1
|
A Novel Approach of SWATH-Based Metabolomics Analysis Using the Human Metabolome Database Spectral Library. Int J Mol Sci 2022; 23:ijms231810908. [PMID: 36142821 PMCID: PMC9500730 DOI: 10.3390/ijms231810908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/22/2022] Open
Abstract
Metabolomics is a potential approach to paving new avenues for clinical diagnosis, molecular medicine, and therapeutic drug monitoring and development. The conventional metabolomics analysis pipeline depends on the data-independent acquisition (DIA) technique. Although powerful, it still suffers from stochastic, non-reproducible ion selection across samples. Despite the presence of different metabolomics workbenches, metabolite identification remains a tedious and time-consuming task. Consequently, sequential windowed acquisition of all theoretical MS (SWATH) acquisition has attracted much attention to overcome this limitation. This article aims to develop a novel SWATH platform for data analysis with a generation of an accurate mass spectral library for metabolite identification using SWATH acquisition. The workflow was validated using inclusion/exclusion compound lists. The false-positive identification was 3.4% from the non-endogenous drugs with 96.6% specificity. The workflow has proven to overcome background noise despite the complexity of the SWATH sample. From the Human Metabolome Database (HMDB), 1282 compounds were tested in various biological samples to demonstrate the feasibility of the workflow. The current study identified 377 compounds in positive and 303 in negative modes with 392 unique non-redundant metabolites. Finally, a free software tool, SASA, was developed to analyze SWATH-acquired samples using the proposed pipeline.
Collapse
|
2
|
Bonner R, Hopfgartner G. The Origin and Implications of Artifact Ions in Bioanalytical LC–MS. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.pd4884b8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Liquid chromatography–mass spectrometry (LC–MS) with electrospray ionization (ESI) is a widely used bioanalytical technique with both qualitative and quantitative applications. Ions are created by electrically charging a stream of droplets from the LC system, which evaporate and leave ions that are transferred to the mass spectrometer. Ideally, these are only from the analyte, but background ions, such as metals, impurities and coeluted species, can react with analytes producing adducts, such as [M + Na]+, [M + K]+, and multimers (2M + H+, 3M + H+, and so forth). Although well known, the extent of adduct ion formation and the implications for quantitative analysis and analyte characterization by tandem MS (MS/MS) are not fully appreciated. We summarize the problem and identify areas that should be considered when developing or using electrospray LC–MS.
Collapse
|
3
|
Klont F, Stepanović S, Kremer D, Bonner R, Touw DJ, Hak E, Bakker SJ, Hopfgartner G. Untargeted ‘SWATH’ mass spectrometry-based metabolomics for studying chronic and intermittent exposure to xenobiotics in cohort studies. Food Chem Toxicol 2022; 165:113188. [DOI: 10.1016/j.fct.2022.113188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
|
4
|
Alka O, Shanthamoorthy P, Witting M, Kleigrewe K, Kohlbacher O, Röst HL. DIAMetAlyzer allows automated false-discovery rate-controlled analysis for data-independent acquisition in metabolomics. Nat Commun 2022; 13:1347. [PMID: 35292629 PMCID: PMC8924252 DOI: 10.1038/s41467-022-29006-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/18/2022] [Indexed: 11/09/2022] Open
Abstract
The extraction of meaningful biological knowledge from high-throughput mass spectrometry data relies on limiting false discoveries to a manageable amount. For targeted approaches in metabolomics a main challenge is the detection of false positive metabolic features in the low signal-to-noise ranges of data-independent acquisition results and their filtering. Another factor is that the creation of assay libraries for data-independent acquisition analysis and the processing of extracted ion chromatograms have not been automated in metabolomics. Here we present a fully automated open-source workflow for high-throughput metabolomics that combines data-dependent and data-independent acquisition for library generation, analysis, and statistical validation, with rigorous control of the false-discovery rate while matching manual analysis regarding quantification accuracy. Using an experimentally specific data-dependent acquisition library based on reference substances allows for accurate identification of compounds and markers from data-independent acquisition data in low concentrations, facilitating biomarker quantification.
Collapse
Affiliation(s)
- Oliver Alka
- Department of Computer Science, Applied Bioinformatics, University of Tübingen, Tübingen, Germany.
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany.
| | - Premy Shanthamoorthy
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Michael Witting
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Analytical Food Chemistry, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Oliver Kohlbacher
- Department of Computer Science, Applied Bioinformatics, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- Institute for Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany
| | - Hannes L Röst
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.
