1
|
Auer F, Guttman A. In Migratio Noncovalent Fluorophore Labeling of Proteins by Propidium Iodide in Sodium Dodecyl Sulfate Capillary Gel Electrophoresis. Anal Chem 2024; 96:10969-10977. [PMID: 38938066 DOI: 10.1021/acs.analchem.4c01371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Sodium dodecyl sulfate capillary gel electrophoresis is one of the frequently used methods for size-based protein separation in molecular biology laboratories and the biopharmaceutical industry. To increase throughput, quite a few multicapillary electrophoresis systems have been recently developed, but most of them only support fluorescence detection, requiring fluorophore labeling of the sample proteins. To avoid the time-consuming derivatization reaction, we developed an on-column labeling approach utilizing propidium iodide for the first time in SDS-CGE of proteins, a dye only used before for nucleic acid analysis. As a key ingredient of the gel-buffer system, the oppositely migrating positively charged propidium ligand in migratio complexes with the SDS-proteins, therefore, supports in situ labeling during the electrophoretic separation process, not requiring any extra pre- or postcolumn derivatization step. A theoretical treatment is given to shed light on the basic principles of this novel online labeling process, also addressing the influence of propidium iodide on the electroosmotic flow, resulting in reduced retardation. The concept of propidium labeling in SDS-CGE was first demonstrated using a commercially available protein sizing ladder ranging from 6.5 to 200 kDa with different isoelectric points and post-translational modifications. Considering the increasing number of protein therapeutics on the market next, we focused on the labeling optimization of a therapeutic monoclonal antibody and its subunits, including the addition of the nonglycosylated heavy chain. Peak efficiency and resolution were compared between noncovalent and covalent labeling. The effect of ligand concentration on the effective and apparent electrophoretic mobility, the resulting peak area, and the resolution were all evaluated in view of the theoretical considerations. The best detection sensitivity for the intact monoclonal antibody was obtained by using 200 μg/mL propidium iodide in the separation medium (LOD 2 μg/mL, 1.35 × 10-8 M) with excellent detection linearity over 3 orders of magnitude. On the other hand, the resolution between the biopharmaceutical protein test mixture components containing the intact and subunit fragments of the therapeutic monoclonal antibody was very good in the ligand concentration range of 50-200 μg/mL, but using the local maximum at 100 μg/mL for the nonglycosylated/glycosylated heavy chain pair is recommended. The figures of merit, including precision, sensitivity, detection linear range, and resolution for a sample mixture in hand, can be optimized by varying the propidium iodide concentration in the gel-buffer system, as demonstrated in this paper.
Collapse
Affiliation(s)
- Felicia Auer
- Translational Glycomics Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem 8200, Hungary
| | - Andras Guttman
- Translational Glycomics Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem 8200, Hungary
- Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| |
Collapse
|
2
|
Castel J, Delaux S, Hernandez-Alba O, Cianférani S. Recent advances in structural mass spectrometry methods in the context of biosimilarity assessment: from sequence heterogeneities to higher order structures. J Pharm Biomed Anal 2023; 236:115696. [PMID: 37713983 DOI: 10.1016/j.jpba.2023.115696] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
Biotherapeutics and their biosimilar versions have been flourishing in the biopharmaceutical market for several years. Structural and functional characterization is needed to achieve analytical biosimilarity through the assessment of critical quality attributes as required by regulatory authorities. The role of analytical strategies, particularly mass spectrometry-based methods, is pivotal to gathering valuable information for the in-depth characterization of biotherapeutics and biosimilarity assessment. Structural mass spectrometry methods (native MS, HDX-MS, top-down MS, etc.) provide information ranging from primary sequence assessment to higher order structure evaluation. This review focuses on recent developments and applications in structural mass spectrometry for biotherapeutic and biosimilar characterization.
Collapse
Affiliation(s)
- Jérôme Castel
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Sarah Delaux
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France.
