1
|
Vitorino R. Exploring omics signature in the cardiovascular response to semaglutide: Mechanistic insights and clinical implications. Eur J Clin Invest 2025; 55:e14334. [PMID: 39400314 DOI: 10.1111/eci.14334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Semaglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, is a widely used drug for the treatment of type 2 diabetes that offers significant cardiovascular benefits. RESULTS This review systematically examines the proteomic and metabolomic indicators associated with the cardiovascular effects of semaglutide. A comprehensive literature search was conducted to identify relevant studies. The review utilizes advanced analytical technologies such as mass spectrometry and nuclear magnetic resonance (NMR) to investigate the molecular mechanisms underlying the effects of semaglutide on insulin secretion, weight control, anti-inflammatory activities and lipid metabolism. These "omics" approaches offer critical insights into metabolic changes associated with cardiovascular health. However, challenges remain such as individual variability in expression, the need for comprehensive validation and the integration of these data with clinical parameters. These issues need to be addressed through further research to refine these indicators and increase their clinical utility. CONCLUSION Future integration of proteomic and metabolomic data with artificial intelligence (AI) promises to improve prediction and monitoring of cardiovascular outcomes and may enable more accurate and effective management of cardiovascular health in patients with type 2 diabetes. This review highlights the transformative potential of integrating proteomics, metabolomics and AI to advance cardiovascular medicine and improve patient outcomes.
Collapse
Affiliation(s)
- Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine iBiMED, University of Aveiro, Aveiro, Portugal
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Greco F, Bertagna G, Quercioli L, Pucci A, Rocchiccioli S, Ferrari M, Recchia FA, McDonnell LA. Lipids associated with atherosclerotic plaque instability revealed by mass spectrometry imaging of human carotid arteries. Atherosclerosis 2024; 397:118555. [PMID: 39159550 DOI: 10.1016/j.atherosclerosis.2024.118555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/22/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND AND AIMS Lipids constitute one of the main components of atherosclerosis lesions and are the mediators of many mechanisms involved in plaque progression and stability. Here we tested the hypothesis that lipids known to be involved in plaque development exhibited associations with plaque vulnerability. We used spatial lipidomics to overcome plaque heterogeneity and to compare lipids from specific regions of symptomatic and asymptomatic human carotid atherosclerotic plaques. METHODS Carotid atherosclerotic plaques were collected from symptomatic and asymptomatic patients. Plaque lipids were analyzed with the spatial lipidomics technique matrix-assisted laser desorption/ionization mass spectrometry imaging, and histology and immunofluorescence were used to segment the plaques into histomolecularly distinct regions. RESULTS Macrophage-rich regions from symptomatic lesions were found to be enriched in phosphatidylcholines (synthesized to counteract excess free cholesterol), while the same region from asymptomatic plaques were enriched in polyunsaturated cholesteryl esters and triglycerides, characteristic of functional lipid droplets. Vascular smooth muscle cells (VSMCs) of the fibrous cap of asymptomatic plaques were enriched in lysophosphatidylcholines and cholesteryl esters, know to promote VSMC proliferation and migration, crucial for the buildup of the fibrous cap stabilizing the plaque. CONCLUSIONS The investigation of the region-specific lipid composition of symptomatic and asymptomatic human atherosclerotic plaques revealed specific lipid markers of plaque outcome, which could be linked to known biological characteristics of stable plaques.
Collapse
Affiliation(s)
- Francesco Greco
- Centro Health and BioMedLab, Scuola Superiore Sant'Anna, Pisa, Italy; Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme (PI), Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Giulia Bertagna
- Azienda Ospedaliero Universitaria Pisana, Department of Vascular Surgery, Pisa, Italy
| | - Laura Quercioli
- Azienda Ospedaliero Universitaria Pisana, Department of Vascular Surgery, Pisa, Italy
| | - Angela Pucci
- Department of Histopathology, University Hospital, Pisa, Italy
| | | | - Mauro Ferrari
- Azienda Ospedaliero Universitaria Pisana, Department of Vascular Surgery, Pisa, Italy
| | - Fabio A Recchia
- Institute of Clinical Physiology, National Research Council, Pisa, Italy; Aging & Cardiovascular Discovery Center, Lewis Katz School of Medicine, Philadelphia, USA; Scuola Superiore Sant'Anna, Pisa, Italy
| | - Liam A McDonnell
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme (PI), Italy.
| |
Collapse
|
3
|
Kong SH, Bae JM, Kim JH, Kim SW, Han D, Shin CS. Protein Signatures of Parathyroid Adenoma according to Tumor Volume and Functionality. Endocrinol Metab (Seoul) 2024; 39:375-386. [PMID: 38509667 PMCID: PMC11066450 DOI: 10.3803/enm.2023.1827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/22/2023] [Accepted: 12/21/2023] [Indexed: 03/22/2024] Open
Abstract
BACKGRUOUND Parathyroid adenoma (PA) is a common endocrine disease linked to multiple complications, but the pathophysiology of the disease remains incompletely understood. The study aimed to identify the key regulator proteins and pathways of PA according to functionality and volume through quantitative proteomic analyses. METHODS We conducted a retrospective study of 15 formalin-fixed, paraffin-embedded PA samples from tertiary hospitals in South Korea. Proteins were extracted, digested, and the resulting peptides were analyzed using liquid chromatography-tandem mass spectrometry. Pearson correlation analysis was employed to identify proteins significantly correlated with clinical variables. Canonical pathways and transcription factors were analyzed using Ingenuity Pathway Analysis. RESULTS The median age of the participants was 52 years, and 60.0% were female. Among the 8,153 protein groups analyzed, 496 showed significant positive correlations with adenoma volume, while 431 proteins were significantly correlated with parathyroid hormone (PTH) levels. The proteins SLC12A9, LGALS3, and CARM1 were positively correlated with adenoma volume, while HSP90AB2P, HLA-DRA, and SCD5 showed negative correlations. DCPS, IRF2BPL, and FAM98A were the main proteins that exhibited positive correlations with PTH levels, and SLITRK4, LAP3, and AP4E1 had negative correlations. Canonical pathway analysis demonstrated that the RAN and sirtuin signaling pathways were positively correlated with both PTH levels and adenoma volume, while epithelial adherence junction pathways had negative correlations. CONCLUSION Our study identified pivotal proteins and pathways associated with PA, offering potential therapeutic targets. These findings accentuate the importance of proteomics in understanding disease pathophysiology and the need for further research.