- Department of Computer Science, University of Toronto, Toronto, Canada.
| |
Collapse
|
5
|
Abstract
Chemicals are measured regularly in air, food, the environment, and the workplace. Biomonitoring of chemicals in biological fluids is a tool to determine the individual exposure. Blood protein adducts of xenobiotics are a marker of both exposure and the biologically effective dose. Urinary metabolites and blood metabolites are short term exposure markers. Stable hemoglobin adducts are exposure markers of up to 120 days. Blood protein adducts are formed with many xenobiotics at different sites of the blood proteins. Newer methods apply the techniques developed in the field of proteomics. Larger adducted peptides with 20 amino acids are used for quantitation. Unfortunately, at present the methods do not reach the limits of detection obtained with the methods looking at single amino acid adducts or at chemically cleaved adducts. Therefore, to progress in the field new approaches are needed.
Collapse
|
6
|
Tabet JC, Gimbert Y, Damont A, Touboul D, Fenaille F, Woods AS. Combining Chemical Knowledge and Quantum Calculation for Interpreting Low-Energy Product Ion Spectra of Metabolite Adduct Ions: Sodiated Diterpene Diester Species as a Case Study. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2499-2504. [PMID: 34469144 PMCID: PMC8903029 DOI: 10.1021/jasms.1c00154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We investigated the product ion spectra of [M + Na]+ from diterpene diester species and low molecular mass metabolites analyzed by electrospray ionization (ESI). Mainly, the formation of protonated salt structures was proposed to explain the observed neutral losses of carboxylic acids. It also facilitates understanding sodium retention on product ions or on neutral losses. In addition, the occurrence of consecutive carboxylic acid losses is rather unexpected under resonant excitation conditions. Quantum calculation demonstrated that the exothermic character of such neutral losses can represent a relevant explanation. There is no doubt that the formation and role of the protonated salt structures will be helpful for a better understanding and software-assisted interpretation of tandem mass spectra from small molecules, especially in the ever-growing metabolomics field.
Collapse
Affiliation(s)
- Jean-Claude Tabet
- Sorbonne Université, Faculté des Sciences et de l’Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), F-75005 Paris, France
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191 Gif sur Yvette, France
| | - Yves Gimbert
- Sorbonne Université, Faculté des Sciences et de l’Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), F-75005 Paris, France
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble Alpes, 38058 Grenoble, France
| | - Annelaure Damont
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191 Gif sur Yvette, France
| | - David Touboul
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191 Gif sur Yvette, France
| | - Amina S. Woods
- NIDA IRP, NIH Structural Biology Unit Integrative Neuroscience Branch, 333 Cassell Drive, Baltimore, Maryland 21224, United States
- The Johns Hopkins University School of Medicine, Pharmacology and Molecular Sciences, Baltimore, MD 21205
| |
Collapse
|
7
|
Bravo-Veyrat S, Hopfgartner G. Mass spectrometry based high-throughput bioanalysis of low molecular weight compounds: are we ready to support personalized medicine? Anal Bioanal Chem 2021; 414:181-192. [PMID: 34424372 PMCID: PMC8748372 DOI: 10.1007/s00216-021-03583-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 11/18/2022]
Abstract
Liquid chromatography coupled to mass spectrometry (LC-MS) is the gold standard in bioanalysis for the development of quantitative assays to support drug development or therapeutic drug monitoring. High-throughput and low-cost gene sequencing have enabled a paradigm shift from one treatment fits all to personalized medicine (PM). However, gene monitoring provides only partial information about the health state. The full picture requires the combination of gene monitoring with the screening of exogenous compounds, metabolites, lipids, and proteins. This critical review discusses how mass spectrometry–based technologies and approaches including separation sciences, ambient ionization, and ion mobility are/could be used to support high-throughput bioanalysis of endogenous end exogenous low molecular weight compounds. It includes also various biological sample types (from blood to expired air), and various sample preparation techniques.
Collapse
Affiliation(s)
- Sophie Bravo-Veyrat
- Life Sciences Mass Spectrometry, Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211, Geneva 4, Switzerland
| | - Gérard Hopfgartner
- Life Sciences Mass Spectrometry, Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211, Geneva 4, Switzerland.