| |
Collapse
|
3
|
Naplekov DK, Bárta P, Trejtnar F, Sklenářová H, Lenčo J. Implementing reversed-phase and hydrophilic interaction liquid chromatography into the characterization of DTPA-ramucirumab conjugate before radiolabeling. J Pharm Biomed Anal 2023; 235:115615. [PMID: 37566949 DOI: 10.1016/j.jpba.2023.115615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
Radioimmunoconjugates represent a promising class of therapeutics and diagnostics. The characterization of intermediate chelator-antibody products, i.e., without the radionuclide, is frequently omitted, bringing significant uncertainty in the radioimmunoconjugate preparation. In the present study, we explored the utility of reversed-phase (RPLC) and hydrophilic interaction (HILIC) liquid chromatography with UV detection to characterize ramucirumab stochastically conjugated with p-SCN-Bn-CHX-A"-DTPA chelator (shortly DTPA). The conjugation was well reflected in RPLC chromatograms, while chromatograms from HILIC were significantly less informative. RPLC analyses at the intact level confirmed that the conjugation resulted in a heterogeneous mixture of modified ramucirumab. Moreover, the RPLC of DTPA-ramucirumab confirmed heterogeneous conjugation of all subunits. The peptide mapping did not reveal substantial changes after the conjugation, indicating that most parts of ramucirumab molecules remained unmodified and that the DTPA chelator was bound to various sites. Eventually, the RPLC method for analysis of intact ramucirumab was successfully applied to online monitoring of conjugation reaction in 1 h intervals for a total of 24 h synthesis, which readily reflected the structural changes of ramucirumab in the form of retention time shift by 0.21 min and increase in peak width by 0.22 min. The results were obtained in real-time, practically under 10 min per monitoring cycle. To the best of our knowledge, our study represents the first evaluation of RPLC and HILIC to assess the quality of intermediates during the on-site preparation of radioimmunoconjugates prior to radiolabeling.
Collapse
Affiliation(s)
- Denis K Naplekov
- Charles University, Faculty of Pharmacy in Hradec Kralove, Department of Analytical Chemistry, Akademika Heyrovskeho 1203/8, 500 05 Hradec Kralove, Czech Republic
| | - Pavel Bárta
- Charles University, Faculty of Pharmacy in Hradec Kralove, Department of Biophysics and Physical Chemistry, Akademika Heyrovskeho 1203/8, 500 05 Hradec Kralove, Czech Republic
| | - František Trejtnar
- Charles University, Faculty of Pharmacy in Hradec Kralove, Department of Pharmacology and Toxicology, Akademika Heyrovskeho 1203/8, 500 05 Hradec Kralove, Czech Republic
| | - Hana Sklenářová
- Charles University, Faculty of Pharmacy in Hradec Kralove, Department of Analytical Chemistry, Akademika Heyrovskeho 1203/8, 500 05 Hradec Kralove, Czech Republic
| | - Juraj Lenčo
- Charles University, Faculty of Pharmacy in Hradec Kralove, Department of Analytical Chemistry, Akademika Heyrovskeho 1203/8, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
4
|
Knoll L, Thiesen J, Klassen MD, Reinders LMH, Tuerk J, Kraemer I. In-use stability of ready-to-administer daratumumab subcutaneous injection solution in plastic syringes. Eur J Hosp Pharm 2023:ejhpharm-2023-003928. [PMID: 37879731 DOI: 10.1136/ejhpharm-2023-003928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023] Open
Abstract
OBJECTIVE In multiple myeloma patients, daratumumab is preferably injected subcutaneously. The summary of product characteristics of daratumumab subcutaneous injection solution specifies physicochemical stability for the prepared syringe for 24 hours at 2-8°C protected from light, and another 12 hours at room temperature (15-25°C) in ambient light conditions. The aim of this study was to determine the in-use stability of ready-to-administer daratumumab subcutaneous injection solution in different types of syringe and different conditions over a 28-day period. METHODS Daratumumab subcutaneous (DARZALEX 1800 mg) injection solution was withdrawn into disposable three-piece Luer-Lock syringes (20 mL, 50 mL), capped, and stored light protected at 2-8°C or at room temperature (22±2°C) over a maximum period of 28 days. Samples were taken immediately after preparation (day 0) and after 2, 7, 14, 21, and 28 days. Physicochemical stability was determined by ion-exchange high-performance liquid chromatography (IE-HPLC) and size-exclusion high-performance liquid chromatography (SE-HPLC) with ultraviolet detection, pH measurement and visual inspection for particles or colour changes. RESULTS In the IE-HPLC assay, peak areas and peak-to-peak area ratios remained unchanged over the whole study period, and showed no additional peaks of degraded daratumumab charge variants. In the SE-HPLC assay, neither a formation of aggregates nor of fragments was detected. Daratumumab monomer concentrations exceeded 95% of the initially measured concentrations over the entire test period. pH values remained constant. Test solutions remained clear, and no colour changes or visible particles were detected. All results were independent of storage conditions. CONCLUSION Daratumumab subcutaneous injection solution proved to be physicochemically stable in capped three-piece plastic syringes for at least 28 days when stored light protected at 2-8°C or at room temperature (22±2°C). For microbiological reasons aseptic preparation and refrigerated storage are recommended. In-use stability of ready-to-administer daratumumab subcutaneous syringes prepared under appropriate aseptic conditions is given for 28 days.
