1
|
Zhang Y, Xiao H, Lv X, Wang D, Chen H, Wei F. Comprehensive review of composition distribution and advances in profiling of phenolic compounds in oilseeds. Front Nutr 2022; 9:1044871. [PMID: 36386934 PMCID: PMC9650096 DOI: 10.3389/fnut.2022.1044871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
A wide range of phenolic compounds participate in oilseed growth, regulate oxidative stability of corresponding vegetable oil, and serve as important minor food components with health-promoting effects. Composition distribution of phenolic compounds varied in oilseeds. Isoflavones, sinapic acid derivatives, catechin and epicatechin, phenolic alcohols, chlorogenic acid, and lignans were the main phenolic compounds in soybean, rapeseed, peanut skin, olive, sunflower seed, sesame and flaxseed, respectively. Among which, the total isoflavones content in soybean seeds reached from 1,431 to 2,130 mg/100 g; the main phenolic compound in rapeseed was sinapine, representing 70–90%; chlorogenic acid as the predominant phenolic compound in sunflower kernels, represented around 77% of the total phenolic content. With the rapid development of analytical techniques, it is becoming possible for the comprehensive profiling of these phenolic compounds from oilseeds. This review aims to provide recently developments about the composition distribution of phenolic compounds in common oilseeds, advanced technologies for profiling of phenolic compounds by the metabolomics approaches based on mass spectrometry. As there is still limited research focused on the comprehensive extraction and determination of phenolics with different bound-forms, future efforts should take into account the non-targeted, pseudo-targeted, and spatial metabolomic profiling of phenolic compounds, and the construction of phenolic compound database for identifying and quantifying new types of phenolic compounds in oilseeds and their derived products.
Collapse
|
2
|
Huang Y, Lei N, Xiong Y, Liu Y, Tong L, Wang F, Fan B, Maesen P, Blecker C. Influence of Selenium Biofortification of Soybeans on Speciation and Transformation during Seed Germination and Sprouts Quality. Foods 2022; 11:foods11091200. [PMID: 35563923 PMCID: PMC9104096 DOI: 10.3390/foods11091200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 01/19/2023] Open
Abstract
Selenium (Se) biofortification during seed germination is important not only to meet nutritional demands but also to prevent Se-deficiency-related diseases by producing Se-enriched foods. In this study, we evaluated effects of Se biofortification of soybeans on the Se concentration, speciation, and species transformation as well as nutrients and bioactive compounds in sprouts during germination. Soybean (Glycine max L.) seedlings were cultivated in the dark in an incubator with controlled temperature and water conditions and harvested at different time points after soaking in Se solutions (0, 5, 10, 20, 40, and 60 mg/L). Five Se species and main nutrients in the sprouts were determined. The total Se content increased by 87.3 times, and a large portion of inorganic Se was transformed into organic Se during 24 h of germination, with 89.3% of the total Se was bound to soybean protein. Methylselenocysteine (MeSeCys) and selenomethionine (SeMet) were the dominant Se species, MeSeCys decreased during the germination, but SeMet had opposite trend. Se biofortification increased contents of total polyphenol and isoflavonoid compounds and amino acids (both total and essential), especially in low-concentration Se treatment. In conclusion, Se-enriched soybean sprouts have promising potential for Se supplementation and as functional foods.
Collapse
Affiliation(s)
- Yatao Huang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (N.L.); (Y.X.); (Y.L.); (L.T.); (B.F.)
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, TERRA Research Centre, University of Liege, 5030 Gembloux, Belgium; (P.M.); (C.B.)
| | - Ningyu Lei
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (N.L.); (Y.X.); (Y.L.); (L.T.); (B.F.)
| | - Yangyang Xiong
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (N.L.); (Y.X.); (Y.L.); (L.T.); (B.F.)
| | - Yanfang Liu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (N.L.); (Y.X.); (Y.L.); (L.T.); (B.F.)
| | - Litao Tong
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (N.L.); (Y.X.); (Y.L.); (L.T.); (B.F.)
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (N.L.); (Y.X.); (Y.L.); (L.T.); (B.F.)