| |
Collapse
|
8
|
Xiao J, Shi J, Li R, Her L, Wang X, Li J, Sorensen MJ, Bhatt-Mehta V, Zhu HJ. Developing a SWATH capillary LC-MS/MS method for simultaneous therapeutic drug monitoring and untargeted metabolomics analysis of neonatal plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122865. [PMID: 34365292 DOI: 10.1016/j.jchromb.2021.122865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 12/22/2022]
Abstract
Most medications prescribed to neonatal patients are off-label uses. The pharmacokinetics and pharmacodynamics of drugs differ significantly between neonates and adults. Therefore, personalized pharmacotherapy guided by therapeutic drug monitoring (TDM) and drug response biomarkers are particularly beneficial to neonatal patients. Herein, we developed a capillary LC-MS/MS metabolomics method using a SWATH-based data-independent acquisition strategy for simultaneous targeted and untargeted metabolomics analysis of neonatal plasma samples. We applied the method to determine the global plasma metabolomics profiles and quantify the plasma concentrations of five drugs commonly used in neonatal intensive care units, including ampicillin, caffeine, fluconazole, vancomycin, and midazolam and its active metabolite α-hydroxymidazolam, in neonatal patients. The method was successfully validated and found to be suitable for the TDM of the drugs of interest. Moreover, the global metabolomics analysis revealed plasma metabolite features that could differentiate preterm and full-term neonates. This study demonstrated that the SWATH-based capillary LC-MS/MS metabolomics approach could be a powerful tool for simultaneous TDM and the discovery of neonatal plasma metabolite biomarkers.
Collapse
Affiliation(s)
- Jingcheng Xiao
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jian Shi
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States
| | - Ruiting Li
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Lucy Her
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Xinwen Wang
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, United States
| | - Jiapeng Li
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States
| | - Matthew J Sorensen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Varsha Bhatt-Mehta
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States; Department of Pediatrics and Communicable Diseases, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
9
|
Narayanaswamy P, Teo G, Ow JR, Lau A, Kaldis P, Tate S, Choi H. MetaboKit: a comprehensive data extraction tool for untargeted metabolomics. Mol Omics 2021; 16:436-447. [PMID: 32519713 DOI: 10.1039/d0mo00030b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed MetaboKit, a comprehensive software package for compound identification and relative quantification in mass spectrometry-based untargeted metabolomics analysis. In data dependent acquisition (DDA) analysis, MetaboKit constructs a customized spectral library with compound identities from reference spectral libraries, adducts, dimers, in-source fragments (ISF), MS/MS fragmentation spectra, and more importantly the retention time information unique to the chromatography system used in the experiment. Using the customized library, the software performs targeted peak integration for precursor ions in DDA analysis and for precursor and product ions in data independent acquisition (DIA) analysis. With its stringent identification algorithm requiring matches by both MS and MS/MS data, MetaboKit provides identification results with significantly greater specificity than the competing software packages without loss in sensitivity. The proposed MS/MS-based screening of ISFs also reduces the chance of unverifiable identification of ISFs considerably. MetaboKit's quantification module produced peak area values highly correlated with known concentrations in a DIA analysis of the metabolite standards at both MS1 and MS2 levels. Moreover, the analysis of Cdk1Liv-/- mouse livers showed that MetaboKit can identify a wide range of lipid species and their ISFs, and quantitatively reconstitute the well-characterized fatty liver phenotype in these mice. In DIA data, the MS1-level and MS2-level peak area data produced similar fold change estimates in the differential abundance analysis, and the MS2-level peak area data allowed for quantitative comparisons in compounds whose precursor ion chromatogram was too noisy for peak integration.
Collapse
Affiliation(s)
| | - Guoshou Teo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Jin Rong Ow
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | | | - Philipp Kaldis
- Institute of Molecular and Cell Biology, A*STAR, Singapore and Department of Clinical Sciences, Lund University, Sweden
| | | | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore. and Institute of Molecular and Cell Biology, A*STAR, Singapore
| |
Collapse
|
10
|
Improved metabolite characterization by liquid chromatography – Tandem mass spectrometry through electron impact type fragments from adduct ions. Anal Chim Acta 2021; 1150:338207. [DOI: 10.1016/j.aca.2021.338207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 11/20/2022]
|
11
|
Weng S, Wang M, Zhao Y, Ying W, Qian X. Optimised data-independent acquisition strategy recaptures the classification of early-stage hepatocellular carcinoma based on data-dependent acquisition. J Proteomics 2021; 238:104152. [PMID: 33609755 DOI: 10.1016/j.jprot.2021.104152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/21/2021] [Accepted: 02/08/2021] [Indexed: 12/27/2022]
Abstract
Proteomics is increasingly used for exploring disease biomarkers and therapeutic targets. The data-independent acquisition (DIA) method collects all peptide signals in a sample, and provides a convenient way to archive disease-related molecular features for further exploration. In this study, we first established a high-coverage human hepatocellular carcinoma (HCC) spectral library containing 9393 protein groups, 119,903 peptides. Furthermore, we optimised the DIA method with respect to four key parameters: settings for mass spectrometry acquisition, gradient length, amount of sample loading, and length of analytical column. More than 6000 proteins from HepG2 cells could be stably quantified using the optimised one-shot DIA approach with a 2 h gradient time. One-shot DIA identified a similar number of proteins as did multi-fraction data-dependent acquisition (DDA) from the same group of HCC samples, but at a quarter of the total acquisition time. DIA data could recapture the classification results obtained from DDA data, thus paving the way for large-scale, multi-centre proteomics analysis of clinical samples. SIGNIFICANCE: The organ-specific spectral library for HCC and the optimised 2 h DIA approach met the urgent demands for large-scale quantitative proteomics analysis of HCC clinical samples. Compared with multi-fraction-DDA, the optimised one-shot DIA could reach a similar identification while consuming shorter acquisition time, thus making it possible to analyse thousands of clinical samples.
