1
|
Michlig N, Lehotay SJ, Lightfield AR. Comparison of filter membranes in the analysis of 183 veterinary and other drugs by liquid chromatography-tandem mass spectrometry. J Sep Sci 2024; 47:e2300696. [PMID: 38356232 DOI: 10.1002/jssc.202300696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
Although filtration is one of the most common steps in sample preparation for chemical analysis, filter membrane materials can leach contaminants and/or retain some analytes in the filtered solutions. In multiclass, multiresidue analysis of veterinary drugs, it is challenging to find one type of filter membrane that does not retain at least some of the analytes before injection in ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). In this study, different filter membranes were tested for use in UHPLC-MS/MS analysis of 183 diverse drugs in bovine muscle, kidney, and liver tissues. Membranes evaluated consisted of polytetrafluoroethylene (PTFE), polyvinylidene difluoride (PVDF), polyethersulfone, nylon, and regenerated cellulose. Drug classes represented among the analytes included β-agonists, β-lactams, anthelmintics, macrolides, tetracyclines, sulfonamides, tranquilizers, (fluoro)quinolones, anti-inflammatories, nitroimidazoles, coccidiostats, phenicols, and others. Although the presence of a matrix helped reduce the binding of analytes on surface active sites, all of the filter types partially retained at least some of the drugs in the final extracts. In testing by flow-injection analysis, all of the membrane filters were also observed to leach interfering components. Ultimately, filtration was avoided altogether in the final sample preparation approach known as the quick, easy, cheap, effective, rugged, safe, efficient, and robust (QuEChERSER) mega-method, and ultracentrifugation was chosen as an alternative.
Collapse
Affiliation(s)
- Nicolás Michlig
- US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Steven J Lehotay
- US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| | - Alan R Lightfield
- US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| |
Collapse
|
2
|
Lehotay SJ. Food safety analysis 2.0. Anal Bioanal Chem 2024; 416:609-610. [PMID: 37962607 DOI: 10.1007/s00216-023-05036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Affiliation(s)
- Steven J Lehotay
- USDA Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA.
| |
Collapse
|
3
|
Abstract
The extensive use of pesticides represents a risk to human health. Consequently, legal frameworks have been established to ensure food safety, including control programs for pesticide residues. In this context, the performance of analytical methods acquires special relevance. Such methods are expected to be able to determine the largest number of compounds at trace concentration levels in complex food matrices, which represents a great analytical challenge. Technical advances in mass spectrometry (MS) have led to the development of more efficient analytical methods for the determination of pesticides. This review provides an overview of current analytical strategies applied in pesticide analysis, with a special focus on MS methods. Current targeted MS methods allow the simultaneous determination of hundreds of pesticides, whereas non-targeted MS methods are now applicable to the identification of pesticide metabolites and transformation products. New trends in pesticide analysis are also presented, including approaches for the simultaneous determination of pesticide residues and other food contaminants (i.e., mega-methods), or the recent application of techniques such as ion mobility–mass spectrometry (IM–MS) for this purpose.
Collapse
|
4
|
A vision on the ‘foodture’ role of dietary exposure sciences in the interplay between food safety and nutrition. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Bhavadharini B, Kavimughil M, Malini B, Vallath A, Prajapati HK, Sunil CK. Recent Advances in Biosensors for Detection of Chemical Contaminants in Food — a Review. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02213-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Abstract
Introduced in 2003, the “quick, easy, cheap, effective, rugged, and safe” (QuEChERS) sample preparation approach has been widely adopted in many applications, particularly in chemical residue analysis of foods. Prior to QuEChERS, sample preparation generally entailed several time-consuming, labor-intensive, and reagent-excessive steps, but the commercialization at the time of powerful, cost-effective, benchtop gas chromatography–mass spectrometry (GC–MS) and liquid chromatography–tandem MS (LC–MS/MS) instruments enabled the implementation of the QuEChERS procedure. Despite analytical technologies continuing to improve over the last two decades, many laboratories are still using QuEChERS protocols developed for outdated instrumentation. Recently, QuEChERS has been updated into QuEChERSER (with “efficient and robust” being added to the portmanteau) to better take advantage of the features provided by modern sample preparation and analytical techniques. Most notably, QuEChERSER is a “mega-method” that covers a broader scope of polar and nonpolar analytes in diverse sample types. In this article, the new QuEChERSER approach and its advantages over QuEChERS are explained.