- Correspondence:
| | - Bei Fan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (N.L.); (Y.X.); (Y.L.); (L.T.); (B.F.)
| | - Philippe Maesen
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, TERRA Research Centre, University of Liege, 5030 Gembloux, Belgium; (P.M.); (C.B.)
| | - Christophe Blecker
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, TERRA Research Centre, University of Liege, 5030 Gembloux, Belgium; (P.M.); (C.B.)
| |
Collapse
|
3
|
Chao Y, Tan EY, Ma S, Chen B, Liu M, Wang K, Yang W, Wei M, Zheng G. Dynamic variation of the phytochemical and volatile compounds in the pericarp of Citrus reticulata ''Chachi'' (Rutaceae) during 2 years of storage. J Food Sci 2021; 87:153-164. [PMID: 34953087 DOI: 10.1111/1750-3841.16013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/27/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022]
Abstract
The pericarp of Citrus reticulata "Chachi" (CRCP) is used as nutritional food and traditional medicine in China, usually harvested at three periods, namely, immature (CRCP-G1), semi-mature (CRCP-G2), and fully mature (CRCP-G3). Traditionally, if the CRCP is stored for a longer period, then the quality will be better. In this study, the dynamic variation of phytochemical and volatile compounds was profiled in the same batches of CRCP during 2 years of storage. Results illustrated that most of the phytochemical compounds showed a decreasing trend during storage, that is, total flavonoids, total phenolic acids, hesperidin, 3,5,6,7,8,3',4'-heptamethoxyflavone, 5-hydroxy-6,7,8,3',4'-pentamethoxyflavone, synephrine, and limonin. The ferulic acid increased significantly, whereas no significant changes were observed in the total polymethoxyflavones, nobiletin, and tangeretin after 2 years of storage. In addition, we found that the extraction yield of volatile oil decreased significantly in CRCP-G1 during storage, and the herb odors were enhanced with the increase of phenols and esters. No significant difference in the extraction yield of volatile oil of CRCP-G2 and CRCP-G3 was found after 2 years of storage, but the citrus-like notes were increased with the promoted generation of alkenes. In particular, the multivariate statistical analysis indicated that 7 volatiles showed a higher level after 1 year of storage, whereas 11 volatiles decreased and 4 volatiles increased after 2 years of storage, respectively. This study could show the early aging mechanism of CRCP harvested at different periods and provide a scientific guidance in the storage of CRCP. PRACTICAL APPLICATION: This study indicated a comprehensive method for rapid analysis of phytochemical and volatile compounds in pericarp of Citrus reticulata ''Chachi'' (Rutaceae) (CRCP) harvested at different periods during 2 years of storage. The results obtained from this study would be valuable for revealing the early aging mechanism and sustainable storage of CRCP.
Collapse
Affiliation(s)
- Yingxin Chao
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China.,Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, People's Republic of China
| | - E-Yu Tan
- Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, People's Republic of China
| | - Shaofeng Ma
- Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, People's Republic of China
| | - Baizhong Chen
- Guangdong Xinbaotang Biological Technology Co., Ltd, Jiangmen, People's Republic of China
| | - Mengshi Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Kanghui Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Wanling Yang
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Minyan Wei
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Guodong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
4
|
Barboza da Silva C, Oliveira NM, de Carvalho MEA, de Medeiros AD, de Lima Nogueira M, Dos Reis AR. Autofluorescence-spectral imaging as an innovative method for rapid, non-destructive and reliable assessing of soybean seed quality. Sci Rep 2021; 11:17834. [PMID: 34497292 PMCID: PMC8426380 DOI: 10.1038/s41598-021-97223-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/13/2021] [Indexed: 12/03/2022] Open
Abstract
In the agricultural industry, advances in optical imaging technologies based on rapid and non-destructive approaches have contributed to increase food production for the growing population. The present study employed autofluorescence-spectral imaging and machine learning algorithms to develop distinct models for classification of soybean seeds differing in physiological quality after artificial aging. Autofluorescence signals from the 365/400 nm excitation-emission combination (that exhibited a perfect correlation with the total phenols in the embryo) were efficiently able to segregate treatments. Furthermore, it was also possible to demonstrate a strong correlation between autofluorescence-spectral data and several quality indicators, such as early germination and seed tolerance to stressful conditions. The machine learning models developed based on artificial neural network, support vector machine or linear discriminant analysis showed high performance (0.99 accuracy) for classifying seeds with different quality levels. Taken together, our study shows that the physiological potential of soybean seeds is reduced accompanied by changes in the concentration and, probably in the structure of autofluorescent compounds. In addition, altering the autofluorescent properties in seeds impact the photosynthesis apparatus in seedlings. From the practical point of view, autofluorescence-based imaging can be used to check modifications in the optical properties of soybean seed tissues and to consistently discriminate high-and low-vigor seeds.