Collapse
Affiliation(s)
- Shuang Weng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Mingchao Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yingyi Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Wantao Ying
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| |
Collapse
|
12
|
Guo Z, Huang S, Wang J, Feng YL. Recent advances in non-targeted screening analysis using liquid chromatography - high resolution mass spectrometry to explore new biomarkers for human exposure. Talanta 2020; 219:121339. [DOI: 10.1016/j.talanta.2020.121339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/16/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022]
|
13
|
Stricker T, Bonner R, Lisacek F, Hopfgartner G. Adduct annotation in liquid chromatography/high-resolution mass spectrometry to enhance compound identification. Anal Bioanal Chem 2020; 413:503-517. [PMID: 33123762 PMCID: PMC7806579 DOI: 10.1007/s00216-020-03019-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/21/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022]
Abstract
Annotation and interpretation of full scan electrospray mass spectra of metabolites is complicated by the presence of a wide variety of ions. Not only protonated, deprotonated, and neutral loss ions but also sodium, potassium, and ammonium adducts as well as oligomers are frequently observed. This diversity challenges automatic annotation and is often poorly addressed by current annotation tools. In many cases, annotation is integrated in metabolomics workflows and is based on specific chromatographic peak-picking tools. We introduce mzAdan, a nonchromatography-based multipurpose standalone application that was developed for the annotation and exploration of convolved high-resolution ESI-MS spectra. The tool annotates single or multiple accurate mass spectra using a customizable adduct annotation list and outputs a list of [M+H]+ candidates. MzAdan was first tested with a collection of 408 analytes acquired with flow injection analysis. This resulted in 402 correct [M+H]+ identifications and, with combinations of sodium, ammonium, and potassium adducts and water and ammonia losses within a tolerance of 10 mmu, explained close to 50% of the total ion current. False positives were monitored with mass accuracy and bias as well as chromatographic behavior which led to the identification of adducts with calcium instead of the expected potassium. MzAdan was then integrated in a workflow with XCMS for the untargeted LC-MS data analysis of a 52 metabolite standard mix and a human urine sample. The results were benchmarked against three other annotation tools, CAMERA, findMAIN, and CliqueMS: findMAIN and mzAdan consistently produced higher numbers of [M+H]+ candidates compared with CliqueMS and CAMERA, especially with co-eluting metabolites. Detection of low-intensity ions and correct grouping were found to be essential for annotation performance. Graphical abstract ![]()
Collapse
Affiliation(s)
- Thomas Stricker
- Life Sciences Mass Spectrometry, Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, 1211, Geneva 4, Switzerland
- Proteome Informatics Group (PIG), Swiss Institute of Bioinformatics and University of Geneva, 7, route de Drize, 1211, Geneva 4, Switzerland
| | - Ron Bonner
- Ron Bonner Consulting, Newmarket, ON, L3Y 3C7, Canada
| | - Frédérique Lisacek
- Proteome Informatics Group (PIG), Swiss Institute of Bioinformatics and University of Geneva, 7, route de Drize, 1211, Geneva 4, Switzerland
| | - Gérard Hopfgartner
- Life Sciences Mass Spectrometry, Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, 1211, Geneva 4, Switzerland.
