1
|
Goodrum R, Li H. Lysis of Extracellular Vesicles and Multiplexed Protein Detection via a Reverse Phase Immunoassay Using a Gold-Nanoparticle-Embedded Membrane Platform. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22177-22189. [PMID: 39388120 DOI: 10.1021/acs.langmuir.4c02696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-bound particles with molecular cargo reflective of their cell of origin. Analysis of disease-related EVs and associated cargo from biofluids is a promising tool for disease management. To facilitate the analysis of intravesicular molecules, EV lysis is needed. Moreover, highly sensitive and multiplexed detection methods are required to achieve early diagnostics. While cell lysis approaches have been well studied, the analysis of EV lysis methods and their effects on downstream molecular detection is lacking. In this work, we analyzed chemical, thermal, and mechanical EV lysis methods and determined their efficiency based on EV particle concentration and immunoassay activity. We, for the first time, discovered that vortex was an efficient EV lysis method and used it for detection of surface and intravesicular markers in a highly sensitive multiplexed reverse phase immunoassay on a gold-nanoparticle-embedded membrane. In phosphate-buffered saline, detection limits up to 3 orders of magnitude lower than enzyme-linked immunosorbent assay were achieved. In spiked human plasma, detection limits as low as 7.27 × 104 EVs/mL were achieved, making it suitable for early diagnostics. These results demonstrated an effective pipeline for lysing and molecular analysis of EVs from complex biofluids, paving the way for their broad applications in biomedicine.
Collapse
Affiliation(s)
- Rebecca Goodrum
- School of Engineering, University of Guelph, Guelph N1G2W1, Ontario, Canada
| | - Huiyan Li
- School of Engineering, University of Guelph, Guelph N1G2W1, Ontario, Canada
| |
Collapse
|
2
|
Blancett LT, Evans HM, Candor K, Buesing WR, Figueroa JAL, Deepe Jr GS. Utilization of a Histoplasma capsulatum zinc reporter reveals the complexities of fungal sensing of metal deprivation. mSphere 2024; 9:e0070423. [PMID: 38259064 PMCID: PMC10900905 DOI: 10.1128/msphere.00704-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Histoplasma capsulatum is a dimorphic fungal pathogen acquired via inhalation of soil-resident spores. Upon exposure to mammalian body temperatures, these fungal elements transform into yeasts that reside primarily within phagocytes. Macrophages (MΦ) provide a permissive environment for fungal replication until T cell-dependent immunity is engaged. MΦ activated by granulocyte macrophage colony stimulating factor (GM-CSF) induces metallothioneins (MTs) that bind zinc (Zn) and deprive yeast cells of labile Zn, thereby disabling fungal growth. Prior work demonstrated that the zinc transporter, ZRT2, was important for fungal survival in vivo. Hence, we constructed a yeast cell reporter strain that expresses green fluorescent protein (GFP) under control of the ZRT2 zinc-regulated promoter. This reporter accurately responds to a medium devoid of Zn. ZRT2 expression increased in GM-CSF, but not interferon-γ, stimulated MΦ. To examine the in vivo response, we infected mice with a reporter yeast strain and assessed ZRT2 expression at 0, 3, 7, and 14 days post-infection (dpi). ZRT2 expression minimally increased at 3 dpi and peaked at 7 dpi, corresponding with the onset of adaptive immunity. We discovered that the major MΦ populations that restrict Zn from the fungus are interstitial MΦ and exudate MΦ. Neutralizing GM-CSF blunted the control of infection but unexpectedly increased ZRT2 expression. This increase was dependent on another cytokine that activates MΦ to control H. capsulatum replication, M-CSF. These findings illustrate the reporter's ability to sense Zn in vitro and in vivo and correlate ZRT2 expression with GM-CSF and M-CSF activation of MΦ.IMPORTANCEPhagocytes use an arsenal of defenses to control the replication of Histoplasma yeasts, one of which is the limitation of trace metals. On the other hand, H. capsulatum combats metal restriction by upregulating metal importers such as the Zn importer ZRT2. This transporter contributes to H. capsulatum pathogenesis upon activation of adaptive immunity. We constructed a fluorescent ZRT2 transcriptional reporter to probe H. capsulatum Zn sensing during infection and exposed the role for M-CSF activation of macrophages when GM-CSF is absent. These data highlight the ways in which fungal pathogens sense metal deprivation in vivo and reveal the potential of metal-sensing reporters. The work adds a new dimension to study how intracellular pathogens sense and respond to the changing environments of the host.