Collapse
Affiliation(s)
- Sung Hye Kong
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Jung Hee Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sang Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Dohyun Han
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, Korea
| | - Chan Soo Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
4
|
Ma X, Fernández FM. Advances in mass spectrometry imaging for spatial cancer metabolomics. MASS SPECTROMETRY REVIEWS 2024; 43:235-268. [PMID: 36065601 PMCID: PMC9986357 DOI: 10.1002/mas.21804] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 05/09/2023]
Abstract
Mass spectrometry (MS) has become a central technique in cancer research. The ability to analyze various types of biomolecules in complex biological matrices makes it well suited for understanding biochemical alterations associated with disease progression. Different biological samples, including serum, urine, saliva, and tissues have been successfully analyzed using mass spectrometry. In particular, spatial metabolomics using MS imaging (MSI) allows the direct visualization of metabolite distributions in tissues, thus enabling in-depth understanding of cancer-associated biochemical changes within specific structures. In recent years, MSI studies have been increasingly used to uncover metabolic reprogramming associated with cancer development, enabling the discovery of key biomarkers with potential for cancer diagnostics. In this review, we aim to cover the basic principles of MSI experiments for the nonspecialists, including fundamentals, the sample preparation process, the evolution of the mass spectrometry techniques used, and data analysis strategies. We also review MSI advances associated with cancer research in the last 5 years, including spatial lipidomics and glycomics, the adoption of three-dimensional and multimodal imaging MSI approaches, and the implementation of artificial intelligence/machine learning in MSI-based cancer studies. The adoption of MSI in clinical research and for single-cell metabolomics is also discussed. Spatially resolved studies on other small molecule metabolites such as amino acids, polyamines, and nucleotides/nucleosides will not be discussed in the context.
Collapse
Affiliation(s)
- Xin Ma
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Cao J, Martin-Lorenzo M, van Kuijk K, Wieland EB, Gijbels MJ, Claes BSR, Heredero A, Aldamiz-Echevarria G, Heeren RMA, Goossens P, Sluimer JC, Balluff B, Alvarez-Llamas G. Spatial Metabolomics Identifies LPC(18:0) and LPA(18:1) in Advanced Atheroma With Translation to Plasma for Cardiovascular Risk Estimation. Arterioscler Thromb Vasc Biol 2024; 44:741-754. [PMID: 38299357 DOI: 10.1161/atvbaha.123.320278] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND The metabolic alterations occurring within the arterial architecture during atherosclerosis development remain poorly understood, let alone those particular to each arterial tunica. We aimed first to identify, in a spatially resolved manner, the specific metabolic changes in plaque, media, adventitia, and cardiac tissue between control and atherosclerotic murine aortas. Second, we assessed their translatability to human tissue and plasma for cardiovascular risk estimation. METHODS In this observational study, mass spectrometry imaging (MSI) was applied to identify region-specific metabolic differences between atherosclerotic (n=11) and control (n=11) aortas from low-density lipoprotein receptor-deficient mice, via histology-guided virtual microdissection. Early and advanced plaques were compared within the same atherosclerotic animals. Progression metabolites were further analyzed by MSI in 9 human atherosclerotic carotids and by targeted mass spectrometry in human plasma from subjects with elective coronary artery bypass grafting (cardiovascular risk group, n=27) and a control group (n=27). RESULTS MSI identified 362 local metabolic alterations in atherosclerotic mice (log2 fold-change ≥1.5; P≤0.05). The lipid composition of cardiac tissue is altered during atherosclerosis development and presents a generalized accumulation of glycerophospholipids, except for lysolipids. Lysolipids (among other glycerophospholipids) were found at elevated levels in all 3 arterial layers of atherosclerotic aortas. LPC(18:0) (lysophosphatidylcholine; P=0.024) and LPA(18:1) (lysophosphatidic acid; P=0.025) were found to be significantly elevated in advanced plaques as compared with mouse-matched early plaques. Higher levels of both lipid species were also observed in fibrosis-rich areas of advanced- versus early-stage human samples. They were found to be significantly reduced in human plasma from subjects with elective coronary artery bypass grafting (P<0.001 and P=0.031, respectively), with LPC(18:0) showing significant association with cardiovascular risk (odds ratio, 0.479 [95% CI, 0.225-0.883]; P=0.032) and diagnostic potential (area under the curve, 0.778 [95% CI, 0.638-0.917]). CONCLUSIONS An altered phospholipid metabolism occurs in atherosclerosis, affecting both the aorta and the adjacent heart tissue. Plaque-progression lipids LPC(18:0) and LPA(18:1), as identified by MSI on tissue, reflect cardiovascular risk in human plasma.
Collapse
Affiliation(s)
- Jianhua Cao
- Maastricht MultiModal Molecular Imaging institute, M4i, Maastricht University, the Netherlands (J.C., B.S.R.C., R.M.A.H., B.B.)
| | - Marta Martin-Lorenzo
- Immunology Department, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain (M.M.-L., G.A.-L.)
| | - Kim van Kuijk
- Department of Pathology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, the Netherlands (K.v.K., E.B.W., M.J.G., P.G., J.C.S.)
| | - Elias B Wieland
- Department of Pathology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, the Netherlands (K.v.K., E.B.W., M.J.G., P.G., J.C.S.)
| | - Marion J Gijbels
- Department of Pathology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, the Netherlands (K.v.K., E.B.W., M.J.G., P.G., J.C.S.)
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, the Netherlands (M.J.G.)
| | - Britt S R Claes
- Maastricht MultiModal Molecular Imaging institute, M4i, Maastricht University, the Netherlands (J.C., B.S.R.C., R.M.A.H., B.B.)
| | - Angeles Heredero
- Cardiac Surgery Service, Fundación Jiménez Díaz University Hospital-UAM, Madrid, Spain (A.H., G.A.-E.)
| | | | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging institute, M4i, Maastricht University, the Netherlands (J.C., B.S.R.C., R.M.A.H., B.B.)
| | - Pieter Goossens
- Department of Pathology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, the Netherlands (K.v.K., E.B.W., M.J.G., P.G., J.C.S.)
| | - Judith C Sluimer
- Department of Pathology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, the Netherlands (K.v.K., E.B.W., M.J.G., P.G., J.C.S.)
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (J.C.S.)