| |
Collapse
|
14
|
Raetz M, Bonner R, Hopfgartner G. SWATH-MS for metabolomics and lipidomics: critical aspects of qualitative and quantitative analysis. Metabolomics 2020; 16:71. [PMID: 32504120 DOI: 10.1007/s11306-020-01692-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION While liquid chromatography coupled to mass spectrometric detection in the selected reaction monitoring detection mode offers the best quantification sensitivity for omics, the number of target analytes is limited, must be predefined and specific methods developed. Data independent acquisition (DIA), including SWATH using quadrupole time of flight or orbitrap mass spectrometers and generic acquisition methods, has emerged as a powerful alternative technique for quantitative and qualitative analyses since it can cover a wide range of analytes without predefinition. OBJECTIVES Here we review the current state of DIA, SWATH-MS and highlight novel acquisition strategies for metabolomics and lipidomics and opportunities for data analysis tools. METHOD Different databases were searched for papers that report developments and applications of DIA and in particular SWATH-MS in metabolomics and lipidomics. RESULTS DIA methods generate digital sample records that can be mined retrospectively as further knowledge is gained and, with standardized acquisition schemes, used in multiple studies. The different chemical spaces of metabolites and lipids require different specificities, hence different acquisition and data processing approaches must be considered for their analysis. CONCLUSIONS Although the hardware and acquisition modes are well defined for SWATH-MS, a major challenge for routine use remains the lack of appropriate software tools capable of handling large datasets and large numbers of analytes.
Collapse
Affiliation(s)
- Michel Raetz
- Life Sciences Mass Spectrometry, Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211, Geneva, Switzerland
| | - Ron Bonner
- Ron Bonner Consulting, Newmarket, ON, L3Y 3C7, Canada
| | - Gérard Hopfgartner
- Life Sciences Mass Spectrometry, Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211, Geneva, Switzerland.
| |
Collapse
|
15
|
Klont F, Jahn S, Grivet C, König S, Bonner R, Hopfgartner G. SWATH data independent acquisition mass spectrometry for screening of xenobiotics in biological fluids: Opportunities and challenges for data processing. Talanta 2020; 211:120747. [DOI: 10.1016/j.talanta.2020.120747] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 12/23/2022]
|
16
|
Akbal L, Hopfgartner G. Supercritical fluid chromatography–mass spectrometry using data independent acquisition for the analysis of polar metabolites in human urine. J Chromatogr A 2020; 1609:460449. [DOI: 10.1016/j.chroma.2019.460449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
|
17
|
|
18
|
From mass to metabolite in human untargeted metabolomics: Recent advances in annotation of metabolites applying liquid chromatography-mass spectrometry data. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
19
|
Tada I, Tsugawa H, Meister I, Zhang P, Shu R, Katsumi R, Wheelock CE, Arita M, Chaleckis R. Creating a Reliable Mass Spectral-Retention Time Library for All Ion Fragmentation-Based Metabolomics. Metabolites 2019; 9:E251. [PMID: 31717785 PMCID: PMC6918128 DOI: 10.3390/metabo9110251] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022] Open
Abstract
Accurate metabolite identification remains one of the primary challenges in a metabolomics study. A reliable chemical spectral library increases the confidence in annotation, and the availability of raw and annotated data in public databases facilitates the transfer of Liquid chromatography coupled to mass spectrometry (LC-MS) methods across laboratories. Here, we illustrate how the combination of MS2 spectra, accurate mass, and retention time can improve the confidence of annotation and provide techniques to create a reliable library for all ion fragmentation (AIF) data with a focus on the characterization of the retention time. The resulting spectral library incorporates information on adducts and in-source fragmentation in AIF data, while noise peaks are effectively minimized through multiple deconvolution processes. We also report the development of the Mass Spectral LIbrary MAnager (MS-LIMA) tool to accelerate library sharing and transfer across laboratories. This library construction strategy improves the confidence in annotation for AIF data in LC-MS-based metabolomics and will facilitate the sharing of retention time and mass spectral data in the metabolomics community.