Collapse
Affiliation(s)
- Logan T. Blancett
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Heather M. Evans
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kathleen Candor
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - William R. Buesing
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Julio A. Landero Figueroa
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - George S. Deepe Jr
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
3
|
Blancett LT, Evans HM, Candor K, Buesing WR, Landero Figueroa JA, Deepe GS. Utilization of a Histoplasma capsulatum zinc reporter reveals the complexities of fungal sensing of metal deprivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567133. [PMID: 38014056 PMCID: PMC10680740 DOI: 10.1101/2023.11.14.567133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Histoplasma capsulatum is a dimorphic fungal pathogen acquired via inhalation of soil-resident spores. Upon exposure to mammalian body temperatures, these fungal elements transform into yeasts that reside primarily within phagocytes. Macrophages (MΦ) provide a permissive environment for fungal replication until T cell-dependent immunity is engaged. MΦ activated by granulocyte-MΦ colony stimulating factor (GM-CSF) induce metallothioneins (MTs) that bind zinc (Zn) and deprive yeast cells of labile Zn, thereby disabling fungal growth. Prior work demonstrated that the high affinity zinc importer, ZRT2, was important for fungal survival in vivo. Hence, we constructed a yeast cell reporter strain that expresses green fluorescent protein (GFP) under the control of this importer. This reporter accurately responds to medium devoid of Zn. ZRT2 expression increased (∼5-fold) in GM-CSF, but not interferon-γ, stimulated MΦ. To examine the in vivo response, we infected mice with reporter yeasts and assessed ZRT2 expression at 0-, 3-, 7-, and 14-days post-infection (dpi). ZRT2 expression minimally increased at 3-dpi and peaked on 7-dpi, corresponding with onset of adaptive immunity. We discovered that the major phagocyte populations that restrict Zn to the fungus are interstitial MΦ and exudate MΦ. Neutralizing GM-CSF blunted control of infection but unexpectedly increased ZRT2 expression. This increase was dependent on another cytokine that activates MΦ to control H. capsulatum replication, M-CSF. These findings illustrate the reporter's ability to sense Zn in vitro and in vivo and correlate ZRT2 activity with GM-CSF and M-CSF activation of MΦ. Importance Phagocytes use an arsenal of defenses to control replication of Histoplasma yeasts, one of which is limitation of trace metals. On the other hand, H. capsulatum combats metal restriction by upregulating metal importers such as the Zn importer ZRT2. This transporter contributes to H. capsulatum pathogenesis upon activation of adaptive immunity. We constructed a fluorescent ZRT2 reporter to probe H. capsulatum Zn sensing during infection and exposed a role for M-CSF activation of macrophages when GM-CSF is absent. These data highlight the ways in which fungal pathogens sense metal deprivation in vivo and reveal the potential of metal-sensing reporters. The work adds a new dimension to studying how intracellular pathogens sense and respond to the changing environments of the host.
Collapse
|
4
|
Bottom-Up Proteomics: Advancements in Sample Preparation. Int J Mol Sci 2023; 24:ijms24065350. [PMID: 36982423 PMCID: PMC10049050 DOI: 10.3390/ijms24065350] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Liquid chromatography–tandem mass spectrometry (LC–MS/MS)-based proteomics is a powerful technique for profiling proteomes of cells, tissues, and body fluids. Typical bottom-up proteomic workflows consist of the following three major steps: sample preparation, LC–MS/MS analysis, and data analysis. LC–MS/MS and data analysis techniques have been intensively developed, whereas sample preparation, a laborious process, remains a difficult task and the main challenge in different applications. Sample preparation is a crucial stage that affects the overall efficiency of a proteomic study; however, it is prone to errors and has low reproducibility and throughput. In-solution digestion and filter-aided sample preparation are the typical and widely used methods. In the past decade, novel methods to improve and facilitate the entire sample preparation process or integrate sample preparation and fractionation have been reported to reduce time, increase throughput, and improve reproducibility. In this review, we have outlined the current methods used for sample preparation in proteomics, including on-membrane digestion, bead-based digestion, immobilized enzymatic digestion, and suspension trapping. Additionally, we have summarized and discussed current devices and methods for integrating different steps of sample preparation and peptide fractionation.
Collapse
|
5
|
Abstract
Proteomics, the large-scale study of all proteins of an organism or system, is a powerful tool for studying biological systems. It can provide a holistic view of the physiological and biochemical states of given samples through identification and quantification of large numbers of peptides and proteins. In forensic science, proteomics can be used as a confirmatory and orthogonal technique for well-built genomic analyses. Proteomics is highly valuable in cases where nucleic acids are absent or degraded, such as hair and bone samples. It can be used to identify body fluids, ethnic group, gender, individual, and estimate post-mortem interval using bone, muscle, and decomposition fluid samples. Compared to genomic analysis, proteomics can provide a better global picture of a sample. It has been used in forensic science for a wide range of sample types and applications. In this review, we briefly introduce proteomic methods, including sample preparation techniques, data acquisition using liquid chromatography-tandem mass spectrometry, and data analysis using database search, spectral library search, and de novo sequencing. We also summarize recent applications in the past decade of proteomics in forensic science with a special focus on human samples, including hair, bone, body fluids, fingernail, muscle, brain, and fingermark, and address the challenges, considerations, and future developments of forensic proteomics.
