1
|
Xu X, Li J, Setrerrahmane S, Zhang J, Shi S, Hu Y, Lin D, Xu H. A multifunctional antibody fusion protein 57103 targeting CD24, IL-4R, and α vβ 3 for treating cancer and regulating the tumor microenvironment. Biomed Pharmacother 2024; 175:116714. [PMID: 38761419 DOI: 10.1016/j.biopha.2024.116714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Abstract
Cancer is one of the top 10 fatal diseases worldwide, among which advanced metastatic carcinoma has the highest mortality rate. Sunitinib and immune checkpoint blockers are commonly used to treat metastatic renal carcinoma with limited efficacy. Therefore, there is an urgent need to develop novel targeted therapies for metastatic renal cancer. In this study, we designed an antibody fusion protein, 57103, that simultaneously targeted the cluster of differentiation 24 (CD24), interleukin 4 receptor (IL-4R), and integrin receptors αvβ3 and α5β1. In vitro assays showed that 57103 significantly suppressed the proliferation, migration, invasion, colony formation, and adhesion abilities of renal cancer cells, resulting in a comprehensive and significant antitumor effect. Furthermore, 57103 inhibited angiogenesis, promoted THP1-derived M0-type macrophage phagocytosis, and enhanced the antibody-dependent cellular cytotoxicity of peripheral blood mononuclear and NK92MI-CD16a cells. In vivo experiments revealed significant inhibition of tumor growth in ACHN cell xenograft nude mice and an MC38-hCD24 tumor-bearing mouse model. Immunohistochemical analysis showed that 57103 decreased the proliferation and induced the apoptosis of renal cancer cells, while inhibiting angiogenesis. The MC38-hPDL1 and MC38-hCD24-hPDL1 tumor-bearing mouse models further offer the possibility of combining 57103 with the PDL1 antagonist atezolizumab. In conclusion, 57103 is a potential candidate drug for the treatment of metastatic renal carcinoma or PDL1-overexpressing cancer.
Collapse
Affiliation(s)
- Xiaowei Xu
- State Key Laboratory of Natural Medicines, Ministry of Education, the Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, Department of Marine Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jian Li
- Research and Development Center of Biopharmaceuticals, Tasly Academy, Tasly Pharmaceutical Co., Ltd., Tianjin, China
| | | | - Juan Zhang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Suoqin Shi
- Jiangsu Rongtai Biotechnology Co., LTD, Nanjing 210033, China
| | - Yahui Hu
- Jiangsu Rongtai Biotechnology Co., LTD, Nanjing 210033, China
| | - Dong Lin
- Jiangsu Rongtai Biotechnology Co., LTD, Nanjing 210033, China
| | - Hanmei Xu
- State Key Laboratory of Natural Medicines, Ministry of Education, the Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, Department of Marine Pharmacy, China Pharmaceutical University, Nanjing 211198, China; The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
2
|
Abucayon E, Whalen C, Torres OB, Duval AJ, Sulima A, Antoline JFG, Oertel T, Barrientos RC, Jacobson AE, Rice KC, Matyas GR. A Rapid Method for Direct Quantification of Antibody Binding-Site Concentration in Serum. ACS OMEGA 2022; 7:26812-26823. [PMID: 35936462 PMCID: PMC9352236 DOI: 10.1021/acsomega.2c03237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The quantitation of the available antibody binding-site concentration of polyclonal antibodies in serum is critical in defining the efficacy of vaccines against substances of abuse. We have conceptualized an equilibrium dialysis (ED)-based approach coupled with fluorimetry (ED-fluorimetry) to measure the antibody binding-site concentration to the ligand in an aqueous environment. The measured binding-site concentrations in monoclonal antibody (mAb) and sera samples from TT-6-AmHap-immunized rats by ED-fluorimetry are in agreement with those determined by a more established equilibrium dialysis coupled with ultraperformance liquid chromatography tandem mass spectrometry (ED-UPLC-MS/MS). Importantly, we have shown that the measured antibody binding-site concentrations to the ligand by ED-fluorimetry were not influenced by the sample serum matrix; thus, this method is valid for determining the binding-site concentration of polyclonal antibodies in sera samples. Further, we have demonstrated that under appropriate analytical conditions, this method resolved the total binding-site concentrations on a nanomolar scale with good accuracy and repeatability within the microliter sample volumes. This simple, rapid, and sample preparation-free approach has the potential to reliably perform quantitative antibody binding-site screening in serum and other more complex biological fluids.