Collapse
|
7
|
Delatour T, Becker F, Krause J, Romero R, Gruna R, Längle T, Panchaud A. Handheld Spectral Sensing Devices Should Not Mislead Consumers as Far as Non-Authentic Food Is Concerned: A Case Study with Adulteration of Milk Powder. Foods 2021; 11:foods11010075. [PMID: 35010202 PMCID: PMC8750415 DOI: 10.3390/foods11010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
With the rising trend of consumers being offered by start-up companies portable devices and applications for checking quality of purchased products, it appears of paramount importance to assess the reliability of miniaturized sensors embedded in such devices. Here, eight sensors were assessed for food fraud applications in skimmed milk powder. The performance was evaluated with dry- and wet-blended powders mimicking adulterated materials by addition of either ammonium sulfate, semicarbazide, or cornstarch in the range 0.5-10% of profit. The quality of the spectra was assessed for an adequate identification of the outliers prior to a deep assessment of performance for both non-targeted (soft independent modelling of class analogy, SIMCA) and targeted analyses (partial least square regression with orthogonal signal correction, OPLS). Here, we show that the sensors have generally difficulties in detecting adulterants at ca. 5% supplementation, and often fail in achieving adequate specificity and detection capability. This is a concern as they may mislead future users, particularly consumers, if they are intended to be developed for handheld devices available publicly in smartphone-based applications.
Collapse
Affiliation(s)
- Thierry Delatour
- Société des Produits Nestlé S.A., Nestlé Research, Route du Jorat 57, 1000 Lausanne, Switzerland; (R.R.); (A.P.)
- Correspondence:
| | - Florian Becker
- Fraunhofer IOSB, Fraunhofer Institute of Optronics, System Technologies and Image Exploitation, Fraunhoferstrasse 1, 76131 Karlsruhe, Germany; (F.B.); (J.K.); (R.G.); (T.L.)
| | - Julius Krause
- Fraunhofer IOSB, Fraunhofer Institute of Optronics, System Technologies and Image Exploitation, Fraunhoferstrasse 1, 76131 Karlsruhe, Germany; (F.B.); (J.K.); (R.G.); (T.L.)
| | - Roman Romero
- Société des Produits Nestlé S.A., Nestlé Research, Route du Jorat 57, 1000 Lausanne, Switzerland; (R.R.); (A.P.)
| | - Robin Gruna
- Fraunhofer IOSB, Fraunhofer Institute of Optronics, System Technologies and Image Exploitation, Fraunhoferstrasse 1, 76131 Karlsruhe, Germany; (F.B.); (J.K.); (R.G.); (T.L.)
| | - Thomas Längle
- Fraunhofer IOSB, Fraunhofer Institute of Optronics, System Technologies and Image Exploitation, Fraunhoferstrasse 1, 76131 Karlsruhe, Germany; (F.B.); (J.K.); (R.G.); (T.L.)
| | - Alexandre Panchaud
- Société des Produits Nestlé S.A., Nestlé Research, Route du Jorat 57, 1000 Lausanne, Switzerland; (R.R.); (A.P.)
| |
Collapse
|
8
|
Petrarca MH, Fernandes JO, Marmelo I, Marques A, Cunha SC. Multi-analyte gas chromatography-mass spectrometry method to monitor bisphenols, musk fragrances, ultraviolet filters, and pesticide residues in seafood. J Chromatogr A 2021; 1663:462755. [PMID: 34968957 DOI: 10.1016/j.chroma.2021.462755] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022]
Abstract
A gas chromatography-mass spectrometry method for the analysis of thirty-six anthropogenic contaminants in the edible portion of four distinct seafood items is reported. Considering the heterogeneous composition of algae, mussels, and lean/fatty fish muscles, a generic sample preparation based on the QuEChERS procedure combined with dispersive liquid-liquid microextraction (DLLME) with in situ acetylation was successfully applied for quantification of pesticide residues, bisphenols, musk fragrances and UV-filters. Matrix effects were influenced by the type of seafood, with the lowest effects being observed with EMR-lipid and graphitized carbon black sorbents in dispersive solid-phase extraction cleanup step. Method performance features were successful evaluated in the different seafood samples - algae, mussel, lean and fatty fish muscles, following the criteria established by SANTE/12682/2019 for analytical methods for pesticide residues analysis. The detection and quantification of bisphenol F, musk fragrances (galaxolide and tonalide), UV-filters (2-ethylhexyl salicylate, 2-ethylhexyl 4-methoxycinnamate, and isoamyl 4-methoxycinnamate), and residues of permethrin in commercial samples of algae, mussel and fish collected in a Portuguese estuary support the suitability of the proposed method for future seafood monitoring by food safety authorities.