Collapse
|
6
|
Rodríguez A, Vaneechoutte M. Comparison of the efficiency of different cell lysis methods and different commercial methods for RNA extraction from Candida albicans stored in RNAlater. BMC Microbiol 2019; 19:94. [PMID: 31088364 PMCID: PMC6515685 DOI: 10.1186/s12866-019-1473-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/03/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obtaining sufficient RNA yield and quality for comprehensive transcriptomic studies is cumbersome for clinical samples in which RNA from the pathogen is present in low numbers relative to the nucleic acids from the host, especially for pathogens, such as yeasts, with a solid cell wall. Therefore, yeast cell lysis including cell wall disruption constitutes an essential first step to maximize RNA yield. Moreover, during the last years, different methods for RNA extraction from yeasts have been developed, ranging from classic hot phenol methods to commercially available specific kits. They offer different RNA yield and quality, also depending on the original storage medium, such as RNAlater. RESULTS We observed that, for C. albicans cells stored in Tryptic Soy Broth with 15% glycerol, 10 min of bead beating in a horizontal position in RiboPure Lysis Buffer provided complete cell lysis. Cell lysis efficiency was decreased to 73.5% when cells were stored in RNAlater. In addition, the RiboPure Yeast Kit (Ambion) offered the highest RNA yield in comparison with the automated platform NucliSENS easyMAG total nucleic extraction (bioMérieux) and the RNeasy Mini Kit (Qiagen) according to NanoDrop and Fragment Analyzer. Moreover, we showed that, in spite of the decrease of cell lysis efficiency after RNAlater storage, as compared to storage in TSB + 15% glycerol, RNAlater increased RNA yield during RNA extraction with both RiboPure Yeast Kit and easyMAG, as confirmed by Fragment Analyzer analysis and by RT-qPCR of the RNA from the Internal Transcribed Spacer 2. CONCLUSIONS In our hands, the most efficient cell lysis and highest RNA yield from C. albicans cells stored in RNAlater was obtained by horizontal bead beating in RiboPure Lysis Buffer followed by RNA extraction with the RiboPure Yeast Kit.
Collapse
Affiliation(s)
- Antonio Rodríguez
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium.
| | - Mario Vaneechoutte
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium
| |
Collapse
|
7
|
Liu C, Cheng Y, Du C, Lv T, Guo Y, Han M, Pi F, Zhang W, Qian H. Study on the wall-breaking method of carotenoids producing yeastSporidiobolus pararoseusand the antioxidant effect of four carotenoids on SK-HEP-1 cells. Prep Biochem Biotechnol 2019; 49:767-774. [DOI: 10.1080/10826068.2019.1608448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Chao Du
- School of Food Engineering, Ludong University, Yantai, China
| | - Tianqi Lv
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Mei Han
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Weiguo Zhang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Budhraja R, Ding C, Walter P, Wagner S, Reemtsma T, Gary Sawers R, Adrian L. The impact of species, respiration type, growth phase and genetic inventory on absolute metal content of intact bacterial cells. Metallomics 2019; 11:925-935. [DOI: 10.1039/c9mt00009g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Absolute metal ion content was determined from whole cells of different microbial species and changes were related to growth conditions and change of encoded genes.
Collapse
Affiliation(s)
- Rohit Budhraja
- Helmholtz Centre for Environmental Research – UFZ
- Isotope Biogeochemistry
- 04318 Leipzig
- Germany
- Chair of Geobiotechnology
| | - Chang Ding
- Helmholtz Centre for Environmental Research – UFZ
- Isotope Biogeochemistry
- 04318 Leipzig
- Germany
| | - Philipp Walter
- Helmholtz Centre for Environmental Research – UFZ
- Isotope Biogeochemistry
- 04318 Leipzig
- Germany
| | - Stephan Wagner
- Helmholtz Centre for Environmental Research – UFZ
- Department of Analytical Chemistry
- Leipzig
- Germany
| | - Thorsten Reemtsma
- Helmholtz Centre for Environmental Research – UFZ
- Department of Analytical Chemistry
- Leipzig
- Germany
| | - R. Gary Sawers
- Institute of Biology/Microbiology
- Martin-Luther Universität
- Halle
- Germany
| | - Lorenz Adrian
- Helmholtz Centre for Environmental Research – UFZ
- Isotope Biogeochemistry
- 04318 Leipzig
- Germany
- Chair of Geobiotechnology
| |
Collapse
|