Collapse
Affiliation(s)
- Erwin
G. Abucayon
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Connor Whalen
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Oak
Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831, United States
| | - Oscar B. Torres
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Alexander J. Duval
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Agnieszka Sulima
- Department
of Health and Human Services, Drug Design
and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National Institute on Drug Abuse
and the National Institute on Alcohol Abuse and Alcoholism, National
Institutes of Health, 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Joshua F. G. Antoline
- Department
of Health and Human Services, Drug Design
and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National Institute on Drug Abuse
and the National Institute on Alcohol Abuse and Alcoholism, National
Institutes of Health, 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Therese Oertel
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Oak
Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831, United States
| | - Rodell C. Barrientos
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Arthur E. Jacobson
- Department
of Health and Human Services, Drug Design
and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National Institute on Drug Abuse
and the National Institute on Alcohol Abuse and Alcoholism, National
Institutes of Health, 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Kenner C. Rice
- Department
of Health and Human Services, Drug Design
and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National Institute on Drug Abuse
and the National Institute on Alcohol Abuse and Alcoholism, National
Institutes of Health, 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Gary R. Matyas
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| |
Collapse
|
3
|
El Deeb S, Al-Harrasi A, Khan A, Al-Broumi M, Al-Thani G, Alomairi M, Elumalai P, Sayed RA, Ibrahim AE. Microscale thermophoresis as a powerful growing analytical technique for the investigation of biomolecular interaction and the determination of binding parameters. Methods Appl Fluoresc 2022; 10. [PMID: 35856854 DOI: 10.1088/2050-6120/ac82a6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/20/2022] [Indexed: 11/12/2022]
Abstract
The in vitro panel of technologies to address biomolecular interactions are in play, however microscale thermophoresis is continuously increasing in use to represent a key player in this arena. This review highlights the usefulness of microscale thermophoresis in the determination of molecular and biomolecular affinity interactions. This work reviews the literature from January 2016 to January 2022 about microscale thermophoresis. It gives a summarized overview about both the state-of the art and the development in the field of microscale thermophoresis. The principle of microscale thermophoresis is also described supported with self-created illustrations. Moreover, some recent advances are mentioned that showing application of the technique in investigating biomolecular interactions in different fields. Finally, advantages as well as drawbacks of the technique in comparison with other competing techniques are summarized.
Collapse
Affiliation(s)
- Sami El Deeb
- Technische Universitat Braunschweig, Braunschweig, Braunschweig, Niedersachsen, 38106, GERMANY
| | | | - Ajmal Khan
- University of Nizwa, Nizwa, Nizwa, 616, OMAN
| | | | | | | | | | - Rania A Sayed
- Pharmaceutical analytical chemistry department, Zagazig University, Zagazig, Zagazig, 44519, EGYPT
| | - Adel Ehab Ibrahim
- Pharmaceutical Analytical Chemistry, Port Said University, Port Said, Port Said, 42526, EGYPT
| |
Collapse
|
4
|
An original approach to measure ligand/receptor binding affinity in non-purified samples. Sci Rep 2022; 12:5400. [PMID: 35354858 PMCID: PMC8967833 DOI: 10.1038/s41598-022-09217-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/10/2022] [Indexed: 11/30/2022] Open
Abstract
Several biochemical and biophysical methods are available to determine ligand binding affinities between a biological target and its ligands, most of which require purification, labelling or surface immobilisation. These measurements, however, remain challenging in regards to membrane proteins, as purification processes require their extraction from their native lipid environment, which may in turn impact receptor conformation and functionality. In this study, we have developed a novel experimental procedure using microscale thermophoresis (MST) directly from cell membrane fragments, to determine different ligand binding affinities to a membrane protein, the dopamine D2 receptor (D2R). In order to achieve this, two main challenges had to be overcome: determining the concentration of dopamine D2R in the crude sample; finding ways to minimize or account for non-specific binding of the ligand to cell fragments. Using MST, we were able to determine the D2R concentration in cell membrane fragments to approximately 36.8 ± 2.6 pmol/mg. Next, the doses-responses curves allowed for the determination of KD, to approximately 5.3 ± 1.7 nM, which is very close to the reported value. Important details of the experimental procedure have been detailed in this paper to allow the application of this novel method to various membrane proteins.