Collapse
Affiliation(s)
- Ipputa Tada
- Department of Genetics, SOKENDAI (Graduate University for Advanced Studies), Shizuoka 411-8540, Japan
| | - Hiroshi Tsugawa
- RIKEN Center for Sustainable Resource Science, Kanagawa, Yokohama 230-0045, Japan
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Yokohama 230-0045, Japan
| | - Isabel Meister
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Gunma 371-8510, Japan
| | - Pei Zhang
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Gunma 371-8510, Japan
| | - Rie Shu
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Gunma 371-8510, Japan
| | - Riho Katsumi
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Gunma 371-8510, Japan
| | - Craig E. Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Gunma 371-8510, Japan
| | - Masanori Arita
- RIKEN Center for Sustainable Resource Science, Kanagawa, Yokohama 230-0045, Japan
- Center for Information Biology, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Romanas Chaleckis
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Gunma 371-8510, Japan
| |
Collapse
|
20
|
Peris-Díaz MD, Sweeney SR, Rodak O, Sentandreu E, Tiziani S. R-MetaboList 2: A Flexible Tool for Metabolite Annotation from High-Resolution Data-Independent Acquisition Mass Spectrometry Analysis. Metabolites 2019; 9:metabo9090187. [PMID: 31533242 PMCID: PMC6780920 DOI: 10.3390/metabo9090187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/28/2019] [Accepted: 09/12/2019] [Indexed: 11/16/2022] Open
Abstract
Technological advancements have permitted the development of innovative multiplexing strategies for data independent acquisition (DIA) mass spectrometry (MS). Software solutions and extensive compound libraries facilitate the efficient analysis of MS1 data, regardless of the analytical platform. However, the development of comparable tools for DIA data analysis has significantly lagged. This research introduces an update to the former MetaboList R package and a workflow for full-scan MS1 and MS/MS DIA processing of metabolomic data from multiplexed liquid chromatography high-resolution mass spectrometry (LC-HRMS) experiments. When compared to the former version, new functions have been added to address isolated MS1 and MS/MS workflows, processing of MS/MS data from stepped collision energies, performance scoring of metabolite annotations, and batch job analysis were incorporated into the update. The flexibility and efficiency of this strategy were assessed through the study of the metabolite profiles of human urine, leukemia cell culture, and medium samples analyzed by either liquid chromatography quadrupole time-of-flight (q-TOF) or quadrupole orbital (q-Orbitrap) instruments. This open-source alternative was designed to promote global metabolomic strategies based on recursive retrospective research of multiplexed DIA analysis.
Collapse
Affiliation(s)
- Manuel D Peris-Díaz
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, J.Curie 14a, 50-383 Wrocław, Poland.
- Unidad Analítica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain.
| | - Shannon R Sweeney
- Dell Pediatric Research Institute (DPRI), University of Texas at Austin, Austin, TX 78723, USA.
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78723, USA.
| | - Olga Rodak
- Department of Reproduction and Clinic of Farm Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-366 Wrocław, Poland.
| | - Enrique Sentandreu
- Unidad Analítica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain.
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, 46980 Valencia, Spain.
| | - Stefano Tiziani
- Dell Pediatric Research Institute (DPRI), University of Texas at Austin, Austin, TX 78723, USA.
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78723, USA.
| |
Collapse
|
21
|
Yan Z, Li T, Wei B, Wang P, Wan J, Wang Y, Yan R. High-resolution MS/MS metabolomics by data-independent acquisition reveals urinary metabolic alteration in experimental colitis. Metabolomics 2019; 15:70. [PMID: 31041724 DOI: 10.1007/s11306-019-1534-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 04/24/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Traditional high-resolution MS1 based untargeted metabolomics suffers from low sensitivity, while low-resolution MS/MS based multiple reaction monitoring increases sensitivity at the cost of metabolite coverage and the mass accuracy. OBJECTIVES To evaluate and apply the high-resolution MS/MS level untargeted metabolomics. METHODS SWATH based data-independent acquisition (DIA) was optimized to obtain MS/MS of all precursor ions. RESULTS SWATH-MS/MS could rescue MS1 obscured or saturated metabolites and potentially provide diagnostic fragments to differentiate isomers. For SWATH-MS/MS, 4944 out of 21492 (23.0%) and 2289 out of 12831 (17.8%) fragment ion features significantly changed (Fold change > 1.5, P < 0.05) between Normal and experimental acute ulcerative colitis (UC) groups in positive and negative ion mode, respectively. For SWATH-MS1, 1022 out of 4818 (21.2%) and 353 out of 2266 (15.6%) features significantly changed in positive and negative ion mode, respectively. By deciphering the metabolite profiles with high-resolution MS/MS, it allows versatile post-acquisition data mining such as open detection of different sub-metabolome. The method revealed a global urinary metabolic alteration and increased glucuronide and sulfate sub-metabolome in UC. The major limitation of untargeted SWATH-MS/MS is increased interferences derived from wider Q1 isolation window. CONCLUSIONS SWATH-MS/MS is a versatile metabolomics strategy, merging the coverage of high-resolution untargeted metabolomics and the sensitivity of MS/MS.