Collapse
Affiliation(s)
- Mateus Henrique Petrarca
- LAQV-REQUIMTE, Food Chemistry, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Food Chemistry, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Isa Marmelo
- IPMA, Divisão de Aquacultura e Valorização, Instituto Português do Mar e da Atmosfera, I.P., Avenida de Brasília, Lisboa 1449-006, Portugal; CIIMAR, Universidade do Porto, Rua dos Bragas 289, Porto 4050-123, Portugal; UCIBIO-REQUIMTE, Department of Chemistry, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica 2829-516, Portugal
| | - António Marques
- IPMA, Divisão de Aquacultura e Valorização, Instituto Português do Mar e da Atmosfera, I.P., Avenida de Brasília, Lisboa 1449-006, Portugal; CIIMAR, Universidade do Porto, Rua dos Bragas 289, Porto 4050-123, Portugal
| | - Sara C Cunha
- LAQV-REQUIMTE, Food Chemistry, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal.
| |
Collapse
|
9
|
Wang J, Teng X, Wang Y, Si S, Ju J, Pan W, Wang J, Sun X, Wang W. Carbon dots based fluorescence methods for the detections of pesticides and veterinary drugs: Response mechanism, selectivity improvement and application. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116430] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Toribio L, Bernal J, Martín MT, Ares AM. Supercritical fluid chromatography coupled to mass spectrometry: A valuable tool in food analysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Fedorenko D, Bartkevics V. Recent Applications of Nano-Liquid Chromatography in Food Safety and Environmental Monitoring: A Review. Crit Rev Anal Chem 2021; 53:98-122. [PMID: 34392753 DOI: 10.1080/10408347.2021.1938968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In recent years, a trend toward instrument miniaturization has led to the development of new and sophisticated analytical systems, such as nano-liquid chromatography (nano-LC), which has enabled improvements of sensitivity, as well as chromatographic resolution. The growing interest in nano-LC methodology has resulted in a variety of innovative and promising applications. In this article, we review the applications of nano-LC separation methods coupled with mass spectrometry in the analysis of food and environmental samples. An assessment of sample preparation methods and analytical performance are provided, along with comparison to other, more established analytical techniques. Three main groups of compounds that are crucial for food safety assessment are considered in this review: pharmaceuticals (including antibiotics), pesticides, and mycotoxins. Recent practical applications of the nano-LC method in the determination of these compounds are discussed. Furthermore, we also focus on methods for the determination of various environmental contaminants using nano-LC methods. Future perspectives for the development of nano-LC methods are discussed.
Collapse
Affiliation(s)
- Deniss Fedorenko
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia.,University of Latvia, Faculty of Chemistry, Riga, Latvia
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia.,University of Latvia, Faculty of Chemistry, Riga, Latvia
| |
Collapse
|
12
|
Lehotay SJ, Lightfield AR. Comparison of four different multiclass, multiresidue sample preparation methods in the analysis of veterinary drugs in fish and other food matrices. Anal Bioanal Chem 2021; 413:3223-3241. [PMID: 33713145 DOI: 10.1007/s00216-021-03259-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022]
Abstract
In 2018, AOAC International issued Standard Method Performance Requirements (SPMR) 2018.010 - Screening and Identification Method for Regulated Veterinary Drug Residues in Food. In response, we compared 4 different multiresidue methods of sample preparation using the same analytical method entailing ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Tilapia was chosen for testing, and the analytes and monitoring levels were from SPMR 2018.010. The methods consist of efficient procedures with published validation results from the US Department of Agriculture (USDA), Food and Drug Administration (FDA), and Canadian Food Inspection Agency (CFIA), and an enhanced-matrix removal (EMR)-Lipid protocol from China. Each method was used to prepare 102 final extracts of tilapia spiked or not at different levels with the 78 targeted analytes plus metabolites. The same FDA/USDA rules of mass spectral identification were employed in all analyses to assess rates of false positives and negatives. Quantitative accuracy of the methods was also compared in terms of recoveries and reproducibility of spiked tilapia, incurred catfish, and spiked and certified reference material of bovine muscle. Each method yielded generally acceptable results for the targeted veterinary drugs, but the USDA "extract & inject" method was the fastest, simplest, and cheapest to achieve equally or more acceptable results for the widest scope of analytes for the tested food matrices.