Collapse
|
5
|
Barrientos R, Whalen C, Torres OB, Sulima A, Bow EW, Komla E, Beck Z, Jacobson AE, Rice KC, Matyas GR. Bivalent Conjugate Vaccine Induces Dual Immunogenic Response That Attenuates Heroin and Fentanyl Effects in Mice. Bioconjug Chem 2021; 32:2295-2306. [PMID: 34076427 PMCID: PMC8603354 DOI: 10.1021/acs.bioconjchem.1c00179] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/17/2021] [Indexed: 11/29/2022]
Abstract
Opioid use disorders and fatal overdose due to consumption of fentanyl-laced heroin remain a major public health menace in the United States. Vaccination may serve as a promising potential remedy to combat accidental overdose and to mitigate the abuse potential of opioids. We previously reported the heroin and fentanyl monovalent vaccines carrying, respectively, a heroin hapten, 6-AmHap, and a fentanyl hapten, para-AmFenHap, conjugated to tetanus toxoid (TT). Herein, we describe the mixing of these antigens to formulate a bivalent vaccine adjuvanted with liposomes containing monophosphoryl lipid A (MPLA) adsorbed on aluminum hydroxide. Immunization of mice with the bivalent vaccine resulted in IgG titers of >105 against both haptens. The polyclonal sera bound heroin, 6-acetylmorphine, morphine, and fentanyl with dissociation constants (Kd) of 0.25 to 0.50 nM. Mice were protected from the anti-nociceptive effects of heroin, fentanyl, and heroin +9% (w/w) fentanyl. No cross-reactivity to methadone and buprenorphine was observed in vivo. Naloxone remained efficacious in immunized mice. These results highlighted the potential of combining TT-6-AmHap and TT-para-AmFenHap to yield an efficacious bivalent vaccine that could ablate heroin and fentanyl effects. This vaccine warrants further testing to establish its potential translatability to humans.
Collapse
Affiliation(s)
- Rodell
C. Barrientos
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Connor Whalen
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Oscar B. Torres
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Agnieszka Sulima
- Drug
Design and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National
Institute on Drug Abuse and the National Institute on Alcohol Abuse
and Alcoholism, National Institutes of Health, Department of Health
and Human Services, 9800 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Eric W. Bow
- Drug
Design and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National
Institute on Drug Abuse and the National Institute on Alcohol Abuse
and Alcoholism, National Institutes of Health, Department of Health
and Human Services, 9800 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Essie Komla
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Zoltan Beck
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Arthur E. Jacobson
- Drug
Design and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National
Institute on Drug Abuse and the National Institute on Alcohol Abuse
and Alcoholism, National Institutes of Health, Department of Health
and Human Services, 9800 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Kenner C. Rice
- Drug
Design and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National
Institute on Drug Abuse and the National Institute on Alcohol Abuse
and Alcoholism, National Institutes of Health, Department of Health
and Human Services, 9800 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Gary R. Matyas
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| |
Collapse
|
6
|
Zheng Z, Kyzer JL, Worob A, Wenthur CJ. Family of Structurally Related Bioconjugates Yields Antibodies with Differential Selectivity against Ketamine and 6-Hydroxynorketamine. ACS Chem Neurosci 2021; 12:4113-4122. [PMID: 34652905 PMCID: PMC9358770 DOI: 10.1021/acschemneuro.1c00498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The dissociative-hypnotic compound ketamine is being used in an increasingly wide range of therapeutic contexts, including anesthesia, adjunctive analgesia, treatment-resistant depression, but it also continues to be a notable substance of abuse. No specific antidotes exist for ketamine intoxication or overdose. Immunopharmacotherapy has demonstrated the ability to offer overdose protection through production of highly specific antibodies that prevent psychoactive drug penetration across the blood-brain barrier, although antiketamine antibodies have not yet been assessed or optimized for use in this approach. Moreover, generation of specific antibodies also provides an opportunity to address the role of 6-hydroxynorketamine metabolites in ketamine's rapid-acting antidepressant