1
|
Gómez-Pertusa C, García-Poyo MC, Grindlay G, Pedraza R, Yáñez MA, Gras L. Determination of metallic nanoparticles in soils by means spICP-MS after a microwave-assisted extraction treatment. Talanta 2024; 272:125742. [PMID: 38367399 DOI: 10.1016/j.talanta.2024.125742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/19/2024]
Abstract
Current sample preparation strategies for nanomaterials (NMs) analysis in soils by means single particle inductively coupled plasma mass spectrometry have significant constrains in terms of accuracy, sample throughput and applicability (i.e., type of NMs and soils). In this work, strengths and weakness of microwave assisted extraction (MAE) for NMs characterization in soils were systematically investigated. To this end, different extractants were tested (ultrapure water; NaOH, NH4OH, sodium citrate and tetrasodium pyrophosphate) and MAE operating conditions were optimized by means of design of experiments. Next, the developed method was applied to different type of metallic(oid) nanoparticles (Se-, Ag-, Pt- and AuNPs) and soils (alkaline, acid, sandy, clayey, SL36, loam ERMCC141; sludge amended ERM483). Results show that Pt- and AuNPs are preserved and quantitatively extracted from soils in 6 min (12 cycles of 30 s each) inside an 800 W oven by using 20 mL of 0.1 M NaOH solution. This methodology is applicable to soils showing a wide range of physicochemical properties except for clay rich samples. If clay soil fraction is significant (>15%), NMs are efficiently retained in the soil thus giving rise to poor recoveries (<10%). The analysis of labile NMs such as Se- and AgNPs is not feasible by means this approach since extraction conditions favors dissolution. Finally, when compared to current extraction methodologies (e.g., ultrasound, cloud point extraction, etc.), MAE affords better or equivalent accuracies and precision as well as higher sample throughput due to treatment speed and the possibility to work with several samples simultaneously.
Collapse
Affiliation(s)
- Carlos Gómez-Pertusa
- University of Alicante, Department of Analytical Chemistry, Nutrition and Food Sciences, PO Box 99, 03080, Alicante, Spain
| | - M Carmen García-Poyo
- LABAQUA S.A.U, c/ Dracma, 16-18, Polígono industrial Las Atalayas, 03114, Alicante, Spain
| | - Guillermo Grindlay
- University of Alicante, Department of Analytical Chemistry, Nutrition and Food Sciences, PO Box 99, 03080, Alicante, Spain.
| | - Ricardo Pedraza
- LABAQUA S.A.U, c/ Dracma, 16-18, Polígono industrial Las Atalayas, 03114, Alicante, Spain
| | - M Adela Yáñez
- LABAQUA S.A.U, c/ Dracma, 16-18, Polígono industrial Las Atalayas, 03114, Alicante, Spain
| | - Luis Gras
- University of Alicante, Department of Analytical Chemistry, Nutrition and Food Sciences, PO Box 99, 03080, Alicante, Spain
| |
Collapse
|
2
|
Li P, He C, Lin D. Extraction and quantification of polystyrene nanoplastics from biological samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120267. [PMID: 36174811 DOI: 10.1016/j.envpol.2022.120267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/04/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Accurate quantification of nanoplastics (NPs) in complex matrices remains a challenge, especially for biological samples containing high content of organic matters. Herein, a new method extracting and quantifying polystyrene (PS) NPs from biological samples was developed. The extraction included alkaline digestion, centrifugation, and cloud point extraction (CPE), and the quantification included gold nanoparticles formation and labeling on surfaces of the extracted NPs and thereafter measurement with single particle inductively coupled plasma mass spectrometry (SP-ICP-MS). Results show that 25% tetramethylammonium hydroxide solution was an effective alkaline digestion solution for biological matrices, and CPE after centrifugation (3000 rpm, 10 min) was applicable to purify and enrich PS NPs with different sizes (100 and 500 nm) and surface functionalities (-COOH and -NH2 modifications) from the digestion solution. The efficiency of Au labeling on PS NPs surface was improved by about 70% in the presence of 100 μM cetyltrimethylammonium bromide. The performance of the quantification method was examined by extraction and measurement of PS NPs spiked in four representative organism samples including bacteria, algae, nematode, and earthworm, and was further validated by analyzing the accumulated PS NPs in exposed nematodes. Good recovery rates (65 ± 10%-122 ± 22%) were achieved for spiking levels of 5-50 μg g-1; the limit of detection was 3.7 × 107 particles g-1, corresponding to the mass concentration of about 0.02 and 2.5 μg g-1 for the 100 nm and 500 nm PS NPs, respectively. The established extraction and quantification methods are efficient and sensitive, providing a useful approach for further exploring the environmental behavior and toxicity of NPs.