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging institute, M4i, Maastricht University, the Netherlands (J.C., B.S.R.C., R.M.A.H., B.B.)
| | - Gloria Alvarez-Llamas
- Immunology Department, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain (M.M.-L., G.A.-L.)
- RICORS2040, IIS-Fundación Jiménez Díaz, Madrid, Spain (G.A.-L.)
- Biochemistry and Molecular Biology Department, Complutense University, Madrid, Spain (G.A.-L.)
| |
Collapse
|
6
|
Samartha MVS, Arora S, Palei S, Gupta V, Saxena S. Multiomics studies for neuro-oncology. RADIOMICS AND RADIOGENOMICS IN NEURO-ONCOLOGY 2024:133-160. [DOI: 10.1016/b978-0-443-18508-3.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Edwards M, Freitas DP, Hirtzel EA, White N, Wang H, Davidson LA, Chapkin RS, Sun Y, Yan X. Interfacial Electromigration for Analysis of Biofluid Lipids in Small Volumes. Anal Chem 2023; 95:18557-18563. [PMID: 38050376 PMCID: PMC10862378 DOI: 10.1021/acs.analchem.3c04309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023]
Abstract
Lipids are important biomarkers within the field of disease diagnostics and can serve as indicators of disease progression and predictors of treatment effectiveness. Although lipids can provide important insight into how diseases initiate and progress, mass spectrometric methods for lipid characterization and profiling are limited due to lipid structural diversity, particularly the presence of various lipid isomers. Moreover, the difficulty of handling small-volume samples exacerbates the intricacies of biological analyses. In this work, we have developed a strategy that electromigrates a thin film of a small-volume biological sample directly to the air-liquid interface formed at the tip of a theta capillary. Importantly, we seamlessly integrated in situ biological lipid extraction with accelerated chemical derivatization, enabled by the air-liquid interface, and conducted isomeric structural characterization within a unified platform utilizing theta capillary nanoelectrospray ionization mass spectrometry, all tailored for small-volume sample analysis. We applied this unified platform to the analysis of lipids from small-volume human plasma and Alzheimer's disease mouse serum samples. Accelerated electro-epoxidation of unsaturated lipids at the interface allowed us to characterize lipid double-bond positional isomers. The unique application of electromigration of a thin film to the air-liquid interface in combination with accelerated interfacial reactions holds great potential in small-volume sample analysis for disease diagnosis and prevention.
Collapse
Affiliation(s)
- Madison
E. Edwards
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Dallas P. Freitas
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Erin A. Hirtzel
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Nicholas White
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Hongying Wang
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Laurie A. Davidson
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Robert S. Chapkin
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Yuxiang Sun
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Xin Yan
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| |
Collapse
|
8
|
Holbrook JH, Sekera ER, Lopez A, Fries BD, Tobias F, Akkaya K, Mihaylova MM, Hummon AB. Enhancement of Lipid Signals in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry with Ammonium Fluoride as a Matrix Additive. Anal Chem 2023; 95:10603-10609. [PMID: 37418337 PMCID: PMC10655718 DOI: 10.1021/acs.analchem.3c00753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Lipids are essential macromolecules that play a crucial role in numerous biological events. Lipids are structurally diverse which allows them to fulfill multiple functional roles. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a powerful tool to understand the spatial localization of lipids within biological systems. Herein, we report the use of ammonium fluoride (NH4F) as a comatrix additive to enhance lipid detection in biological samples, with a signal increase of up to 200%. Emphasis was placed on anionic lipid enhancement with negative polarity measurements, with some preliminary work on cationic lipids detailed. We observed lipid signal enhancement of [M-H]- ions with the addition of NH4F additive attributed to a proton transfer reaction in several different lipid classes. Overall, our study demonstrates that the use of the NH4F comatrix additive substantially improves sensitivity for lipid detection in a MALDI system and is capable of being applied to a variety of different applications.
Collapse
Affiliation(s)
- Joseph H. Holbrook
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Emily R. Sekera
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Arbil Lopez
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Brian D. Fries
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Fernando Tobias
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kubra Akkaya
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Maria M. Mihaylova
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amanda B. Hummon
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
9
|
Gitta S, Márk L, Szentpéteri JL, Szabó É. Lipid Changes in the Peri-Implantation Period with Mass Spectrometry Imaging: A Systematic Review. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010169. [PMID: 36676119 PMCID: PMC9866151 DOI: 10.3390/life13010169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Mass spectrometry imaging is a sensitive method for detecting molecules in tissues in their native form. Lipids mainly act as energy stores and membrane constituents, but they also play a role in lipid signaling. Previous studies have suggested an important role of lipids in implantation; therefore, our aim was to investigate the lipid changes during this period based on the available literature. The systematic literature search was performed on Ovid MEDLINE, Cochrane Library, Embase, and LILACS. We included studies about lipid changes in the early embryonal stage of healthy mammalian development published as mass spectrometry imaging. The search retrieved 917 articles without duplicates, and five articles were included in the narrative synthesis of the results. Two articles found a different spatial distribution of lipids in the early bovine embryo and receptive uterus. Three articles investigated lipids in mice in the peri-implantation period and found a different spatial distribution of several glycerophospholipids in both embryonic and maternal tissues. Although only five studies from three different research groups were included in this systematic review, it is clear that the spatial distribution of lipids is diverse in different tissues and their distribution varies from day to day. This may be a key factor in successful implantation, but further studies are needed to elucidate the exact mechanism.
Collapse
Affiliation(s)
- Stefánia Gitta
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - László Márk
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
- National Human Reproduction Laboratory, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Research Group, University of Pécs, 7624 Pécs, Hungary
| | - József L. Szentpéteri
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Éva Szabó
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
10
|
Hristova J, Svinarov D. Enhancing precision medicine through clinical mass spectrometry platform. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2053342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Julieta Hristova
- Alexander University Hospital, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Dobrin Svinarov
- Alexander University Hospital, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
11
|
Protein Alterations in Cardiac Ischemia/Reperfusion Revealed by Spatial-Omics. Int J Mol Sci 2022; 23:ijms232213847. [PMID: 36430335 PMCID: PMC9692276 DOI: 10.3390/ijms232213847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Myocardial infarction is the most common cause of death worldwide. An understanding of the alterations in protein pathways is needed in order to develop strategies that minimize myocardial damage. To identify the protein signature of cardiac ischemia/reperfusion (I/R) injury in rats, we combined, for the first time, protein matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and label-free proteomics on the same tissue section placed on a conductive slide. Wistar rats were subjected to I/R surgery and sacrificed after 24 h. Protein MALDI-MSI data revealed ischemia specific regions, and distinct profiles for the infarct core and border. Firstly, the infarct core, compared to histologically unaffected tissue, showed a significant downregulation of cardiac biomarkers, while an upregulation was seen for coagulation and immune response proteins. Interestingly, within the infarct tissue, alterations in the cytoskeleton reorganization and inflammation were found. This work demonstrates that a single tissue section can be used for protein-based spatial-omics, combining MALDI-MSI and label-free proteomics. Our workflow offers a new methodology to investigate the mechanisms of cardiac I/R injury at the protein level for new strategies to minimize damage after MI.