effect through selective restriction of metabolite access to the central nervous system. Hapten design is a critical element for tuning immune recognition of small molecules, as it affects the presentation of the target antigen and thus the quality and selectivity of the response. Here, we report the synthesis and optimization of carrier protein and conjugation conditions for an initial hapten, norketamine-N-COOH (NK-N-COOH), to optimize vaccination conditions and assess the functional consequences of such vaccination on ketamine-induced behavioral alterations occurring at dissociative-like (50 mg/kg) doses. Iterating from this initial approach, two additional haptens, ketamine-N-COOH (KET-N-COOH) and 6-hydroxynorketamine-N-COOH (HNK-N-COOH), were synthesized to target either ketamine or 6-hydroxynorketamine with greater selectivity. The ability of these haptens to generate antiketamine, antinorketamine, and anti-6-hydroxynorketamine immune responses in mice was then assessed using enzyme-linked immunosorbent assay (ELISA) and competitive surface plasmon resonance (SPR) methods. All three haptens provoked immune responses in vivo, although the KET-N-COOH and 6-HNK-N-COOH haptens yielded antibodies with 5- to 10-fold improvements in affinity for ketamine and/or 6-hydroxynorketamine, as compared to NK-N-COOH. Regarding selectivity, vaccines bearing a KET-N-COOH hapten yielded an antibody response with approximately equivalent Kd values against ketamine (86.4 ± 3.2 nM) and 6-hydroxynorketamine (74.1 ± 7.8 nM) and a 90-fold weaker Kd against norketamine. Contrastingly, 6-HNK-N-COOH generated the highest affinity and most selective antibody profile, with a 38.3 ± 4.7 nM IC50 against 6-hydroxynorketamine; Kd values for ketamine and norketamine were 33- to 105-fold weaker, at 1290 ± 281.5 and 3971 ± 2175 nM, respectively. Overall, these findings support the use of rational hapten design to generate antibodies capable of distinguishing between structurally related, yet mechanistically distinct, compounds arising from the same precursor molecule. As applied to the production of the first-reported anti-6-hydroxynorketamine antibodies to date, this approach demonstrates a promising path forward for identifying the individual and combinatorial roles of ketamine and its metabolites in supporting rewarding effects and/or rapid-acting antidepressant activity.
Collapse
Affiliation(s)
- Zhen Zheng
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Jillian L Kyzer
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Adam Worob
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Cody J Wenthur
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| |
Collapse
|
7
|
The M3-TT Vaccine Decreases the Antinociceptive Effects of Morphine and Heroin in Mice. Int J Ment Health Addict 2021. [DOI: 10.1007/s11469-021-00621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
8
|
Gutman ES, Irvin TC, Morgan JB, Barrientos RC, Torres OB, Beck Z, Matyas GR, Jacobson AE, Rice KC. Synthesis and immunological effects of C14-linked 4,5-epoxymorphinan analogues as novel heroin vaccine haptens. RSC Chem Biol 2021; 2:835-842. [PMID: 34179783 PMCID: PMC8190897 DOI: 10.1039/d1cb00029b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Active immunization is being explored as a potential therapeutic to combat accidental overdose and to mitigate the abuse potential of opioids. Hapten design is one of the crucial factors that determines the efficacy of a candidate vaccine to substance abuse and remains one of the most active areas of research in vaccine development. Herein we report for the first time the synthesis of three novel opiate surrogates with the linker attachment site at C14, 1 (6,14-AmidoHap), 2 (14-AmidoMorHap), and 3 (14-AmidoHerHap) as novel heroin haptens. The compounds 1, 2, and 3 are analogues with different substituents at C6: an acetamide, a hydroxyl moiety, and an acetate, respectively. All three haptens had a phenolic hydroxyl group at C3. The haptens were conjugated to the tetanus toxoid carrier protein, adjuvanted with liposomal monophosphoryl lipid A/aluminum hydroxide and were tested in mice in terms of immunogenicity and efficacy. Immunization of mice resulted in antibody endpoint titers of >105 against all the haptens. Neither of the conjugates of 1, 2, and 3 had induced antibodies with selectivity broad enough to recognize and bind heroin, 6-AM, and morphine resulting in little to no protection against the antinociceptive effects of heroin in vivo. Only the mice immunized with conjugate 3 were partially protected against heroin-induced antinociception. These results contribute to the growing body of knowledge that the linker position and the subtle structural differences in the hapten scaffold impact the selectivity of the induced antibodies. Together, these highlight the importance of rational hapten design for heroin vaccine development. Three novel opiate surrogates with the linker at C14, 1 (6,14-AmidoHap), 2 (14-AmidoMorHap), and 3 (14-AmidoHerHap) were conjugated to tetanus toxoid (TT) and tested as heroin vaccines. The C3 and C6 moieties are crucial in antibody selectivity.![]()