Collapse
Affiliation(s)
- Laura Knoll
- Pharmacy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Judith Thiesen
- Pharmacy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Martin D Klassen
- Institut für Umwelt & Energie Technik & Analytik e V (IUTA), Duisburg, Germany
| | - Lars M H Reinders
- Institut für Umwelt & Energie Technik & Analytik e V (IUTA), Duisburg, Germany
| | - Jochen Tuerk
- Institut für Umwelt & Energie Technik & Analytik e V (IUTA), Duisburg, Germany
| | - Irene Kraemer
- Pharmacy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
5
|
Jiang Z, Dalby PA. Challenges in scaling up AAV-based gene therapy manufacturing. Trends Biotechnol 2023; 41:1268-1281. [PMID: 37127491 DOI: 10.1016/j.tibtech.2023.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Accelerating the scale up of adeno-associated virus (AAV) manufacture is highly desirable to meet the increased demand for gene therapies. However, the development of bioprocesses for AAV gene therapies remains time-consuming and challenging. The quality by design (QbD) approach ensures bioprocess designs that meet the desired product quality and safety profile. Rapid stress tests, developability screens, and scale-down technologies have the potential to streamline AAV product and manufacturing bioprocess development within the QbD framework. Here we review how their successful use for antibody manufacture development is translating to AAV, but also how this will depend critically on improved analytical methods and adaptation of the tools as more understanding is gained on the critical attributes of AAV required for successful therapy.
Collapse
Affiliation(s)
- Ziyu Jiang
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK.
| | - Paul A Dalby
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
6
|
van Schaick G, Pot S, Schouten O, den Hartog J, Akeroyd M, van der Hoeven R, Bijleveld W, Abello N, Wuhrer M, Olsthoorn M, Dominguez-Vega E. Evaluating the effect of glycation on lipase activity using boronate affinity chromatography and mass spectrometry. Food Chem 2023; 421:136147. [PMID: 37087987 DOI: 10.1016/j.foodchem.2023.136147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/07/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Protein glycation may occur naturally when reducing sugars and proteins coexist, which is often the case for industrial enzymes. The impact of post-translational modifications on enzyme performance (e.g., stability or function) is often not predictable, highlighting the importance of having appropriate analytical methodologies to monitor the influence of glycation on performance. Here, a boronate affinity chromatography method was developed to enrich glycated species followed by mass spectrometry for structural characterization and activity assays for functional assessment. This approach was applied to a (temperature-stressed) lipase used for food applications revealing that storage at -20 °C and 4 °C resulted in minor glycation (below 9%), whereas storage at 25 °C led to a higher glycation level with up to four sugars per lipase molecule. Remarkably, activity measurements revealed that glycation did not reduce lipase activity or stability. Altogether, this novel strategy is a helpful extension to the current analytical toolbox supporting development of enzyme products.
Collapse
Affiliation(s)
- Guusje van Schaick
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, the Netherlands.
| | - Sanne Pot
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, the Netherlands
| | - Olaf Schouten
- DSM Science & Innovation, Biodata & Translation, Center for Analytical Innovation, Delft, the Netherlands
| | - Joost den Hartog
- DSM Science & Innovation, Biodata & Translation, Center for Analytical Innovation, Delft, the Netherlands
| | - Michiel Akeroyd
- DSM Science & Innovation, Biodata & Translation, Center for Analytical Innovation, Delft, the Netherlands
| | - Rob van der Hoeven
- DSM Science & Innovation, Biodata & Translation, Center for Analytical Innovation, Delft, the Netherlands
| | - Wim Bijleveld
- DSM Science & Innovation, Biodata & Translation, Center for Analytical Innovation, Delft, the Netherlands
| | - Nicolas Abello
- DSM Science & Innovation, Biodata & Translation, Center for Analytical Innovation, Delft, the Netherlands
| | - Manfred Wuhrer
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, the Netherlands
| | - Maurien Olsthoorn
- DSM Science & Innovation, Biodata & Translation, Center for Analytical Innovation, Delft, the Netherlands
| | - Elena Dominguez-Vega
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, the Netherlands
| |
Collapse
|
7
|
Residue-Specific Impact of EDTA and Methionine on Protein Oxidation in Biotherapeutics Formulations Using an Integrated Biotherapeutics Drug Product Development Workflow. J Pharm Sci 2023; 112:471-481. [PMID: 36130676 DOI: 10.1016/j.xphs.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 01/18/2023]
Abstract
The rational design and selection of formulation composition to meet molecule-specific and product-specific needs are critical for biotherapeutics development to ensure physical and chemical stability. This work, based on three antibody-based (mAb) proteins (mAbA, mAbB, and mAbC), evaluates residue-specific impact of EDTA and methionine on protein oxidation, using an integrated biotherapeutics drug product development workflow. This workflow includes statistical experimental design, high-throughput experimental automation and execution, structure-based in silico modeling, inferential statistical analysis, and enhanced interactive data visualization of large datasets. This oxidation study evaluates the impact of formulation parameters including pH, protein concentration, and the presence of polysorbate 80 on the oxidation of specific conserved and variable residues of mAbs A, B, and C in the presence of stressors (iron, peroxide) and/or protectants (EDTA, L-methionine). Residue-specific analysis by automated high-throughput peptide mapping demonstrates differential residue-specific effects of EDTA and methionine in protecting against oxidation, highlighting the need for molecule-specific and product-specific selection of these excipients during formulation development. Computational modeling based on a homology model and the two-shell water coordination method (WCN) was employed to gain mechanistic understanding of residue-specific oxidation susceptibility of methionine residues. The computational determinants of local solvent exposure of methionine residues showed good correlation of WCN with experimentally determined oxidation for corresponding residues. The rapid generation of high-resolution data, statistical data analysis and interactive visualization of the high-throughput residue-level data containing ∼200 unique formulations facilitate residue-specific, molecule-specific and product-specific oxidation (global and local) assessment for oxidation protectants during early development for mAbs and related mAb-based modalities.