Collapse
|
12
|
Harkin C, Smith KW, Cruickshank FL, Logan Mackay C, Flinders B, Heeren RMA, Moore T, Brockbank S, Cobice DF. On-tissue chemical derivatization in mass spectrometry imaging. MASS SPECTROMETRY REVIEWS 2022; 41:662-694. [PMID: 33433028 PMCID: PMC9545000 DOI: 10.1002/mas.21680] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 05/04/2023]
Abstract
Mass spectrometry imaging (MSI) combines molecular and spatial information in a valuable tool for a wide range of applications. Matrix-assisted laser desorption/ionization (MALDI) is at the forefront of MSI ionization due to its wide availability and increasing improvement in spatial resolution and analysis speed. However, ionization suppression, low concentrations, and endogenous and methodological interferences cause visualization problems for certain molecules. Chemical derivatization (CD) has proven a viable solution to these issues when applied in mass spectrometry platforms. Chemical tagging of target analytes with larger, precharged moieties aids ionization efficiency and removes analytes from areas of potential isobaric interferences. Here, we address the application of CD on tissue samples for MSI analysis, termed on-tissue chemical derivatization (OTCD). MALDI MSI will remain the focus platform due to its popularity, however, alternative ionization techniques such as liquid extraction surface analysis and desorption electrospray ionization will also be recognized. OTCD reagent selection, application, and optimization methods will be discussed in detail. MSI with OTCD is a powerful tool to study the spatial distribution of poorly ionizable molecules within tissues. Most importantly, the use of OTCD-MSI facilitates the analysis of previously inaccessible biologically relevant molecules through the adaptation of existing CD methods. Though further experimental optimization steps are necessary, the benefits of this technique are extensive.
Collapse
Affiliation(s)
- Carla Harkin
- Mass Spectrometry Centre, Biomedical Sciences Research Institute (BMSRI), School of Biomedical SciencesUlster UniversityColeraineNorthern IrelandUK
| | - Karl W. Smith
- National High Magnetic Field Laboratory, Ion Cyclotron Resonance Facility (ICR)Florida State UniversityTallahasseeFloridaUSA
| | - Faye L. Cruickshank
- Scottish Instrumentation and Research Centre for Advanced Mass Spectrometry (SIRCAMS), EaStCHEM School of ChemistryUniversity of EdinburghScotlandUK
| | - C. Logan Mackay
- Scottish Instrumentation and Research Centre for Advanced Mass Spectrometry (SIRCAMS), EaStCHEM School of ChemistryUniversity of EdinburghScotlandUK
| | - Bryn Flinders
- Screening Division, Mass Spectrometry, Hair DiagnostixDutch Screening GroupMaastrichtThe Netherlands
| | - Ron M. A. Heeren
- Maastricht Multimodal Molecular Imaging Institute (M4I)University of MaastrichtMaastrichtThe Netherlands
| | - Tara Moore
- Genomic Medicine, Biomedical Sciences Research Institute (BMSRI), School of Biomedical SciencesUlster UniversityColeraineNorthern IrelandUK
| | | | - Diego F. Cobice
- Mass Spectrometry Centre, Biomedical Sciences Research Institute (BMSRI), School of Biomedical SciencesUlster UniversityColeraineNorthern IrelandUK
| |
Collapse
|
13
|
Qi X, Chen L, Hu Z, Shen W, Xu H, Ma L, Wang G, Jing Y, Wang X, Zhang B, Lin J. Cytology, transcriptomics, and mass spectrometry imaging reveal changes in late-maturation elm (Ulmus pumila) seeds. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153639. [PMID: 35176692 DOI: 10.1016/j.jplph.2022.153639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
During seed maturation, the seed deposits storage compounds (starches, oils, and proteins), synthesizes defense compounds, produces a seed coat, initiates embryo dormancy, and becomes desiccated. During the late-maturation stage, seed storage compound contents and compositions change dramatically. Although maturation has been extensively studied in model species and crops, it remains less well characterized in woody perennial plants. In this study, we conducted morphological and cytological observations, transcriptome profiling, and chemical constituent analysis of elm (Ulmus pumila L.) seeds during the late-maturation stage. Light and electron microscopy revealed that closely packed yet discrete lipid bodies frequently surrounded the densely stained protein bodies, and the protein bodies became irregular or even partially disintegrated at the end of seed development. RNA-seq detected substantial transcriptome changes during the late-maturation stage, and pathway enrichment analysis showed that the differentially expressed genes were associated with phenylpropanoid biosynthesis, starch and sucrose metabolism, plant-pathogen interactions, and hormone signal transduction. Furthermore, we used mass spectrometry imaging to detect the relative intensity and spatial distribution of fatty acids, phospholipids, and waxes in elm seeds. Our findings provide a framework for understanding the changes in cytological features and chemical composition during the final stage of elm seed development, and a detailed reference for seed development in woody plants.