Collapse
Affiliation(s)
- Eugene S Gutman
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and The National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services 9800 Medical Center Drive Bethesda MD 20892-3373 USA +1 301-451-4799 +1 301-451-5028
| | - Thomas C Irvin
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and The National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services 9800 Medical Center Drive Bethesda MD 20892-3373 USA +1 301-451-4799 +1 301-451-5028
| | - J Brian Morgan
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and The National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services 9800 Medical Center Drive Bethesda MD 20892-3373 USA +1 301-451-4799 +1 301-451-5028
| | - Rodell C Barrientos
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research 503 Robert Grant Avenue Silver Spring MD 20910 USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine 6720A Rockledge Drive Bethesda MD 20817 USA
| | - Oscar B Torres
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research 503 Robert Grant Avenue Silver Spring MD 20910 USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine 6720A Rockledge Drive Bethesda MD 20817 USA
| | - Zoltan Beck
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research 503 Robert Grant Avenue Silver Spring MD 20910 USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine 6720A Rockledge Drive Bethesda MD 20817 USA
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research 503 Robert Grant Avenue Silver Spring MD 20910 USA
| | - Arthur E Jacobson
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and The National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services 9800 Medical Center Drive Bethesda MD 20892-3373 USA +1 301-451-4799 +1 301-451-5028
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and The National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services 9800 Medical Center Drive Bethesda MD 20892-3373 USA +1 301-451-4799 +1 301-451-5028
| |
Collapse
|
9
|
Al Hamoui Dit Banni G, Nasreddine R, Fayad S, Colas C, Marchal A, Nehmé R. Investigation of lipase-ligand interactions in porcine pancreatic extracts by microscale thermophoresis. Anal Bioanal Chem 2021; 413:3667-3681. [PMID: 33797603 DOI: 10.1007/s00216-021-03314-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/19/2022]
Abstract
The evaluation of binding affinities between large biomolecules and small ligands is challenging and requires highly sensitive techniques. Microscale thermophoresis (MST) is an emerging biophysical technique used to overcome this limitation. This work describes the first MST binding method to evaluate binding affinities of small ligands to lipases from crude porcine pancreatic extracts. The conditions of the MST assay were thoroughly optimized to successfully evaluate the dissociation constant (Kd) between pancreatic lipases (PL) and triterpenoid compounds purified from oakwood. More precisely, the fluorescent labeling of PL (PL*) using RED-NHS dye was achieved via a buffer exchange procedure. The MST buffer was composed of 20 mM NaH2PO4 + 77 mM NaCl (pH 6.6) with 0.05% Triton-X added to efficiently prevent protein aggregation and adsorption, even when using only standard, uncoated MST capillaries. Storage at -20 °C ensured stability of PL* and its fluorescent signal. MST results showed that crude pancreatic extracts were suitable as a source of PL for the evaluation of binding affinities of small ligands. Quercotriterpenoside-I (QTT-I) demonstrated high PL* binding affinity (31 nM) followed by 3-O-galloylbarrinic acid (3-GBA) (500 nM) and bartogenic acid (BA) (1327 nM). To enrich the 50 kDa lipase responsible for the majority of hydrolysis activity in the crude pancreatic extracts, ammonium sulfate precipitation was attempted and its efficiency confirmed using capillary electrophoresis (CE)-based activity assays and HRMS. Moreover, to accurately explain enzyme modulation mechanism, it is imperative to complement binding assays with catalytic activity ones.