Collapse
Affiliation(s)
- Steven J Lehotay
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA.
| | - Alan R Lightfield
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| |
Collapse
|
13
|
Cruz JM, Murray JA. Determination of glyphosate and AMPA in oat products for the selection of candidate reference materials. Food Chem 2021; 342:128213. [PMID: 33129618 PMCID: PMC8207808 DOI: 10.1016/j.foodchem.2020.128213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/08/2020] [Accepted: 09/23/2020] [Indexed: 02/02/2023]
Abstract
The use of reference materials (RMs) is critical for validating and testing the accuracy of analytical protocols. The National Institute of Standards and Technology (NIST) is in initial stages of developing a glyphosate in oats RM. The first aim of this study was to optimize and validate a robust method for the extraction and analysis of glyphosate and aminomethylphosphonic acid (AMPA). The optimized method was used to screen thirteen commercially available oat products to identify candidate RMs. Glyphosate was detected in all samples, with the highest glyphosate mass fraction of 1100 ng/g; lower levels were measured in grains from organic agriculture. AMPA was quantified in nine samples up to 40 ng/g. The findings of this study led to the identification of candidate RMs, with "high" and "low" glyphosate levels. A preliminary stability study determined that glyphosate is stable in oat material at room temperature for six months.
Collapse
Affiliation(s)
- Justine M Cruz
- U.S. National Institute of Standards and Technology, Chemical Sciences Division, 100 Bureau Drive, Gaithersburg, MD 20899-8392, USA
| | - Jacolin A Murray
- U.S. National Institute of Standards and Technology, Chemical Sciences Division, 100 Bureau Drive, Gaithersburg, MD 20899-8392, USA.
| |
Collapse
|
14
|
Pretreatment and determination methods for benzimidazoles: An update since 2005. J Chromatogr A 2021; 1644:462068. [PMID: 33836299 DOI: 10.1016/j.chroma.2021.462068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 01/08/2023]
Abstract
Benzimidazoles, commonly used as pesticides and veterinary drugs, have posed a threat to human health and the environment due to unreasonable use and lack of valid regulation. Therefore, an up-to-date and comprehensive summary of the pretreatment and analytical approaches in different substrates is urgently needed. The present review consequently updates and covers various newly developed pretreatment methods (e.g., cationic micellar precipitation, magnetic-solid phase extraction, hollow fiber liquid phase microextraction, disperse liquid-liquid microextraction-solidified floating organic drop, stir cake sorptive extraction, solid phase microextraction method, QuEChERS, and molecular imprinted polymer-based methods) since 2005. The review also elaborates and discusses different determination methods (e.g., newly developed HPLC and related methods, improved spectrofluorimetry methods, capillary electrophoresis, and the electrochemical sensor). Furthermore, some critical points and prospects are highlighted, to describe the trends in this area.
Collapse
|
15
|
Grutes JV, Ferreira RG, Pereira MU, Candido FS, Spisso BF. Development and validation of an LC-MS/MS screening method for macrolide and quinolone residues in baby food. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:197-211. [PMID: 33463404 DOI: 10.1080/03601234.2021.1872324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A simple, rapid and sensitive screening method by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the identification of 7 macrolides (clarithromycin, erythromycin, oleandomycin, spiramycin, tilmicosin, troleandomycin and tylosin) and 8 quinolones (ciprofloxacin, difloxacin, enrofloxacin, flumequine, moxifloxacin, nalidixic acid, norfloxacin and ofloxacin) in meat and egg-based baby foods. Sample preparation was performed using an alkaline modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged, Safe) extraction method without additional clean-up steps. A simplex-lattice mixture experimental design was used in the optimization of the QuEChERS extraction solvent. The developed method was successfully validated according to the Commission Decision 2002/657/EC and the European Community Reference Laboratories Residues Guidelines regarding the validation of screening methods 20/01/2010, adopting a fixed permited tolerance for relative ion ratio. Samples of baby food (n = 44) commercialized in Rio de Janeiro, Brazil, were analyzed using the validated method and none of them presented residues of the searched macrolides and quinolones, with a screening target value of 5 µg kg-1.