Collapse
Affiliation(s)
- Zhixiang Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
- Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
- Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| | - Bin Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
- Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| | - Panpan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
- Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| | - Jianbo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
- Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China.
| |
Collapse
|
22
|
Gika H, Virgiliou C, Theodoridis G, Plumb RS, Wilson ID. Untargeted LC/MS-based metabolic phenotyping (metabonomics/metabolomics): The state of the art. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1117:136-147. [PMID: 31009899 DOI: 10.1016/j.jchromb.2019.04.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/25/2022]
Abstract
Liquid chromatography (LC) hyphenated to mass spectrometry is currently the most widely used means of determining metabolic phenotypes via both untargeted and targeted analysis. At present a range of analytical separations, including reversed-phase, hydrophilic interaction and ion-pair LC are employed to maximise metabolome coverage with ultra (high) performance liquid chromatography (UHPLC) increasingly displacing conventional high performance liquid chromatography because of the need for short analysis times and high peak capacity in such applications. However, it is widely recognized that these methodologies do not entirely solve the problems facing researchers trying to perform comprehensive metabolic phenotyping and in addition to these "routine" approaches there are continuing investigations of alternative separation methods including 2-dimensional/multi column approaches. These involve either new stationary phases or multidimensional combinations of the more conventional materials currently used, as well as application of miniaturization or "new" approaches such as supercritical HP and UHP- chromatographic separations. There is also a considerable amount of interest in the combination of chromatographic and ion mobility separations, with the latter providing both an increase in resolution and the potential to provide additional structural information via the determination of molecular collision cross section data. However, key problems remain to be solved including ensuring quality, comparability across different laboratories and the ever present difficulty of identifying unknowns.
Collapse
Affiliation(s)
- Helen Gika
- Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001 Thessaloniki, Greece; FoodOmicsGR Research Infrastructure, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001 Thessaloniki, Greece
| | - Christina Virgiliou
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001 Thessaloniki, Greece; FoodOmicsGR Research Infrastructure, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001 Thessaloniki, Greece; Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios Theodoridis
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001 Thessaloniki, Greece; FoodOmicsGR Research Infrastructure, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001 Thessaloniki, Greece; Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Ian D Wilson
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College, Exhibition Road, South Kensington, London SW7 2AZ, UK.
| |
Collapse
|
23
|
Wang R, Yin Y, Zhu ZJ. Advancing untargeted metabolomics using data-independent acquisition mass spectrometry technology. Anal Bioanal Chem 2019; 411:4349-4357. [PMID: 30847570 DOI: 10.1007/s00216-019-01709-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 12/28/2022]
Abstract
Metabolomics quantitatively measures metabolites in a given biological system and facilitates the understanding of physiological and pathological activities. With the recent advancement of mass spectrometry (MS) technology, liquid chromatography-mass spectrometry (LC-MS) with data-independent acquisition (DIA) has been emerged as a powerful technology for untargeted metabolomics due to its capability to acquire all MS2 spectra and high quantitative accuracy. In this trend article, we first introduced the basic principles of several common DIA techniques including MSE, all ion fragmentation (AIF), SWATH, and MSX. Then, we summarized and compared the data analysis strategies to process DIA-based untargeted metabolomics data, including metabolite identification and quantification. We think the advantages of the DIA technique will enable its broad application in untargeted metabolomics.
Collapse
Affiliation(s)
- Ruohong Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yandong Yin
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
24
|
Liquid chromatography-high resolution mass spectrometry for broad-spectrum drug screening of dried blood spot as microsampling procedure. Anal Chim Acta 2019; 1063:110-116. [PMID: 30967174 DOI: 10.1016/j.aca.2019.02.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/28/2019] [Accepted: 02/04/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hyphenation of liquid chromatography (LC) with high-resolution mass spectrometry (HRMS) offers the potential to develop broad-spectrum screening procedures from low volumes of biological matrices. In parallel, dried blood spot (DBS) has become a valuable tool in the bioanalysis landscape to overcome conventional blood collection issues. Herein, we demonstrated the applicability of DBS as micro-sampling procedure for broad-spectrum toxicological screening. METHODS A method was developed on a HRMS system in data dependant acquisition (DDA) mode using an extensive inclusion list to promote collection of relevant data. 104 real toxicology cases were analysed, and the results were cross-validated with one published and one commercial screening procedures. Quantitative MRM analyses were also performed on identified substances on a triple quadrupole instrument as a complementary confirmation procedure. RESULTS The method showed limits of identification (LOIs) in appropriateness with therapeutic ranges for all the classes of interest. Applying the three screening approaches on 104 real cases, 271 identifications were performed including 14 and 6 classes of prescribed and illicit drugs, respectively. Among the detected substances, 23% were only detected by the proposed method. Based on confirmatory analyses, we demonstrated that the use of blood micro-samples did not impair the sensitivity allowing more identifications in the low concentration ranges. CONCLUSION A LC-HRMS assay was successfully developed for toxicological screening of blood microsamples demonstrating a high identification power at low concentration ranges. The validation procedure and the analysis of real cases demonstrated the potential of this assay by supplementing screening approaches of reference.