Collapse
Affiliation(s)
- Ghassan Al Hamoui Dit Banni
- Institut de Chimie Organique et Analytique (ICOA), CNRS FR 2708 - UMR 7311, Université d'Orléans, 45067, Orléans, France
| | - Rouba Nasreddine
- Institut de Chimie Organique et Analytique (ICOA), CNRS FR 2708 - UMR 7311, Université d'Orléans, 45067, Orléans, France
| | - Syntia Fayad
- Institut des Sciences de la Vigne et du Vin (ISVV), EA 5477, Unité de recherche Œnologie, USC 1366 INRA, Université de Bordeaux, 33882, Villenave d'Ornon, France
| | - Cyril Colas
- Institut de Chimie Organique et Analytique (ICOA), CNRS FR 2708 - UMR 7311, Université d'Orléans, 45067, Orléans, France.,Centre de Biophysique Moléculaire, CNRS-Université d'Orléans, UPR 4311, 45071, Orléans CEDEX 2, France
| | - Axel Marchal
- Institut des Sciences de la Vigne et du Vin (ISVV), EA 5477, Unité de recherche Œnologie, USC 1366 INRA, Université de Bordeaux, 33882, Villenave d'Ornon, France
| | - Reine Nehmé
- Institut de Chimie Organique et Analytique (ICOA), CNRS FR 2708 - UMR 7311, Université d'Orléans, 45067, Orléans, France.
| |
Collapse
|
10
|
Alving CR, Peachman KK, Matyas GR, Rao M, Beck Z. Army Liposome Formulation (ALF) family of vaccine adjuvants. Expert Rev Vaccines 2020; 19:279-292. [PMID: 32228108 PMCID: PMC7412170 DOI: 10.1080/14760584.2020.1745636] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/17/2020] [Indexed: 12/19/2022]
Abstract
Introduction: From its earliest days, the US. military has embraced the use of vaccines to fight infectious diseases. The Army Liposome Formulation (ALF) has been a pivotal innovation as a vaccine adjuvant that provides excellent safety and potency and could lead to dual-use military and civilian benefits. For protection of personnel against difficult disease threats found in many areas of the world, Army vaccine scientists have created novel liposome-based vaccine adjuvants.Areas covered: ALF consists of liposomes containing saturated phospholipids, cholesterol, and monophosphoryl lipid A (MPLA) as an immunostimulant. ALF exhibited safety and strong potency in many vaccine clinical trials. Improvements based on ALF include: ALF adsorbed to aluminum hydroxide (ALFA); ALF containing QS21 saponin (ALFQ); and ALFQ adsorbed to aluminum hydroxide (ALFQA). Preclinical safety and efficacy studies with ALF, LFA, ALFQ, and ALFQA are discussed in preparation for upcoming vaccine trials targeting malaria, HIV-1, bacterial diarrhea, and opioid addiction.Expert opinion: The introduction of ALF in the 1980s stimulated commercial interest in vaccines to infectious diseases, and therapeutic vaccines to cancer, and Alzheimer's disease. It is likely that ALF, ALFA, and ALFQ, will provide momentum for new types of modern vaccines with improved efficacy and safety.
Collapse
Affiliation(s)
- Carl R. Alving
- Laboratory of Adjuvant & Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Kristina K. Peachman
- Laboratory of Adjuvant & Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Gary R. Matyas
- Laboratory of Adjuvant & Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Mangala Rao
- Laboratory of Adjuvant & Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Zoltan Beck
- Laboratory of Adjuvant & Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| |
Collapse
|