Collapse
Affiliation(s)
- Pei Li
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Hwa Mei Hospital, University of Chinese Academy of Science, Ningbo, 315010, China
| | - Caijiao He
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Moreno-Martín G, Gómez-Gómez B, León-González ME, Madrid Y. Characterization of AgNPs and AuNPs in sewage sludge by single particle inductively coupled plasma-mass spectrometry. Talanta 2022; 238:123033. [PMID: 34857351 DOI: 10.1016/j.talanta.2021.123033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023]
Abstract
This study develops for the first time an analytical method for the characterization of silver and gold nanoparticles in sewage sludge. The evaluation of the effect of temperature, extracting agent and centrifugation speed and time on the extraction yield was carried out through a multifactorial analysis of variance which allows us to select 289 g, 5 min and 20 mM sodium pyrophosphate tetrabasic as optimal extraction conditions. Under these conditions, the analysis of the extract by single particle inductively coupled plasma-mass spectrometry provided recovery percentages of 70 ± 2% and 56 ± 1% for silver and gold nanoparticles, respectively. Moreover, the complementary results obtained upon analysis of these extracts by transmission electron microscopy and single particle inductively coupled plasma-mass spectrometry showed that the developed method did not modify the original size and shape of these nanoparticles during the extraction procedure. Size detection limits of 23 nm and 16 nm as well as number concentration limits of 3.12 × 109 particles kg-1 and 1.38 × 109 particles kg-1 were obtained for silver and gold nanoparticles, respectively. Moreover, a stability study of silver and gold nanoparticles in sewage sludge for 12 months showed differences between the two nanoparticle types. Although the sizes were not affected during the 12 months, silver nanoparticles underwent an oxidation process from 6 months onwards, which was reflected in an increase in the percentage of ionic silver from 14 ± 1% at 6 months to 24 ± 2% at 12 months. The developed methodology represents a simple, reliable and fast tool for detecting, quantifying and assessing the stability of nanoparticles in an important environmental sample such as sewage sludge.
Collapse
Affiliation(s)
- Gustavo Moreno-Martín
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Beatriz Gómez-Gómez
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Maria Eugenia León-González
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Yolanda Madrid
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
4
|
Iglesias M, Torrent L. Silver Nanoparticles and Ionic Silver Separation Using a Cation-Exchange Resin. Variables Affecting Their Separation and Improvements of AgNP Characterization by SP-ICPMS. NANOMATERIALS 2021; 11:nano11102626. [PMID: 34685067 PMCID: PMC8541260 DOI: 10.3390/nano11102626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 11/16/2022]
Abstract
Silver nanoparticles (AgNPs) are frequently found in everyday products and, as a consequence, their release into the environment cannot be avoided. Once in aquatic systems, AgNPs interact with natural constituents and undergo different transformation processes. Therefore, it is important to characterize and quantify AgNPs in environmental waters in order to understand their behavior, their transformation, and their associated toxicological risks. However, the coexistence of ionic silver (Ag+) with AgNPs in aquatic systems is one of the greatest challenges for the determination of nanosilver. Ion-exchange resins can be used to separate Ag+ from AgNPs, taking advantage of the different charges of the species. In this work, Dowex 50W-X8 was used to separate Ag+ and AgNPs in order to easily determine AgNP concentrations using inductively coupled plasma optical emission spectroscopy. The separation methodology was successfully applied to river water samples with different ratios of Ag+ and AgNPs. However, the methodology is not useful for wastewater samples. The described methodology also demonstrated an improvement in the determination of the particle size of AgNPs present in river waters by single particle inductively coupled plasma mass spectrometry when a significant amount of Ag+ is also present.