Collapse
|
25
|
Boxler MI, Schneider TD, Kraemer T, Steuer AE. Analytical considerations for (un)-targeted metabolomic studies with special focus on forensic applications. Drug Test Anal 2018; 11:678-696. [PMID: 30408838 DOI: 10.1002/dta.2540] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022]
Abstract
Over the past few years, the interest in metabolomics has increased in various fields including forensic toxicology. Forensic analysis typically requires a high degree of accuracy, which is often a problem in metabolomics applications. We aimed for a systematic evaluation of different analytical considerations of a metabolomics workflow allowing a targeted approach within an untargeted setup. Samples with 69 metabolites from different chemical classes were qualitatively and quantitatively analyzed on a high resolution quadrupole time of flight mass spectrometer coupled to liquid chromatography (UHPLC-QTOF). Three issues were addressed: (a) Two different approaches on "blind matrix" a simulated body fluid (SBF) and plasma-filtrate, were tested for calibration samples; (b) comparison of two different HPLC columns, reverse-phase (RP) and hydrophilic interaction chromatography (HILIC); and (c) comparison of three different acquisition modes (TOF-MS, information dependent data acquisition (IDA), and sequential window acquisition of all theoretical fragment-ion spectra (SWATH). Samples were measured repeatedly for method comparison based on sensitivity, accuracy, precision, and detection robustness. The blind matrices showed similar accuracy for most analytes, while SBF provided an easier preparation with satisfying results. To cover a wide part of the human metabolome, a combination of RP and HILIC showed the best results. The different scan modes performed equally regarding metabolite quantification while TOF-MS was more sensitive but lacked MS/MS spectra generation. IDA and SWATH files were aligned to various databases where IDA showed good MS/MS spectra matches. SWATH seemed to be beneficial in detection rate but was incompatible with many important software tools in metabolomics.
Collapse
Affiliation(s)
- Martina I Boxler
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Switzerland
| | - Tom D Schneider
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Switzerland
| | - Andrea E Steuer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Switzerland
| |
Collapse
|
26
|
Schlotterbeck J, Cebo M, Kolb A, Lämmerhofer M. Quantitative analysis of chemoresistance-inducing fatty acid in food supplements using UHPLC-ESI-MS/MS. Anal Bioanal Chem 2018; 411:479-491. [PMID: 30460390 DOI: 10.1007/s00216-018-1468-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/10/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022]
Abstract
Polyunsaturated fatty acids are important signaling molecules. A recent study reported hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid, 12-oxo-5Z,8E,10E-heptadecatrienoic acid, and (12S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid as chemotherapy resistance-inducing factors when tumor cells were treated with cisplatin. Marine-based food supplements like fish oil or algae extracts are rich in polyunsaturated fatty acids and can contain large amounts of hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid. Thus, it was concluded that oral uptake of hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid might induce chemoresistance as shown in a mouse model. Cancer patients tend to consume food supplements containing polyunsaturated fatty acids on a regular basis. The uptake of hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid and (12S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid should be controlled, because even low concentrations of 0.5 ng mL-1 showed chemoresistance-inducing effects in animal experiments. For accurate analysis of hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid and (12S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid a validated method was developed by using ultrahigh-performance liquid chromatography hyphenated to quadrupole time of flight mass spectrometry via electrospray ionization and sample preparation by solid-phase extraction (SPE) with 3-aminopropyl silica. A combined targeted/untargeted approach was utilized using MS/MS by data-independent acquisition with SWATH and applied to commercial food supplements (refined fish oil, fish oil capsules, algae oil capsules, and flaxseed capsules). Accurate quantification of hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid and (12S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid on the MS/MS level with simultaneous untargeted fatty acid screening revealed additional information. The LODs for hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid and (12S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid were 0.036 ng mL-1 and 0.054 ng mL-1, respectively. Since hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid was present in the samples in large amounts and (12S)-hydroxy-5Z,8E,10E-heptadecatrienoic was not expected to be present in high concentrations, two calibration ranges, namely, 0.5-20 ng mL-1 and 5-200 ng mL-1, were validated. An untargeted screening identified 18-39 free fatty acids being present in the lipid extracts of the food supplement samples. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Jörg Schlotterbeck
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Malgorzata Cebo
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Agnes Kolb
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| |
Collapse
|