostructures based biosensing and bioimaging. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Wen H, Jiang P, Hu Y, Li G. Synthesis of Au@Ag core-shell nanostructures with a poly(3,4-dihydroxy-L-phenylalanine) interlayer for surface-enhanced Raman scattering imaging of epithelial cells. Mikrochim Acta 2018; 185:353. [PMID: 29971629 DOI: 10.1007/s00604-018-2873-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/16/2018] [Indexed: 10/28/2022]
Abstract
Poly(3,4-dihydroxy-L-phenylalanine) (polyDOPA) is a stable and biocompatible reducing agent. A versatile strategy is described here for the synthesis of core-shell Au@Ag nanostructures containing a polyDOPA interlayer. The latter provides abundant sites for deposition of nanocomposites, to immobilize molecules and to grow shells. The Au@polyDOPA@Ag nanoparticles are shown to generate strong and stable surface-enhanced Raman spectroscopy (SERS) signals compared to bare AuNPs and bare AgNPs. Folic acid was then immobilized on Au@polyDOPA@Ag nanoparticles and then applied to SERS imaging of human lung adenocarcinoma cell line A549 by the specific recognition of the folic acid receptor. The folic acid-conjugated SERS tags were promising to be nanoplatforms for imaging of cancer cells. Graphical abstract An Au@Ag core-shell nanostructures SERS nanotag with a polyDOPA interlayer was fabricated and then applied to SERS imaging of epithelial cells. (DOPA: 3,4-Dihydroxy-[L-phenylalanine]; FA: folic acid; 4-MBA: 4-mercaptobenzoic acid).
Collapse
Affiliation(s)
- Haibin Wen
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Peichun Jiang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
23
|
Abstract
The development of novel nanoparticles consisting of both diagnostic and therapeutic components has increased over the past decade. These "theranostic" nanoparticles have been tailored toward one or more types of imaging modalities and have been developed for optical imaging, magnetic resonance imaging, ultrasound, computed tomography, and nuclear imaging comprising both single-photon computed tomography and positron emission tomography. In this review, we focus on state-of-the-art theranostic nanoparticles that are capable of both delivering therapy and self-reporting/tracking disease through imaging. We discuss challenges and the opportunity to rapidly adjust treatment for individualized medicine.
Collapse
Affiliation(s)
- Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Dean Ho
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
- Weintraub Center for Reconstructive Biotechnology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
24
|
Hong WE, Hsu IL, Huang SY, Lee CW, Ko H, Tsai PJ, Shieh DB, Huang CC. Assembled growth of 3D Fe3O4@Au nanoparticles for efficient photothermal ablation and SERS detection of microorganisms. J Mater Chem B 2018; 6:5689-5697. [DOI: 10.1039/c8tb00599k] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A leukocyte-like Fe3O4@Au-polydopamine nanohybrid performed a magnetism-based enhanced SERS signal and efficient NIR-irradiated photothermal antibacterial agent.
Collapse
Affiliation(s)
- Wei-En Hong
- Department of Photonics
- National Cheng Kung University
- Tainan
- Taiwan
| | - I-Ling Hsu
- Department of Photonics
- National Cheng Kung University
- Tainan
- Taiwan
| | - Szu-Yung Huang
- Department of Photonics
- National Cheng Kung University
- Tainan
- Taiwan
| | - Chien-Wei Lee
- Department of Photonics
- National Cheng Kung University
- Tainan
- Taiwan
| | - Han Ko
- Department of Photonics
- National Cheng Kung University
- Tainan
- Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology
- College of Medicine
- National Cheng Kung University
- Tainan
- Taiwan
| | - Dar-Bin Shieh
- Institute of Oral Medicine and Department of Stomatology
- College of Medicine
- National Cheng Kung University and Hospital
- Tainan
- Taiwan
| | - Chih-Chia Huang
- Department of Photonics
- National Cheng Kung University
- Tainan
- Taiwan
- Center of Applied Nanomedicine and Center for Micro/Nano Science and Technology
| |
Collapse
|