Collapse
Affiliation(s)
- Mònica Iglesias
- Department of Chemistry, University of Girona, C/M. Aurèlia Capmany, 69, 17003 Girona, Spain
- Correspondence: ; Tel.: +34-606-529-503
| | - Laura Torrent
- Bioenergy and Catalysis Laboratory (LBK), Energy and Environment Research Division (ENE), Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232 Villigen, Switzerland;
| |
Collapse
|
5
|
Taboada-López MV, Bartczak D, Cuello-Núñez S, Goenaga-Infante H, Bermejo-Barrera P, Moreda-Piñeiro A. AF4-UV-ICP-MS for detection and quantification of silver nanoparticles in seafood after enzymatic hydrolysis. Talanta 2021; 232:122504. [PMID: 34074453 DOI: 10.1016/j.talanta.2021.122504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022]
Abstract
A method based on asymmetric flow field-flow fractionation (AF4) coupled to ultraviolet-visible (UV-vis) spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS) has been developed for silver nanoparticles (Ag NPs) detection and quantification in bivalve molluscs. Samples were pre-treated using a conventional enzymatic (pancreatin and lipase) hydrolysis procedure (37 °C, 12 h). AF4 was performed using a regenerated cellulose (RC) membrane (10 kDa, 350 μm spacer) and aqueous 5 mM Tris-HCl pH = 7.4 as carrier. AF4 separation was achieved with a program that included a focusing step with tip and focus flows of 0.20 and 3.0 mL min-1, respectively, and an injection time of 4.0 min. Elution of different size fractions was performed using a cross flow of 3.0 mL min-1 for 15 min, followed by linear cross flow decrease for 7.5 min, and a washing step for 9.4 min with no cross flow. Several bivalve molluscs (clams, oysters and variegated scallops) were analysed for total Ag content (ICP-MS after microwave assisted acid digestion), and for Ag NPs by the method presented here. Results show that Ag NPs are detected at the same elution time than proteins (UV monitoring at 280 and 405 nm), which suggests a certain interaction occurred between Ag NPs with proteins in the enzymatic extracts. AF4-UV-ICP-MS fractograms also suggest different Ag NPs size distributions for selected samples. Membrane recoveries, determined by peak area comparison of fractograms with and without application of cross flow, were within the 49-121% range. Confirmation of the presence Ag NPs in the investigated enzymatic extracts was demonstrated by SEM after an oxidative pre-treatment based on hydrogen peroxide and microwave irradiation.
Collapse
Affiliation(s)
- María Vanesa Taboada-López
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology. Faculty of Chemistry. Universidade de Santiago de Compostela. Avenida Das Ciencias, S/n. 15782, Santiago de Compostela. Spain
| | - Dorota Bartczak
- LGC Limited. Queen's Road, TW11 0LY, Teddington, United Kingdom
| | | | | | - Pilar Bermejo-Barrera
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology. Faculty of Chemistry. Universidade de Santiago de Compostela. Avenida Das Ciencias, S/n. 15782, Santiago de Compostela. Spain
| | - Antonio Moreda-Piñeiro
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology. Faculty of Chemistry. Universidade de Santiago de Compostela. Avenida Das Ciencias, S/n. 15782, Santiago de Compostela. Spain.
| |
Collapse
|
6
|
Huang X, Liu H, Lu D, Lin Y, Liu J, Liu Q, Nie Z, Jiang G. Mass spectrometry for multi-dimensional characterization of natural and synthetic materials at the nanoscale. Chem Soc Rev 2021; 50:5243-5280. [PMID: 33656017 DOI: 10.1039/d0cs00714e] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Characterization of materials at the nanoscale plays a crucial role in in-depth understanding the nature and processes of the substances. Mass spectrometry (MS) has characterization capabilities for nanomaterials (NMs) and nanostructures by offering reliable multi-dimensional information consisting of accurate mass, isotopic, and molecular structural information. In the last decade, MS has emerged as a powerful nano-characterization technique. This review comprehensively summarizes the capabilities of MS in various aspects of nano-characterization that greatly enrich the toolbox of nano research. Compared with other characterization techniques, MS has unique capabilities for real-time monitoring and tracking reaction intermediates and by-products. Moreover, MS has shown application potential in some novel aspects, such as MS imaging of the biodistribution and fate of NMs in animals and humans, stable isotopic tracing of NMs, and risk assessment of NMs, which deserve update and integration into the current knowledge framework of nano-characterization.