Collapse
Affiliation(s)
- Jônatas V Grutes
- Chemistry Department, Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosana G Ferreira
- Chemistry Department, Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mararlene U Pereira
- Chemistry Department, Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe S Candido
- Chemistry Department, Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bernardete F Spisso
- Chemistry Department, Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Zhang H, Chen Q, Niu B. Risk Assessment of Veterinary Drug Residues in Meat Products. Curr Drug Metab 2020; 21:779-789. [PMID: 32838714 DOI: 10.2174/1389200221999200820164650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/17/2020] [Accepted: 05/13/2020] [Indexed: 01/04/2023]
Abstract
With the improvement of the global food safety regulatory system, there is an increasing importance for food safety risk assessment. Veterinary drugs are widely used in poultry and livestock products. The abuse of veterinary drugs seriously threatens human health. This article explains the necessity of risk assessment for veterinary drug residues in meat products, describes the principles and functions of risk assessment, then summarizes the risk assessment process of veterinary drug residues, and then outlines the qualitative and quantitative risk assessment methods used in this field. We propose the establishment of a new meat product safety supervision model with a view to improve the current meat product safety supervision system.
Collapse
Affiliation(s)
- Hui Zhang
- School of Life Sciences, Shanghai University, Shangda Road 200444, Shanghai, China
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shangda Road 200444, Shanghai, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shangda Road 200444, Shanghai, China
| |
Collapse
|
17
|
Rodríguez-Ramos R, Lehotay SJ, Michlig N, Socas-Rodríguez B, Rodríguez-Delgado MÁ. Critical review and re-assessment of analyte protectants in gas chromatography. J Chromatogr A 2020; 1632:461596. [PMID: 33045497 DOI: 10.1016/j.chroma.2020.461596] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 01/03/2023]
Abstract
Despite nearly 80 years of advancements in gas chromatography (GC), indirect chemical matrix effects (MEs), known as the matrix-induced response enhancement effect, still occur to cause a high bias in the GC analysis of susceptible analytes, unless precautions are taken. Matrix-matched calibration is one common option used in GC to compensate for the MEs, but this approach is usually inconvenient, imprecise, and inefficient. Other options, such as the method of standard additions, surface deactivation techniques, chemical derivatizations, priming the GC, and/or use of internal standards, also have flaws in practice. When methods are accommodating, the use of analyte protectants (APs) can provide the best practical solution to not only overcome MEs, but also to maximize analyte signal by increasing chromatographic and detection efficiencies for the analytes. APs address the source of MEs in every injection by filling active sites in the GC inlet, column, and detector, particularly in GC-MS, rather than the analytes that would otherwise undergo degradation, peak tailing, and/or diminished response due to interactions with the active sites. The addition of an adequate amount of APs (e.g. sugar derivatives) to all calibration standards and final extracts alike often leads to lower detection limits, better accuracy, narrower peaks, and greater robustness than the other options to compensate for MEs in GC. This article consists of a critical review of the scientific literature, proposal of mechanisms and theory, and re-evaluation studies involving APs for the first time in GC-orbitrap and GC-MS/MS with a high-efficiency ion source design. The findings showed that 1 µg each of co-injected shikimic acid and sorbitol in the former case, and 1 µg shikimic acid alone in the latter case, led to high quality results in multi-residue analysis of pesticides and environmental contaminants.
Collapse
Affiliation(s)
- Ruth Rodríguez-Ramos
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avenida Astrofísico Francisco Sánchez, s/n. 38206 San Cristóbal de La Laguna (Tenerife), España
| | - Steven J Lehotay
- US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA.
| | - Nicolás Michlig
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Bárbara Socas-Rodríguez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, Madrid, 28049, Spain
| | - Miguel Ángel Rodríguez-Delgado
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avenida Astrofísico Francisco Sánchez, s/n. 38206 San Cristóbal de La Laguna (Tenerife), España
| |
Collapse
|
18
|
Lehotay SJ, Michlig N, Lightfield AR. Assessment of Test Portion Sizes after Sample Comminution with Liquid Nitrogen in an Improved High-Throughput Method for Analysis of Pesticide Residues in Fruits and Vegetables. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1468-1479. [PMID: 31945291 DOI: 10.1021/acs.jafc.9b07685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, sample processing of bulk commodities using an efficient one-step comminution procedure with liquid nitrogen (LN2) was devised and assessed in the analysis of pesticide residues in fruits and vegetables. LN2 was added to the fresh samples from a tank by opening a valve, and the standard food chopper was kept in a laboratory hood to reduce safety risks. Test portions of four replicates each of 0.25, 0.5, 1, 2, 5, 10, and 15 g were taken from eight fruits and vegetables (tomato, squash, broccoli, apple, grape, peach, green bean, and cucumber) individually comminuted with LN2. For comparison without comminution, similar test portions of a reconstituted freeze-dried certified reference material of pesticides in cucumber were also analyzed by the same method. More than 100 pesticides were monitored by both ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and instrument top sample preparation (ITSP) + fast low-pressure gas chromatography-tandem mass spectrometry (LPGC-MS/MS). A new version of QuEChERS-based sample preparation was followed, in which 5 mL of 4:1 (v/v) acetonitrile/water per gram of sample is used for extraction and 200 μL of initial extract is quickly evaporated, reconstituted in water, and ultracentrifuged for UHPLC-MS/MS analysis. For ITSP+LPGC-MS/MS, another portion of the initial extract undergoes salt-out partitioning with 4:1 (w/w) anhydrous MgSO4/NaCl and the upper layer extract is transferred to an autosampler vial for automated cleanup and analysis in parallel. Quality control spikes were made during the comminution, extraction, cleanup, and analysis steps to isolate and estimate the individual and overall measurement uncertainties of the approach. The recommended test portion size is 2 g for routine monitoring by this approach, but results demonstrated that subsamples as low as 0.5 g typically gave overall biases and relative standard deviations of <10% for nearly all pesticides, commodities, and methods, which is 3-5% lower than previously evaluated sample processing and analytical methods. This approach can be used to improve data quality, laboratory efficiency, and sample throughput in routine monitoring programs for regulatory, risk assessment, and other purposes.