Collapse
Affiliation(s)
- Clíssia Barboza da Silva
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, SP, 13416-000, Brazil.
| | - Nielsen Moreira Oliveira
- Department of Crop Science, College of Agriculture Luiz de Queiroz (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil
| | - Marcia Eugenia Amaral de Carvalho
- Department of Genetics, College of Agriculture Luiz de Queiroz (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil
| | | | - Marina de Lima Nogueira
- Department of Genetics, College of Agriculture Luiz de Queiroz (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil
| | - André Rodrigues Dos Reis
- Department of Biosystems Engineering, School of Sciences and Engineering, São Paulo State University (UNESP), Tupã, SP, 17602-496, Brazil
| |
Collapse
|
5
|
Zhao B, Zhang S, Yang W, Li B, Lan C, Zhang J, Yuan L, Wang Y, Xie Q, Han J, Mur LAJ, Hao X, Roberts JA, Miao Y, Yu K, Zhang X. Multi-omic dissection of the drought resistance traits of soybean landrace LX. PLANT, CELL & ENVIRONMENT 2021; 44:1379-1398. [PMID: 33554357 DOI: 10.1111/pce.14025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
With diverse genetic backgrounds, soybean landraces are valuable resource for breeding programs. Herein, we apply multi-omic approaches to extensively characterize the molecular basis of drought tolerance in the soybean landrace LX. Initial screens established that LX performed better with PEG6000 treatment than control cultivars. LX germinated better than William 82 under drought conditions and accumulated more anthocyanin and flavonoids. Untargeted mass spectrometry in combination with transcriptomic analyses revealed the chemical diversity and genetic basis underlying the overall performance of LX landrace. Under control and drought conditions, significant differences in the expression of a suite of secondary metabolism genes, particularly those involved in the general phenylpropanoid pathway and flavonoid but not lignin biosynthesis, were seen in LX and William 82. The expression of these genes correlated with the corresponding metabolites in LX plants. Further correlation analysis between metabolites and transcripts identified pathway structural genes and transcription factors likely are responsible for the LX agronomic traits. The activities of some key biosynthetic genes or regulators were confirmed through heterologous expression in transgenic Arabidopsis and hairy root transformation in soybean. We propose a regulatory mechanism based on flavonoid secondary metabolism and adaptive traits of this landrace which could be of relevance to cultivated soybean.
Collapse
Affiliation(s)
- Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Shulin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, China
| | - Wenqi Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Bingyan Li
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Chen Lan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Yu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Jiwan Han
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Xingyu Hao
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Jeremy A Roberts
- Faculty of Science and Engineering, School of Biological & Marine Sciences, University of Plymouth, Devon, UK
| | - Yuchen Miao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Ke Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
6
|
Du S, Huang X, Cai Y, Hao Y, Qiu S, Liu L, Cui M, Luo L. Differential Antioxidant Compounds and Activities in Seedlings of Two Rice Cultivars Under Chilling Treatment. FRONTIERS IN PLANT SCIENCE 2021; 12:631421. [PMID: 33719304 PMCID: PMC7952967 DOI: 10.3389/fpls.2021.631421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/02/2021] [Indexed: 05/15/2023]
Abstract
Variations in antioxidant compounds were examined in seedlings of two rice cultivars (Qiutianxiaoting and 93-11) exposed to low temperature (4°C) for 0, 12, 36, and 48 h. Antioxidant activity was identified by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. The concentrations of total phenols, flavonoids, chlorophyll, and anthocyanins (ACNs) were determined by spectrophotometry. In addition, high-performance liquid chromatography (HPLC) was used to reveal the changes in phenolic compound concentrations in rice seedlings under chilling treatment. Results showed that antioxidant concentrations and antioxidant activity after chilling treatment were higher in 93-11 compared to Qiutianxiaoting, reaching the highest level at 36 h chilling treatment in 93-11. Phenolic compounds in Qiutianxiaoting decreased between 12 and 36 h but then increased at 48 h, whereas the corresponding levels in 93-11 increased as chilling time increased. Moreover, 10 phenolic compounds were detected and quantified by HPLC, of which gallic acid and caffeic acid tended to only exist in 93-11, whereas rutin was observed only in Qiutianxiaoting. The results of this study could be leveraged to optimize the antioxidant potential of rice in the context of healthy food choices.
Collapse
Affiliation(s)
- Shangguang Du
- School of Life Sciences, Nanchang University, Nanchang, China
- School of Life Sciences, Nanchang Normal University, Nanchang, China
| | - Xueyong Huang
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Yali Cai
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Yingbin Hao
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Shengrong Qiu
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Lihua Liu
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Meng Cui
- School of Life Sciences, Nanchang University, Nanchang, China
- *Correspondence: Meng Cui,
| | - Liping Luo
- School of Life Sciences, Nanchang University, Nanchang, China
- *Correspondence: Meng Cui,
| |
Collapse
|