Collapse
|
8
|
Martínez-Ortega A, Herrera A, Salmerón-García A, Cabeza J, Perez-Robles R, Navas N. Degradation and in-use stability study of five marketed therapeutic monoclonal antibodies by generic weak cation exchange liquid chromatographic method ((WCX)HPLC/DAD). J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1203:123295. [DOI: 10.1016/j.jchromb.2022.123295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022]
|
9
|
Verscheure L, Vanhoenacker G, Schneider S, Merchiers T, Storms J, Sandra P, Lynen F, Sandra K. 3D-LC-MS with 2D Multimethod Option for Fully Automated Assessment of Multiple Attributes of Monoclonal Antibodies Directly from Cell Culture Supernatants. Anal Chem 2022; 94:6502-6511. [PMID: 35442636 DOI: 10.1021/acs.analchem.1c05461] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fully automated analysis of multiple structural attributes of monoclonal antibodies (mAbs) using three-dimensional liquid chromatography-mass spectrometry (3D-LC-MS) is described. The analyzer combines Protein A affinity chromatography in the first dimension (1D) with a multimethod option in the second dimension (2D) (choice between size exclusion (SEC), cation exchange (CEX), and hydrophobic interaction chromatography (HIC)) and desalting SEC-MS in the third dimension (3D). This innovative 3D-LC-MS setup allows simultaneous and sequential assessment of mAb titer, size/charge/hydrophobic variants, molecular weight (MW), amino acid (AA) sequence, and post-translational modifications (PTMs) directly from cell culture supernatants. The reported methodology that finds multiple uses throughout the biopharmaceutical development trajectory was successfully challenged by the analysis of different trastuzumab and tocilizumab samples originating from biosimilar development programs.
Collapse
Affiliation(s)
- Liesa Verscheure
- RIC Group, President Kennedypark 26, B-8500 Kortrijk, Belgium.,Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | | | - Sonja Schneider
- Agilent Technologies, Hewlett-Packard Strasse 8, D-76337 Waldbronn, Germany
| | - Tom Merchiers
- RIC Group, President Kennedypark 26, B-8500 Kortrijk, Belgium
| | - Julie Storms
- RIC Group, President Kennedypark 26, B-8500 Kortrijk, Belgium
| | - Pat Sandra
- RIC Group, President Kennedypark 26, B-8500 Kortrijk, Belgium.,Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Frederic Lynen
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Koen Sandra
- RIC Group, President Kennedypark 26, B-8500 Kortrijk, Belgium.,Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| |
Collapse
|
10
|
Xu T, Han L, George Thompson AM, Sun L. An improved capillary isoelectric focusing-mass spectrometry method for high-resolution characterization of monoclonal antibody charge variants. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:383-393. [PMID: 34939625 DOI: 10.1039/d1ay01556g] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Routine and high-resolution characterization of monoclonal antibody (mAb) charge variants is vital for controlling mAb quality as therapeutics. Capillary isoelectric focusing-mass spectrometry (cIEF-MS) has emerged as a powerful tool for characterizing mAb charge variants because it can achieve high-resolution separation and highly sensitive detection of proteins. It provides much better identification of charge variants than the traditionally used cIEF-UV method. However, further improvement of cIEF-MS regarding stability and separation resolution is needed. Here, we improved the stability and enhanced separation resolution of automated cIEF-MS by bettering the quality of capillary neutral coating, reducing catholyte pH to 10 for cIEF-MS for the first time, and systematically optimizing the cIEF separation conditions. The improved cIEF-MS method was applied to characterize charge variants of three previously well characterized mAbs (NISTmAb, cetuximab, trastuzumab) and one tool mAb (mAb1). The charge variants of the studied mAbs were well resolved, and the majority of post-translational modifications (PTMs) found in those mAbs agreed with the literature. cIEF-MS analyses of mAb1 were capable of discovering ten charge variants with various interesting PTMs, such as PGK amidation, incomplete C-terminal lysine clipping, glycosylation, and deamination. cIEF-MS was successfully used for accurately determining the isoelectric points (pIs) of mAb1 charge variants via analyzing the pI markers and spiking in a standard protein (cytochrome c) to samples for migration time normalization, which is beneficial for evaluating pI-related pharmacokinetic properties. Our cIEF-MS agreed with and, in some cases (i.e., cetuximab and mAb1), outperformed cIEF-UV for detecting mAb charge variants.