Collapse
Affiliation(s)
- Steven J Lehotay
- Eastern Regional Research Center, Agricultural Research Service , United States Department of Agriculture , 600 East Mermaid Lane , Wyndmoor , Pennsylvania 19038 , United States
| | - Nicolás Michlig
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química , Universidad Nacional del Litoral , Santiago del Estero 2654 , 3000 Santa Fe , Argentina
| | - Alan R Lightfield
- Eastern Regional Research Center, Agricultural Research Service , United States Department of Agriculture , 600 East Mermaid Lane , Wyndmoor , Pennsylvania 19038 , United States
| |
Collapse
|
19
|
Advances in the Analysis of Veterinary Drug Residues in Food Matrices by Capillary Electrophoresis Techniques. Molecules 2019; 24:molecules24244617. [PMID: 31861089 PMCID: PMC6943715 DOI: 10.3390/molecules24244617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/03/2022] Open
Abstract
In the last years, the European Commission has adopted restrictive directives on food quality and safety in order to protect animal and human health. Veterinary drugs represent an important risk and the need to have sensitive and fast analytical techniques to detect and quantify them has become mandatory. Over the years, the availability of different modes, interfaces, and formats has improved the versatility, sensitivity, and speed of capillary electrophoresis (CE) techniques. Thus, CE represents a powerful tool for the analysis of a large variety of food matrices and food-related molecules with important applications in food quality and safety. This review focuses the attention of CE applications over the last decade on the detection of different classes of drugs (used as additives in animal food or present as contaminants in food products) with a potential risk for animal and human health. In addition, considering that the different sample preparation procedures have strongly contributed to CE sensitivity and versatility, the most advanced sample pre-concentration techniques are discussed here.
Collapse
|
20
|
Shanin IA, Zvereva EA, Eremin SA, Sviridov OV, Zherdev AV, Dzantiev BB. Development of an Immunoenzyme Assay to Control the Total Content of Antibiotics of the Fluoroquinolone Group in Milk. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819050132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Roussev M, Lehotay SJ, Pollaehne J. Cryogenic Sample Processing with Liquid Nitrogen for Effective and Efficient Monitoring of Pesticide Residues in Foods and Feeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9203-9209. [PMID: 31369261 DOI: 10.1021/acs.jafc.9b04006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the monitoring of hundreds of pesticides in food and feed, the comminution step is equally crucial as any other to achieve valid results. However, sample processing is often underestimated in its importance and practical difficulty to produce consistent test portions for analysis. The scientific literature is rife with descriptions of microextraction methods, but ironically, sample comminution is often ignored or dismissed as being prosaic, despite it being the foundation upon which the viability of such techniques relies. Cryogenic sample processing using dry ice (-78 °C) is generally accepted in practice, but studies have not shown it to yield representative test portions of <1 g. Remarkably, liquid nitrogen has rarely been used as a cryogenic agent in pesticide residue analysis, presumably as a result of access, cost, and safety concerns. However, real-world implementation of blending unfrozen bulk food portions with liquid nitrogen (-196 °C) using common food processing devices has demonstrated this approach to be safe, simple, fast, and cost-effective and yield high-quality results for various commodities, including increased stability of labile or volatile analytes. For example, analysis of dithiocarbamates as carbon disulfide has shown a significant increase of thiram recoveries (up to 95%) using liquid nitrogen during sample comminution. This perspective is intended to allay concerns among working laboratories about the practical use of liquid nitrogen for improved sample processing in the routine monitoring of pesticide residues in foods and feeds, which also gives promise for feasible test sample size reduction in high-throughput miniaturized methods.