Collapse
Affiliation(s)
- Xiaohong Qi
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Lulu Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Zijian Hu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Weiwei Shen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lingyu Ma
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Guangchao Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanping Jing
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Xiaodong Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Bolin Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China.
| | - Jinxing Lin
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
14
|
Sorption of Fulvic Acids onto Titanium Dioxide Nanoparticles Extracted from Commercial Sunscreens: ToF-SIMS and High-Dimensional Data Analysis. COATINGS 2022. [DOI: 10.3390/coatings12030335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Titanium dioxide nanoparticles (n-TiO2) are common ingredients of sunscreens and are often released into surface waters during usage. Once released, the surface chemistry of n-TiO2 changes by interacting with dissolved organic matter (DOM). In previous studies, these interactions were investigated using model n-TiO2 and; therefore, do not account for the complex composition of the coating of n-TiO2 aged in sunscreens. Taking advantage of a mild extraction method to provide more realistic nanoparticles, we investigated the potentials of time of flight-secondary ion mass spectrometry (ToF-SIMS) combined with high-dimensional data analysis to characterize the sorption of fulvic acids, as a model for DOM, on titanium dioxide nanoparticles extracted from ten different commercial sunscreens (n-TiO2 ⸦ sunscreen). Clustering analysis confirmed the ability of ToF-SIMS to detect the sorption of fulvic acids. Moreover, a unique sorption pattern was recognized for each n-TiO2 ⸦ sunscreen, which implied different fractionation of fulvic acids based on the initial specifications of nanoparticles, e.g., size, coating, etc. Furthermore, random forest was used to extract the most important fragments for predicting the presence of fulvic acids on the surface of n-TiO2 ⸦ sunscreen. Finally, we evaluate the potential of ToF-SIMS for characterizing the sorption layer.
Collapse
|
15
|
Kwon YW, Jo HS, Bae S, Seo Y, Song P, Song M, Yoon JH. Application of Proteomics in Cancer: Recent Trends and Approaches for Biomarkers Discovery. Front Med (Lausanne) 2021; 8:747333. [PMID: 34631760 PMCID: PMC8492935 DOI: 10.3389/fmed.2021.747333] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Proteomics has become an important field in molecular sciences, as it provides valuable information on the identity, expression levels, and modification of proteins. For example, cancer proteomics unraveled key information in mechanistic studies on tumor growth and metastasis, which has contributed to the identification of clinically applicable biomarkers as well as therapeutic targets. Several cancer proteome databases have been established and are being shared worldwide. Importantly, the integration of proteomics studies with other omics is providing extensive data related to molecular mechanisms and target modulators. These data may be analyzed and processed through bioinformatic pipelines to obtain useful information. The purpose of this review is to provide an overview of cancer proteomics and recent advances in proteomic techniques. In particular, we aim to offer insights into current proteomics studies of brain cancer, in which proteomic applications are in a relatively early stage. This review covers applications of proteomics from the discovery of biomarkers to the characterization of molecular mechanisms through advances in technology. Moreover, it addresses global trends in proteomics approaches for translational research. As a core method in translational research, the continued development of this field is expected to provide valuable information at a scale beyond that previously seen.
Collapse
Affiliation(s)
- Yang Woo Kwon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Han-Seul Jo
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Sungwon Bae
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Youngsuk Seo
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Parkyong Song
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, South Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, South Korea
| |
Collapse
|
16
|
Dimovska Nilsson K, Karagianni A, Kaya I, Henricsson M, Fletcher JS. (CO 2) n+, (H 2O) n+, and (H 2O) n+ (CO 2) gas cluster ion beam secondary ion mass spectrometry: analysis of lipid extracts, cells, and Alzheimer's model mouse brain tissue. Anal Bioanal Chem 2021; 413:4181-4194. [PMID: 33974088 PMCID: PMC8222020 DOI: 10.1007/s00216-021-03372-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/07/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023]
Abstract
This work assesses the potential of new water cluster-based ion beams for improving the capabilities of secondary ion mass spectrometry (SIMS) for in situ lipidomics. The effect of water clusters was compared to carbon dioxide clusters, along with the effect of using pure water clusters compared to mixed water and carbon dioxide clusters. A signal increase was found when using pure water clusters. However, when analyzing cells, a more substantial signal increase was found in positive ion mode when the water clusters also contained carbon dioxide, suggesting that additional reactions are in play. The effects of using a water primary ion beam on a more complex sample were investigated by analyzing brain tissue from an Alzheimer’s disease transgenic mouse model. The results indicate that the ToF-SIMS results are approaching those from MALDI as ToF-SIMS was able to image lyso-phosphocholine (LPC) lipids, a lipid class that for a long time has eluded detection during SIMS analyses. Gangliosides, sulfatides, and cholesterol were also imaged. ![]()
Collapse
Affiliation(s)
- Kelly Dimovska Nilsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Anthi Karagianni
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Ibrahim Kaya
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 413 45, Mölndal, Sweden
- Medical Mass Spectrometry Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, 751 05, Uppsala, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - John S Fletcher
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Gothenburg, Sweden.
| |
Collapse
|
17
|
Greco F, Quercioli L, Pucci A, Rocchiccioli S, Ferrari M, Recchia FA, McDonnell LA. Mass Spectrometry Imaging as a Tool to Investigate Region Specific Lipid Alterations in Symptomatic Human Carotid Atherosclerotic Plaques. Metabolites 2021; 11:250. [PMID: 33919525 PMCID: PMC8073208 DOI: 10.3390/metabo11040250] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/01/2022] Open
Abstract
Atherosclerosis is characterized by fatty plaques in large and medium sized arteries. Their rupture can causes thrombi, occlusions of downstream vessels and adverse clinical events. The investigation of atherosclerotic plaques is made difficult by their highly heterogeneous nature. Here we propose a spatially resolved approach based on matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging to investigate lipids in specific regions of atherosclerotic plaques. The method was applied to a small dataset including symptomatic and asymptomatic human carotid atherosclerosis plaques. Tissue sections of symptomatic and asymptomatic human carotid atherosclerotic plaques were analyzed by MALDI mass spectrometry imaging (MALDI MSI) of lipids, and adjacent sections analyzed by histology and immunofluorescence. These multimodal datasets were used to compare the lipid profiles of specific histopathological regions within the plaque. The lipid profiles of macrophage-rich regions and intimal vascular smooth muscle cells exhibited the largest changes associated with plaque outcome. Macrophage-rich regions from symptomatic lesions were found to be enriched in sphingomyelins, and intimal vascular smooth muscle cells of symptomatic plaques were enriched in cholesterol and cholesteryl esters. The proposed method enabled the MALDI MSI analysis of specific regions of the atherosclerotic lesion, confirming MALDI MSI as a promising tool for the investigation of histologically heterogeneous atherosclerotic plaques.
Collapse
Affiliation(s)
- Francesco Greco
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy; (F.G.); (F.A.R.)