Collapse
Affiliation(s)
- Tian Xu
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA.
| | - Linjie Han
- New Biological Entities (NBE), Analytical R&D, AbbVie Inc., 1 Waukegan Rd, North Chicago, IL, 60064, USA
| | - Alayna M George Thompson
- New Biological Entities (NBE), Analytical R&D, AbbVie Inc., 1 Waukegan Rd, North Chicago, IL, 60064, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA.
| |
Collapse
|
11
|
van Schaick G, el Hajjouti N, Nicolardi S, den Hartog J, Jansen R, van der Hoeven R, Bijleveld W, Abello N, Wuhrer M, Olsthoorn MMA, Domínguez-Vega E. Native Liquid Chromatography and Mass Spectrometry to Structurally and Functionally Characterize Endo-Xylanase Proteoforms. Int J Mol Sci 2022; 23:1307. [PMID: 35163230 PMCID: PMC8835838 DOI: 10.3390/ijms23031307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/16/2022] Open
Abstract
Xylanases are of great value in various industries, including paper, food, and biorefinery. Due to their biotechnological production, these enzymes can contain a variety of post-translational modifications, which may have a profound effect on protein function. Understanding the structure-function relationship can guide the development of products with optimal performance. We have developed a workflow for the structural and functional characterization of an endo-1,4-β-xylanase (ENDO-I) produced by Aspergillus niger with and without applying thermal stress. This workflow relies on orthogonal native separation techniques to resolve proteoforms. Mass spectrometry and activity assays of separated proteoforms permitted the establishment of structure-function relationships. The separation conditions were focus on balancing efficient separation and protein functionality. We employed size exclusion chromatography (SEC) to separate ENDO-I from other co-expressed proteins. Charge variants were investigated with ion exchange chromatography (IEX) and revealed the presence of low abundant glycated variants in the temperature-stressed material. To obtain better insights into the effect on glycation on function, we enriched for these species using boronate affinity chromatography (BAC). The activity measurements showed lower activity of glycated species compared to the non-modified enzyme. Altogether, this workflow allowed in-depth structural and functional characterization of ENDO-I proteoforms.
Collapse
Affiliation(s)
- Guusje van Schaick
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.e.H.); (S.N.); (M.W.); (E.D.-V.)
| | - Nadi el Hajjouti
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.e.H.); (S.N.); (M.W.); (E.D.-V.)
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.e.H.); (S.N.); (M.W.); (E.D.-V.)
| | - Joost den Hartog
- Center for Analytical Innovation, DSM, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands; (J.d.H.); (R.J.); (R.v.d.H.); (W.B.); (N.A.); (M.M.A.O.)
| | - Romana Jansen
- Center for Analytical Innovation, DSM, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands; (J.d.H.); (R.J.); (R.v.d.H.); (W.B.); (N.A.); (M.M.A.O.)
| | - Rob van der Hoeven
- Center for Analytical Innovation, DSM, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands; (J.d.H.); (R.J.); (R.v.d.H.); (W.B.); (N.A.); (M.M.A.O.)
| | - Wim Bijleveld
- Center for Analytical Innovation, DSM, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands; (J.d.H.); (R.J.); (R.v.d.H.); (W.B.); (N.A.); (M.M.A.O.)
| | - Nicolas Abello
- Center for Analytical Innovation, DSM, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands; (J.d.H.); (R.J.); (R.v.d.H.); (W.B.); (N.A.); (M.M.A.O.)