Collapse
Affiliation(s)
- Manol Roussev
- WESSLING GmbH , Haynauer Straße 60 , D-12249 Berlin ; Germany
| | - Steven J Lehotay
- Eastern Regional Research Center, Agricultural Research Service , United States Department of Agriculture , 600 East Mermaid Lane , Wyndmoor , Pennsylvania 19038 , United States
| | | |
Collapse
|
22
|
Hernández-Mesa M, Ropartz D, García-Campaña AM, Rogniaux H, Dervilly-Pinel G, Le Bizec B. Ion Mobility Spectrometry in Food Analysis: Principles, Current Applications and Future Trends. Molecules 2019; 24:E2706. [PMID: 31349571 PMCID: PMC6696101 DOI: 10.3390/molecules24152706] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
In the last decade, ion mobility spectrometry (IMS) has reemerged as an analytical separation technique, especially due to the commercialization of ion mobility mass spectrometers. Its applicability has been extended beyond classical applications such as the determination of chemical warfare agents and nowadays it is widely used for the characterization of biomolecules (e.g., proteins, glycans, lipids, etc.) and, more recently, of small molecules (e.g., metabolites, xenobiotics, etc.). Following this trend, the interest in this technique is growing among researchers from different fields including food science. Several advantages are attributed to IMS when integrated in traditional liquid chromatography (LC) and gas chromatography (GC) mass spectrometry (MS) workflows: (1) it improves method selectivity by providing an additional separation dimension that allows the separation of isobaric and isomeric compounds; (2) it increases method sensitivity by isolating the compounds of interest from background noise; (3) and it provides complementary information to mass spectra and retention time, the so-called collision cross section (CCS), so compounds can be identified with more confidence, either in targeted or non-targeted approaches. In this context, the number of applications focused on food analysis has increased exponentially in the last few years. This review provides an overview of the current status of IMS technology and its applicability in different areas of food analysis (i.e., food composition, process control, authentication, adulteration and safety).
Collapse
Affiliation(s)
- Maykel Hernández-Mesa
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, E-18071 Granada, Spain.
- INRA, UR1268 Biopolymers Interactions Assemblies, F-44316 Nantes, France.
- Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Oniris, INRA UMR 1329, Route de Gachet-CS 50707, F-44307 Nantes CEDEX 3, France.
| | - David Ropartz
- INRA, UR1268 Biopolymers Interactions Assemblies, F-44316 Nantes, France
| | - Ana M García-Campaña
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, E-18071 Granada, Spain
| | - Hélène Rogniaux
- INRA, UR1268 Biopolymers Interactions Assemblies, F-44316 Nantes, France
| | - Gaud Dervilly-Pinel
- Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Oniris, INRA UMR 1329, Route de Gachet-CS 50707, F-44307 Nantes CEDEX 3, France
| | - Bruno Le Bizec
- Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Oniris, INRA UMR 1329, Route de Gachet-CS 50707, F-44307 Nantes CEDEX 3, France
| |
Collapse
|
23
|
Guo M, Wu X, Song S, Zheng Q, Luo P, Kuang H, Sun J, Ye L. Ultrasensitive anti-melamine monoclonal antibody and its use in the development of an immunochromatographic strip. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1590318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Mengyuan Guo
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Xiaoling Wu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Shanshan Song
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | | | - Pengjie Luo
- China National Center for Food Safety Risk Assessment, NHC Key Laboratory of Food Safety Risk Assessment, Beijing, People’s Republic of China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Jiajia Sun
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Liya Ye
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| |
Collapse
|
24
|
Perestrelo R, Silva P, Porto-Figueira P, Pereira JAM, Silva C, Medina S, Câmara JS. QuEChERS - Fundamentals, relevant improvements, applications and future trends. Anal Chim Acta 2019; 1070:1-28. [PMID: 31103162 DOI: 10.1016/j.aca.2019.02.036] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/16/2019] [Accepted: 02/24/2019] [Indexed: 12/15/2022]
Abstract
The Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method is a simple and straightforward extraction technique involving an initial partitioning followed by an extract clean-up using dispersive solid-phase extraction (d-SPE). Originally, the QuEChERS approach was developed for recovering pesticide residues from fruits and vegetables, but rapidly gained popularity in the comprehensive isolation of analytes from different matrices. According to PubMed, since its development in 2003 up to November 2018, about 1360 papers have been published reporting QuEChERS as extraction method. Several papers have reported different improvements and modifications to the original QuEChERS protocol to ensure more efficient extractions of pH-dependent analytes and to minimize the degradation of labile analytes. This analytical approach shows several advantages over traditional extraction techniques, requiring low sample and solvent volumes, as well as less time for sample preparation. Furthermore, most of the published studies show that the QuEChERS protocol provides higher recovery rate and a better analytical performance than conventional extraction procedures. This review proposes an updated overview of the most recent developments and applications of QuEChERS beyond its original application to pesticides, mycotoxins, veterinary drugs and pharmaceuticals, forensic analysis, drugs of abuse and environmental contaminants. Their pros and cons will be discussed, considering the factors influencing the extraction efficiency. Whenever possible, the performance of the QuEChERS is compared to other extraction approaches. In addition to the evolution of this technique, changes and improvements to the original method are discussed.