- Fondazione Pisana per la Scienza ONLUS, 56017 San Giuliano Terme (PI), Italy
| | - Laura Quercioli
- Department of Vascular Surgery, Azienda Ospedaliero Universitaria Pisana, 56124 Pisa, Italy; (L.Q.); (M.F.)
| | - Angela Pucci
- Department of Histopathology, University Hospital, 56124 Pisa, Italy;
| | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | - Mauro Ferrari
- Department of Vascular Surgery, Azienda Ospedaliero Universitaria Pisana, 56124 Pisa, Italy; (L.Q.); (M.F.)
| | - Fabio A. Recchia
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy; (F.G.); (F.A.R.)
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Liam A. McDonnell
- Fondazione Pisana per la Scienza ONLUS, 56017 San Giuliano Terme (PI), Italy
| |
Collapse
|
18
|
Jeng JY, Jiang ZH, Cho YT, Su H, Lee CW, Shiea J. Obtaining molecular imagings of pesticide residues on strawberry surfaces with probe sampling followed by ambient ionization mass spectrometric analysis. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4644. [PMID: 32885563 DOI: 10.1002/jms.4644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Thermal desorption-electrospray ionization tandem mass spectrometry (TD-ESI/MS/MS) was used to rapidly characterize the residual pesticides collected on the surface of a strawberry with a metallic probe. Twelve pesticides, including nine fungicides and three miticides, were detected; the results were validated by comparison with results that used solvent extraction followed by gas chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry analyses. The distribution of pesticide residues on a strawberry's surface was explored by collecting multiple samples using probes from 40 positions on the strawberry, with the collected samples being analyzed with TD-ESI/MS/MS. The obtained molecular information was used to construct mass spectrometry imaging of the strawberry's pesticide residues.
Collapse
Affiliation(s)
- Jing-Yueh Jeng
- Department of Medicinal Chemistry, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Zong-Han Jiang
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yi-Tzu Cho
- Department of Cosmetic Applications and Management, Yuh-Ing Junior College of Health Care & Management, Kaohsiung, Taiwan
| | - Hung Su
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chi-Wei Lee
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
19
|
Detecting early myocardial ischemia in rat heart by MALDI imaging mass spectrometry. Sci Rep 2021; 11:5135. [PMID: 33664384 PMCID: PMC7933419 DOI: 10.1038/s41598-021-84523-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/15/2021] [Indexed: 01/07/2023] Open
Abstract
Diagnostics of myocardial infarction in human post-mortem hearts can be achieved only if ischemia persisted for at least 6–12 h when certain morphological changes appear in myocardium. The initial 4 h of ischemia is difficult to diagnose due to lack of a standardized method. Developing a panel of molecular tissue markers is a promising approach and can be accelerated by characterization of molecular changes. This study is the first untargeted metabolomic profiling of ischemic myocardium during the initial 4 h directly from tissue section. Ischemic hearts from an ex-vivo Langendorff model were analysed using matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) at 15 min, 30 min, 1 h, 2 h, and 4 h. Region-specific molecular changes were identified even in absence of evident histological lesions and were segregated by unsupervised cluster analysis. Significantly differentially expressed features were detected by multivariate analysis starting at 15 min while their number increased with prolonged ischemia. The biggest significant increase at 15 min was observed for m/z 682.1294 (likely corresponding to S-NADHX—a damage product of nicotinamide adenine dinucleotide (NADH)). Based on the previously reported role of NAD+/NADH ratio in regulating localization of the sodium channel (Nav1.5) at the plasma membrane, Nav1.5 was evaluated by immunofluorescence. As expected, a fainter signal was observed at the plasma membrane in the predicted ischemic region starting 30 min of ischemia and the change became the most pronounced by 4 h. Metabolomic changes occur early during ischemia, can assist in identifying markers for post-mortem diagnostics and improve understanding of molecular mechanisms.
Collapse
|
20
|
Moerman AM, Visscher M, Slijkhuis N, Van Gaalen K, Heijs B, Klein T, Burgers PC, De Rijke YB, Van Beusekom HMM, Luider TM, Verhagen HJM, Van der Steen AFW, Gijsen FJH, Van der Heiden K, Van Soest G. Lipid signature of advanced human carotid atherosclerosis assessed by mass spectrometry imaging. J Lipid Res 2021; 62:100020. [PMID: 33581415 PMCID: PMC7881220 DOI: 10.1194/jlr.ra120000974] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/09/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Carotid atherosclerosis is a risk factor for ischemic stroke, one of the main causes of mortality and disability worldwide. The disease is characterized by plaques, heterogeneous deposits of lipids, and necrotic debris in the vascular wall, which grow gradually and may remain asymptomatic for decades. However, at some point a plaque can evolve to a high-risk plaque phenotype, which may trigger a cerebrovascular event. Lipids play a key role in the development and progression of atherosclerosis, but the nature of their involvement is not fully understood. Using matrix-assisted laser desorption/ionization mass spectrometry imaging, we visualized the distribution of approximately 200 different lipid signals, originating of >90 uniquely assigned species, in 106 tissue sections of 12 human carotid atherosclerotic plaques. We performed unsupervised classification of the mass spectrometry dataset, as well as a histology-directed multivariate analysis. These data allowed us to extract the spatial lipid patterns associated with morphological plaque features in advanced plaques from a symptomatic population, revealing spatial lipid patterns in atherosclerosis and their relation to histological tissue type. The abundances of sphingomyelin and oxidized cholesteryl ester species were elevated specifically in necrotic intima areas, whereas diacylglycerols and triacylglycerols were spatially correlated to areas containing the coagulation protein fibrin. These results demonstrate a clear colocalization between plaque features and specific lipid classes, as well as individual lipid species in high-risk atherosclerotic plaques.