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.e.H.); (S.N.); (M.W.); (E.D.-V.)
| | - Maurien M. A. Olsthoorn
- Center for Analytical Innovation, DSM, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands; (J.d.H.); (R.J.); (R.v.d.H.); (W.B.); (N.A.); (M.M.A.O.)
| | - Elena Domínguez-Vega
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.e.H.); (S.N.); (M.W.); (E.D.-V.)
| |
Collapse
|
12
|
Murisier A, Duivelshof BL, Fekete S, Bourquin J, Schmudlach A, Lauber MA, Nguyen JM, Beck A, Guillarme D, D'Atri V. Towards a simple on-line coupling of ion exchange chromatography and native mass spectrometry for the detailed characterization of monoclonal antibodies. J Chromatogr A 2021; 1655:462499. [PMID: 34487883 DOI: 10.1016/j.chroma.2021.462499] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
This work describes the direct hyphenation of cation exchange chromatography (CEX) with a compact, easy-to-use benchtop Time of Flight mass spectrometer (ToF/MS) for the analytical characterization of monoclonal antibodies (mAbs). For this purpose, a wide range of commercial mAb products (including expired samples and mAb biosimilars) were selected to draw reliable conclusions. From a chromatographic point of view, various buffers and column dimensions were tested. When considering pH response, buffer stability over time and MS compatibility, the best compromise is represented by the following recipe: 50 mM ammonium acetate, titrated to pH 5.0 (mobile phase A) and 160 mM ammonium acetate, titrated to pH 8.5 (mobile phase B). Despite the broader peaks observed with the 2.1 mm i.d. CEX column, this was preferentially selected for CEX-MS operation, since the efficiency loss (caused by extra-column dispersion) was still acceptable while MS compatibility was strongly enhanced (thanks to low flow rate). In terms of MS, it was important to avoid the use of glass-bottled mobile phases, laboratory glassware and glass vials to minimize loss of MS resolution, sensitivity, and mass accuracy due to metal contaminants. With this new CEX-MS setup, straightforward and rapid analysis (in less than 10 min) of charge variants was possible, allowing the separation and identification of several charge variants.
Collapse
Affiliation(s)
- Amarande Murisier
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Bastiaan L Duivelshof
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Szabolcs Fekete
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Julien Bourquin
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757-3696, United States
| | - Andrew Schmudlach
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757-3696, United States
| | - Matthew A Lauber
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757-3696, United States
| | - Jennifer M Nguyen
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757-3696, United States
| | - Alain Beck
- IRPF - Centre d'Immunologie Pierre-Fabre (CIPF), 5 Avenue Napoléon III, BP 60497 Saint-Julien-en-Genevois, France
| | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Valentina D'Atri
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland.
| |
Collapse
|
13
|
Verscheure L, Cerdobbel A, Sandra P, Lynen F, Sandra K. Monoclonal antibody charge variant characterization by fully automated four-dimensional liquid chromatography-mass spectrometry. J Chromatogr A 2021; 1653:462409. [PMID: 34325295 DOI: 10.1016/j.chroma.2021.462409] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Fully automated characterization of monoclonal antibody (mAb) charge variants using four-dimensional liquid chromatography-mass spectrometry (4D-LC-MS) is reported and illustrated. Charge variants resolved by cation-exchange chromatography (CEX) using a salt- or pH-gradient are collected in loops installed on a multiple heart-cutting valve and consequently subjected to online desalting, denaturation, reduction and trypsin digestion prior to LC-MS based peptide mapping. This innovation which substantially reduces turnaround time, sample manipulation, loss and artefacts and increases information gathering, is described in great technical detail, and applied to characterize the charge heterogeneity associated with three therapeutic mAbs. Sequence coverages > 95% are obtained for major and minor charge variants (> 1.0%). Post-translational modifications (PTMs) and modification sites are readily revealed in a repeatable manner including unstable succinimide intermediates which are not maintained when performing classical in-solution overnight digestion of offline collected CEX peaks.
Collapse
Affiliation(s)
- Liesa Verscheure
- RIC group, President Kennedypark 26, Kortrijk 8500, Belgium; Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | - An Cerdobbel
- RIC group, President Kennedypark 26, Kortrijk 8500, Belgium
| | - Pat Sandra
- RIC group, President Kennedypark 26, Kortrijk 8500, Belgium; Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | - Frederic Lynen
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | - Koen Sandra
- RIC group, President Kennedypark 26, Kortrijk 8500, Belgium; Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium.