Collapse
Affiliation(s)
- Rosa Perestrelo
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
| | - Pedro Silva
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Priscilla Porto-Figueira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Jorge A M Pereira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Catarina Silva
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Sonia Medina
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal; Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| |
Collapse
|
25
|
David V, Galaon T, Bacalum E. Sample Enrichment by Solid-Phase Extraction for Reaching Parts per Quadrillion Levels in Environmental Analysis. Chromatographia 2019. [DOI: 10.1007/s10337-019-03696-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
26
|
Buglak AA, Shanin IA, Eremin SA, Lei HT, Li X, Zherdev AV, Dzantiev BB. Ciprofloxacin and Clinafloxacin Antibodies for an Immunoassay of Quinolones: Quantitative Structure⁻Activity Analysis of Cross-Reactivities. Int J Mol Sci 2019; 20:ijms20020265. [PMID: 30641870 PMCID: PMC6359390 DOI: 10.3390/ijms20020265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/11/2018] [Accepted: 01/07/2019] [Indexed: 11/16/2022] Open
Abstract
A common problem in the immunodetection of structurally close compounds is understanding the regularities of immune recognition, and elucidating the basic structural elements that provide it. Correct identification of these elements would allow for select immunogens to obtain antibodies with either wide specificity to different representatives of a given chemical class (for class-specific immunoassays), or narrow specificity to a unique compound (mono-specific immunoassays). Fluoroquinolones (FQs; antibiotic contaminants of animal-derived foods) are of particular interest for such research. We studied the structural basis of immune recognition of FQs by antibodies against ciprofloxacin (CIP) and clinafloxacin (CLI) as the immunizing hapten. CIP and CLI possess the same cyclopropyl substituents at the N1 position, while their substituents at C7 and C8 are different. Anti-CIP antibodies were specific to 22 of 24 FQs, while anti-CLI antibodies were specific to 11 of 26 FQs. The molecular size was critical for the binding between the FQs and the anti-CIP antibody. The presence of the cyclopropyl ring at the N1 position was important for the recognition between fluoroquinolones and the anti-CLI antibody. The anti-CIP quantitative structure–activity relationship (QSAR) model was well-equipped to predict the test set (pred_R2 = 0.944). The statistical parameters of the anti-CLI model were also high (R2 = 0.885, q2 = 0.864). Thus, the obtained QSAR models yielded sufficient correlation coefficients, internal stability, and predictive ability. This work broadens our knowledge of the molecular mechanisms of FQs’ interaction with antibodies, and it will contribute to the further development of antibiotic immunoassays.
Collapse
Affiliation(s)
- Andrey A Buglak
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, 119071 Moscow, Russia.
- Faculty of Physics, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia.
| | - Ilya A Shanin
- Chemical Department, M. V. Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia.
- XEMA Company Limited, Ninth Parkovaya street 48, 105264 Moscow, Russia.
| | - Sergei A Eremin
- Chemical Department, M. V. Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia.
| | - Hong-Tao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China.
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China.
| | - Anatoly V Zherdev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, 119071 Moscow, Russia.
| | - Boris B Dzantiev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, 119071 Moscow, Russia.
| |
Collapse
|
27
|
Possibilities and Limitations of Isocratic Fast Liquid Chromatography-Tandem Mass Spectrometry Analysis of Pesticide Residues in Fruits and Vegetables. Chromatographia 2018. [DOI: 10.1007/s10337-018-3595-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|