Collapse
Affiliation(s)
- Astrid M Moerman
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mirjam Visscher
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nuria Slijkhuis
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kim Van Gaalen
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bram Heijs
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Theo Klein
- Department of Clinical Chemistry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Peter C Burgers
- Department of Neurology, Laboratory of Neuro-Oncology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Yolanda B De Rijke
- Department of Clinical Chemistry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Heleen M M Van Beusekom
- Department of Experimental Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Theo M Luider
- Department of Neurology, Laboratory of Neuro-Oncology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hence J M Verhagen
- Department of Vascular and Endovascular Surgery, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Antonius F W Van der Steen
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Frank J H Gijsen
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kim Van der Heiden
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gijs Van Soest
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
21
|
Drake RR, Scott DA, Angel PM. Imaging Mass Spectrometry. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
22
|
Neumann EK, Djambazova KV, Caprioli RM, Spraggins JM. Multimodal Imaging Mass Spectrometry: Next Generation Molecular Mapping in Biology and Medicine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2401-2415. [PMID: 32886506 PMCID: PMC9278956 DOI: 10.1021/jasms.0c00232] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Imaging mass spectrometry has become a mature molecular mapping technology that is used for molecular discovery in many medical and biological systems. While powerful by itself, imaging mass spectrometry can be complemented by the addition of other orthogonal, chemically informative imaging technologies to maximize the information gained from a single experiment and enable deeper understanding of biological processes. Within this review, we describe MALDI, SIMS, and DESI imaging mass spectrometric technologies and how these have been integrated with other analytical modalities such as microscopy, transcriptomics, spectroscopy, and electrochemistry in a field termed multimodal imaging. We explore the future of this field and discuss forthcoming developments that will bring new insights to help unravel the molecular complexities of biological systems, from single cells to functional tissue structures and organs.
Collapse
Affiliation(s)
- Elizabeth K Neumann
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
| | - Katerina V Djambazova
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
| | - Richard M Caprioli
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
| | - Jeffrey M Spraggins
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
| |
Collapse
|
23
|
Finšgar M. Surface analysis and interface properties of 2-aminobenzimidazole corrosion inhibitor for brass in chloride solution. Anal Bioanal Chem 2020; 412:8431-8442. [DOI: 10.1007/s00216-020-02981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
|
24
|
Kaya I, Sämfors S, Levin M, Borén J, Fletcher JS. Multimodal MALDI Imaging Mass Spectrometry Reveals Spatially Correlated Lipid and Protein Changes in Mouse Heart with Acute Myocardial Infarction. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2133-2142. [PMID: 32897704 PMCID: PMC7587215 DOI: 10.1021/jasms.0c00245] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Acute myocardial infarction (MI) is a cardiovascular disease that remains a major cause of morbidity and mortality worldwide despite advances in its prevention and treatment. During acute myocardial ischemia, the lack of oxygen switches the cell metabolism to anaerobic respiration, with lactate accumulation, ATP depletion, Na+ and Ca2+ overload, and inhibition of myocardial contractile function, which drastically modifies the lipid, protein, and small metabolite profile in the myocardium. Imaging mass spectrometry (IMS) is a powerful technique to comprehensively elucidate the spatial distribution patterns of lipids, peptides, and proteins in biological tissue sections. In this work, we demonstrate an application of multimodal chemical imaging using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), which provided comprehensive molecular information in situ within the same mouse heart tissue sections with myocardial infarction. MALDI-IMS (at 30 μm per pixel) revealed infarct-associated spatial alterations of several lipid species of sphingolipids, glycerophospholipids, lysophospholipids, and cardiolipins along with the acyl carnitines. Further, we performed multimodal MALDI-IMS (IMS3) where dual polarity lipid imaging was combined with subsequent protein MALDI-IMS analysis (at 30 μm per pixel) within the same tissue sections, which revealed accumulations of core histone proteins H4, H2A, and H2B along with post-translational modification products, acetylated H4 and H2A, on the borders of the infarcted region. This methodology allowed us to interpret the lipid and protein molecular pathology of the very same infarcted region in a mouse model of myocardial infarction. Therefore, the presented data highlight the potential of multimodal MALDI imaging mass spectrometry of the same tissue sections as a powerful approach for simultaneous investigation of spatial infarct-associated lipid and protein changes of myocardial infarction.
Collapse
Affiliation(s)
- Ibrahim Kaya
- Department of Psychiatry and Neurochemistry,
Sahlgrenska Academy at the University of Gothenburg, 431 80
Mölndal, Sweden
- Department of Chemistry and Molecular Biology,
University of Gothenburg, 405 30 Gothenburg,
Sweden
| | - Sanna Sämfors
- Department of Chemistry and Molecular Biology,
University of Gothenburg, 405 30 Gothenburg,
Sweden
- Department of Molecular and Clinical Medicine,
Institute of Medicine at University of Gothenburg and Sahlgrenska
University Hospital, 405 30 Gothenburg, Sweden
| | - Malin Levin
- Department of Molecular and Clinical Medicine,
Institute of Medicine at University of Gothenburg and Sahlgrenska
University Hospital, 405 30 Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine,
Institute of Medicine at University of Gothenburg and Sahlgrenska
University Hospital, 405 30 Gothenburg, Sweden
| | - John S. Fletcher
- Department of Chemistry and Molecular Biology,
University of Gothenburg, 405 30 Gothenburg,
Sweden
| |
Collapse
|
25
|
Cao J, Goossens P, Martin-Lorenzo M, Dewez F, Claes BSR, Biessen EAL, Heeren RMA, Balluff B. Atheroma-Specific Lipids in ldlr-/- and apoe-/- Mice Using 2D and 3D Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1825-1832. [PMID: 32872786 PMCID: PMC7472746 DOI: 10.1021/jasms.0c00070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Atherosclerosis is the major contributor to cardiovascular diseases. It is a spatially and temporally complex inflammatory disease, in which intravascular accumulation of a plethora of lipids is considered to play a crucial role. To date, both the composition and local distribution of the involved lipids have not been thoroughly mapped yet. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) enables analyzing and visualizing hundreds of lipid molecules within the plaque while preserving each lipid's specific location. In this study, we aim to identify and verify aortic plaque-specific lipids with high-spatial-resolution 2D and 3D MALDI-MSI common to high-fat-diet-fed low-density lipoprotein receptor deficient (ldlr-/-) mice and chow-fed apolipoprotein E deficient (apoe-/-) mice, the two most widely used animal models for atherosclerosis. A total of 11 lipids were found to be significantly and specifically colocalized to the plaques in both mouse models. These were identified and belong to one sphingomyelin (SM), three lysophosphatidic acids (LPA), four lysophosphatidylcholines (LPC), two lysophosphatidylethanolamines (LPE), and one lysophosphatidylinositol (LPI). While these lysolipids and SM 34:0;2 were characteristic of the atherosclerotic aorta plaque itself, LPI 18:0 was mainly localized in the necrotic core of the plaque.