| |
Collapse
|
14
|
Verscheure L, Oosterlynck M, Cerdobbel A, Sandra P, Lynen F, Sandra K. Middle-up characterization of monoclonal antibodies by online reduction liquid chromatography-mass spectrometry. J Chromatogr A 2020; 1637:461808. [PMID: 33385741 DOI: 10.1016/j.chroma.2020.461808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
This study describes the fully automated middle-up characterization of monoclonal antibodies (mAbs) and next-generation variants by online reduction liquid chromatography-mass spectrometry (LC-MS). Proteins were trapped on-column and subjected to online desalting, denaturation and reduction prior to reversed phase elution of the created subunits in the MS. The evaluation of more than 20 different therapeutic proteins including full length mAbs (subclasses IgG1, IgG2 and IgG4), bispecific antibodies, antibody fragments, fusion proteins and antibody-drug conjugates (ADC) revealed that the online reduction method is as powerful as the widely applied offline sample preparation with dithiothreitol (DTT) as reducing agent and guanidine hydrochloride (Gnd.HCl) as denaturant and tackles some major disadvantages associated with the latter method, i.e. corrosion of stainless steel components, adduct formation impacting spectral quality and sample stability. The value of the online reduction LC-MS method is also enforced by its ability to reveal unstable antibody variants such as succinimide intermediates of asparagine deamidation and aspartic acid isomerization which are often lost when using the offline sample preparation method. The performance of the online reduction LC-MS set-up was verified and it was revealed that the method is precise with RSD values below 0.25% and 3.0% for retention time and area, respectively. Carry-over is within acceptable limits (< 0.5%) and the reducing buffer is stable up to 24 hours.
Collapse
Affiliation(s)
- Liesa Verscheure
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium; Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Marie Oosterlynck
- Chemistry Department, KU Leuven, Celestijnenlaan 200F, bus 2404, 3001 Leuven, Belgium
| | - An Cerdobbel
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium
| | - Pat Sandra
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium; Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Frederic Lynen
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Koen Sandra
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium; Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium.
| |
Collapse
|
15
|
Akram MS, Pery N, Butler L, Shafiq MI, Batool N, Rehman MFU, Grahame-Dunn LG, Yetisen AK. Challenges for biosimilars: focus on rheumatoid arthritis. Crit Rev Biotechnol 2020; 41:121-153. [PMID: 33040628 DOI: 10.1080/07388551.2020.1830746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Healthcare systems worldwide are struggling to find ways to fund the cost of innovative treatments such as gene therapies, regenerative medicine, and monoclonal antibodies (mAbs). As the world's best known mAbs are close to facing patent expirations, the biosimilars market is poised to grow with the hope of bringing prices down for cancer treatment and autoimmune disorders, however, this has yet to be realized. The development costs of biosimilars are significantly higher than their generic equivalents due to therapeutic equivalence trials and higher manufacturing costs. It is imperative that academics and relevant companies understand the costs and stages associated with biologics processing. This article brings these costs to the forefront with a focus on biosimilars being developed for Rheumatoid Arthritis (RA). mAbs have remarkably changed the treatment landscape, establishing their superior efficacy over traditional small chemicals. Five blockbuster TNFα mAbs, considered as first line biologics against RA, are either at the end of their patent life or have already expired and manufacturers are seeking to capture a significant portion of that market. Although in principle, market-share should be available, withstanding that the challenges regarding the compliance and regulations are being resolved, particularly with regards to variation in the glycosylation patterns and challenges associated with manufacturing. Glycan variants can significantly affect the quality attributes requiring characterization throughout production. Successful penetration of biologics can drive down prices and this will be a welcome change for patients and the healthcare providers. Herein we review the biologic TNFα inhibitors, which are on the market, in development, and the challenges being faced by biosimilar manufacturers.
Collapse
Affiliation(s)
- Muhammad Safwan Akram
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK.,National Horizons Centre, Teesside University, Darlington, UK
| | - Neelam Pery
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Lucy Butler
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK.,National Horizons Centre, Teesside University, Darlington, UK
| | | | - Nayab Batool
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | | | | | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
16
|
Yan Y, Xing T, Wang S, Li N. Versatile, Sensitive, and Robust Native LC-MS Platform for Intact Mass Analysis of Protein Drugs. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2171-2179. [PMID: 32865416 DOI: 10.1021/jasms.0c00277] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Over the past several years, hyphenation of native (nondenaturing) liquid chromatography (nLC) methods, such as size exclusion chromatography (SEC), ion exchange chromatography (IEX), and hydrophobic interaction chromatography (HIC) with mass spectrometry (MS) have become increasingly popular to study the size, charge, and structural heterogeneity of protein drug products. Despite the availability of a wide variety of nLC-MS methods, an integrated platform that can accommodate different applications is still lacking. In this study, we described the development of a versatile, sensitive, and robust nLC-MS platform that can support various nLC-MS applications. In particular, the developed platform can tolerate a wide range of LC flow rates and high salt concentrations, which are critical for accommodating different nLC methods. In addition, a dopant-modified desolvation gas can be readily applied on this platform to achieve online charge-reduction native MS, which improves the characterization of both heterogeneous and labile biomolecules. Finally, we demonstrated that this nLC-MS platform is highly sensitive and robust and can be routinely applied in protein drug characterization.