Collapse
Affiliation(s)
- Jianhua Cao
- Maastricht Multimodal Molecular Imaging Institute
(M4I), Maastricht University, 6200 MD Maastricht, The
Netherlands
| | - Pieter Goossens
- Maastricht UMC+, Pathology Department,
Cardiovascular Research Institute Maastricht (CARIM), 6202 AZ
Maastricht, The Netherlands
| | - Marta Martin-Lorenzo
- Maastricht Multimodal Molecular Imaging Institute
(M4I), Maastricht University, 6200 MD Maastricht, The
Netherlands
- Immunology Department, IIS-Fundacion
Jimenez Diaz-UAM, 28040 Madrid, Spain
| | - Frédéric Dewez
- Maastricht Multimodal Molecular Imaging Institute
(M4I), Maastricht University, 6200 MD Maastricht, The
Netherlands
- Mass Spectrometry Laboratory (MSLab),
University of Liège, B-4000 Liège,
Belgium
| | - Britt S. R. Claes
- Maastricht Multimodal Molecular Imaging Institute
(M4I), Maastricht University, 6200 MD Maastricht, The
Netherlands
| | - Erik A. L. Biessen
- Maastricht UMC+, Pathology Department,
Cardiovascular Research Institute Maastricht (CARIM), 6202 AZ
Maastricht, The Netherlands
| | - Ron M. A. Heeren
- Maastricht Multimodal Molecular Imaging Institute
(M4I), Maastricht University, 6200 MD Maastricht, The
Netherlands
| | - Benjamin Balluff
- Maastricht Multimodal Molecular Imaging Institute
(M4I), Maastricht University, 6200 MD Maastricht, The
Netherlands
| |
Collapse
|
26
|
Yukihiro Y, Zaima N. Application of Mass Spectrometry Imaging for Visualizing Food Components. Foods 2020; 9:foods9050575. [PMID: 32375379 PMCID: PMC7278736 DOI: 10.3390/foods9050575] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/15/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
Consuming food is essential for survival, maintaining health, and triggering positive emotions like pleasure. One of the factors that drive us toward such behavior is the presence of various compounds in foods. There are many methods to analyze these molecules in foods; however, it is difficult to analyze the spatial distribution of these compounds using conventional techniques, such as mass spectrometry combined with high-performance liquid chromatography or gas chromatography. Mass spectrometry imaging (MSI) is a two-dimensional ionization technology that enables detection of compounds in tissue sections without extraction, purification, separation, or labeling. There are many methods for ionization of analytes, including secondary ion mass spectrometry, matrix-assisted laser desorption/ionization, and desorption electrospray ionization. Such MSI technologies can provide spatial information on the location of a specific analyte in food. The number of studies utilizing MSI technologies in food science has been increasing in the past decade. This review provides an overview of some of the recent applications of MSI in food science and related fields. In the future, MSI will become one of the most promising technologies for visualizing the distribution of food components and for identifying food-related factors by their molecular weights to improve quality, quality assurance, food safety, nutritional analysis, and to locate administered food factors.
Collapse
Affiliation(s)
- Yoshimura Yukihiro
- Department of Nutrition, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe City 651-2180, Japan
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara City 631-8505, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University,204-3327 Nakamachi, Nara City 631-8505, Japan
| |
Collapse
|
27
|
De Bruycker K, Welle A, Hirth S, Blanksby SJ, Barner-Kowollik C. Mass spectrometry as a tool to advance polymer science. Nat Rev Chem 2020; 4:257-268. [PMID: 37127980 DOI: 10.1038/s41570-020-0168-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
In contrast to natural polymers, which have existed for billions of years, the first well-understood synthetic polymers date back to just over one century ago. Nevertheless, this relatively short period has seen vast progress in synthetic polymer chemistry, which can now afford diverse macromolecules with varying structural complexities. To keep pace with this synthetic progress, there have been commensurate developments in analytical chemistry, where mass spectrometry has emerged as the pre-eminent technique for polymer analysis. This Perspective describes present challenges associated with the mass-spectrometric analysis of synthetic polymers, in particular the desorption, ionization and structural interrogation of high-molar-mass macromolecules, as well as strategies to lower spectral complexity. We critically evaluate recent advances in technology in the context of these challenges and suggest how to push the field beyond its current limitations. In this context, the increasingly important role of high-resolution mass spectrometry is emphasized because of its unrivalled ability to describe unique species within polymer ensembles, rather than to report the average properties of the ensemble.
Collapse
|
28
|
Heiles S, Kompauer M, Müller MA, Spengler B. Atmospheric-Pressure MALDI Mass Spectrometry Imaging at 213 nm Laser Wavelength. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:326-335. [PMID: 32031384 DOI: 10.1021/jasms.9b00052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
First results for a new atmospheric-pressure matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging source operating at 213 nm laser wavelength are presented. The activation of analytes in the 213 nm MALDI process at atmospheric pressure was evaluated and compared to results for 337 nm MALDI and electrospray ionization using thermometer molecules. Different sample preparation techniques for nicotinic acid, the matrix with the highest ionization efficiency at 213 nm of all tested matrices, were evaluated and optimized to obtain small crystal sizes, homogenous matrix layer sample coverage, and high ion signal gains. Mass spectrometry imaging experiments of phospholipids in mouse tissue sections in positive- and negative-ion mode with different lateral resolutions and the corresponding pre-/post-mass spectrometry imaging workflows are presented. The use of custom-made objective lenses resulted in sample ablation spot diameters of on average 2.9 μm, allowing mass spectrometry imaging experiments to be performed with 3 μm pixel size without oversampling. The ion source was coupled to an orbital trapping mass spectrometer offering high mass resolution (>100.000), high mass accuracy (≤ ±2 ppm), and high sensitivity (single pixel on-tissue tandem MS from 6.6 μm2 ablation area). The newly developed 213 nm atmospheric-pressure MALDI source combines the high mass resolution and high mass accuracy performance characteristics of orbital trapping mass spectrometers with high lateral resolution (pixel size ∼3 μm) mass spectrometry imaging.
Collapse
Affiliation(s)
- Sven Heiles
- Institute of Inorganic and Analytical Chemistry , Justus Liebig University Giessen , 35392 Giessen , Germany
| | - Mario Kompauer
- Institute of Inorganic and Analytical Chemistry , Justus Liebig University Giessen , 35392 Giessen , Germany
| | - Max A Müller
- Institute of Inorganic and Analytical Chemistry , Justus Liebig University Giessen , 35392 Giessen , Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry , Justus Liebig University Giessen , 35392 Giessen , Germany
| |
Collapse
|