Collapse
Affiliation(s)
- Yuetian Yan
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Tao Xing
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Shunhai Wang
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Ning Li
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| |
Collapse
|
17
|
Gstöttner C, Nicolardi S, Haberger M, Reusch D, Wuhrer M, Domínguez-Vega E. Intact and subunit-specific analysis of bispecific antibodies by sheathless CE-MS. Anal Chim Acta 2020; 1134:18-27. [DOI: 10.1016/j.aca.2020.07.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 01/15/2023]
|
18
|
Lobo SA, Bączyk P, Wyss B, Widmer JC, Jesus LP, Gomes J, Batista AP, Hartmann S, Wassmann P. Stability liabilities of biotherapeutic proteins: Early assessment as mitigation strategy. J Pharm Biomed Anal 2020; 192:113650. [PMID: 33065403 DOI: 10.1016/j.jpba.2020.113650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Identification of molecular liabilities and implementation of mitigation strategies are key aspects that need to be considered by pharmaceutical companies developing therapeutic proteins. In the field of monoclonal antibodies, an efficient and streamlined process known as developability assessment is used for the selection of the "fittest" candidate. Other protein modalities, have in most cases only a limited number of possible candidates, requiring a paradigm change to a concept of candidate enabling. The assessment of liabilities at early project phases with the possibility to re-engineer candidates becomes essential for the success of these projects. Each protein possesses a unique stability profile resulting from the interplay of conformational, colloidal, chemical and physical stability attributes. All of these attributes strongly depend on external factors. Conformational and colloidal stability profiles of three non-immunoglobulin domain based proteins, namely Carbonic anhydrase, Ovalbumin and Thyroglobulin, and of two monoclonal antibodies were assessed in dependence of solution pH, ionic strength and varying buffering agents. The impact of screened external factors on proteins' stability attributes varied significantly, indicating presence of molecule specific liabilities. Screening of such a broad space of conditions at early project phases is only feasible using low-material consuming, high-throughput analytical methods as exemplified in this study.
Collapse
Affiliation(s)
- Susana A Lobo
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | | | | | | | - Lídia P Jesus
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Joana Gomes
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Ana P Batista
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | | | | |
Collapse
|
19
|
Recent advances in LC–MS based characterization of protein-based bio-therapeutics – mastering analytical challenges posed by the increasing format complexity. J Pharm Biomed Anal 2020; 186:113251. [DOI: 10.1016/j.jpba.2020.113251] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/25/2022]
|
20
|
Li C, Akuta T, Nakagawa M, Sato T, Shibata T, Maruyama T, Okumura C, Kurosawa Y, Arakawa T. Agarose native gel electrophoresis for characterization of antibodies. Int J Biol Macromol 2020; 151:885-890. [DOI: 10.1016/j.ijbiomac.2020.02.185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/21/2022]
|
21
|
Park HM, Winton VJ, Drader JJ, Manalili Wheeler S, Lazar GA, Kelleher NL, Liu Y, Tran JC, Compton PD. Novel Interface for High-Throughput Analysis of Biotherapeutics by Electrospray Mass Spectrometry. Anal Chem 2020; 92:2186-2193. [PMID: 31880920 PMCID: PMC7008517 DOI: 10.1021/acs.analchem.9b04826] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
With the rapid rise of therapeutic antibodies and antibody-drug conjugates, significant investments have been made in developing workflows that utilize mass spectrometry to detect these intact molecules, the large fragments generated by their selective digestion, and the peptides generated by traditional proteomics workflows. The resultant data is used to gain insight into a wide range of parameters, including primary sequence, disulfide bonding, glycosylation patterns, biotransformation, and more. However, many of the technologies utilized to couple these workflows to mass spectrometers have significant limitations that force nonoptimal modifications to upstream sample preparation steps, limit the throughput of high-volume workflows, and prevent the harmonization of diverse experiments onto a single hardware platform. Here, we describe a new analytical platform that enables direct and high-throughput coupling to electrospray ionization mass spectrometry. The SampleStream platform is compatible with both native and denaturing electrospray, operates with a throughput of up to 15 s/sample, provides extensive concentration of dilute samples, and affords similar sensitivity to comparable liquid chromatographic methods.
Collapse
Affiliation(s)
- Hae-Min Park
- Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Valerie J. Winton
- Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Jared J. Drader
- Integrated Protein Technologies, Inc., 2170 Campus Drive, Evanston, IL 60208, United States
| | - Sheri Manalili Wheeler
- Integrated Protein Technologies, Inc., 2170 Campus Drive, Evanston, IL 60208, United States
| | - Greg A. Lazar
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Neil L. Kelleher
- Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
- Integrated Protein Technologies, Inc., 2170 Campus Drive, Evanston, IL 60208, United States
| | - Yichin Liu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - John C. Tran
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Philip D. Compton
- Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
- Integrated Protein Technologies, Inc., 2170 Campus Drive, Evanston, IL 60208, United States
| |
Collapse
|