Collapse
Affiliation(s)
- Xiu Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yue Lin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. and University of Chinese Academy of Sciences, Beijing 100049, China and Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Zongxiu Nie
- University of Chinese Academy of Sciences, Beijing 100049, China and Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Wimmer A, Urstoeger A, Hinke T, Aust M, Altmann PJ, Schuster M. Separating dissolved silver from nanoparticulate silver is the key: Improved cloud-point-extraction hyphenated to single particle ICP-MS for comprehensive analysis of silver-based nanoparticles in real environmental samples down to single-digit nm particle sizes. Anal Chim Acta 2021; 1150:238198. [PMID: 33583555 DOI: 10.1016/j.aca.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/21/2020] [Accepted: 01/02/2021] [Indexed: 10/22/2022]
Abstract
Investigating silver-based nanoparticles (Ag-b-NPs) in environmental samples is challenging with current analytical techniques, owing to their low concentrations (ng L-1) in the presence of high quantities of dissolved Ag(I) species. sp-ICP-MS is a promising technique able to simultaneously determine the concentration and particle sizes of Ag-b-NPs even at concentrations of several ng L-1. However, sp-ICP-MS suffers from the coexistence of dissolved analyte species causing high background signals. These background signals cover particle signals and therefore limit the size detection limit (SDL) in sp-ICP-MS. Ag-b-NPs in environmental samples exhibit diameters of < 20 nm, whereas the current sp-ICP-MS approaches barely reach an SDL as low as 20 nm. Using a surfactant-mediated sample pre-treatment (improved cloud point extraction, iCPE), we were able to separate Ag-b-NPs in aqueous samples from dissolved Ag(I) species and enrich the NPs in the extract. By hyphenating iCPE to sp-ICP-MS, we were able to reach SDL values as low as 4.5 nm, thus paving the way for the successful monitoring of Ag-b-NPs in the environment.
Collapse
Affiliation(s)
- Andreas Wimmer
- Division of Analytical Chemistry, Department of Chemistry, Technical University of Munich, Garching, 85748, Germany
| | - Alexander Urstoeger
- Division of Analytical Chemistry, Department of Chemistry, Technical University of Munich, Garching, 85748, Germany
| | - Tobias Hinke
- Division of Analytical Chemistry, Department of Chemistry, Technical University of Munich, Garching, 85748, Germany
| | - Margit Aust
- Division of Analytical Chemistry, Department of Chemistry, Technical University of Munich, Garching, 85748, Germany
| | - Philipp J Altmann
- Catalysis Research Center, Technical University of Munich, Garching, 85748, Germany
| | - Michael Schuster
- Division of Analytical Chemistry, Department of Chemistry, Technical University of Munich, Garching, 85748, Germany.
| |
Collapse
|
8
|
Insights into coacervative and dispersive liquid-phase microextraction strategies with hydrophilic media – A review. Anal Chim Acta 2021; 1143:225-249. [DOI: 10.1016/j.aca.2020.08.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022]
|
9
|
Jiménez-Lamana J, Marigliano L, Allouche J, Grassl B, Szpunar J, Reynaud S. A Novel Strategy for the Detection and Quantification of Nanoplastics by Single Particle Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Anal Chem 2020; 92:11664-11672. [PMID: 32786493 DOI: 10.1021/acs.analchem.0c01536] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A method for the detection and quantification of nanoplastics (NPTs) at environmentally relevant concentrations was developed. It is based on conjugating nanoplastics with functionalized metal (Au)-containing nanoparticles (NPs), thus making them detectable by highly sensitive inductively coupled plasma mass spectrometry (ICP-MS) operated in single particle (SP) mode. The selectivity of the method was achieved by the coupling of negatively charged carboxylate groups present at the surface of nanoplastics with a positively charged gelatin attached to the custom-synthesized AuNPs. The adsorbed Au produced a SP-ICP-MS signal allowing the counting of individual nanoplastic particles, and hence their accurate quantification (<5% error). Polystyrene (PS) particle models with controlled surface functionalization mimicking the nanoplastics formed during natural degradation of plastic debris were used for the method development. The nanoplastic number concentration quantification limit was calculated at 8.4 × 105 NPTs L-1 and the calibration graph was linear up to 3.5 × 108 NPTs L-1. The method was applied to the analysis of nanoplastics of up to 1 μm in drinking, tap, and river water. The minimum detectable and quantifiable size depended on the degree of functionalization and the surface available for labeling. For a fully functionalized nanoplastic, the lower size detectable by this strategy is reported as 135 nm. In this study, authors use the recommendation for the definition of nanoplastics as plastic particles with sizes ranging between 1 nm and 1 μm, although it has not been accepted by a dedicated organization.
Collapse
Affiliation(s)
- Javier Jiménez-Lamana
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM), Pau 64053, France
| | - Lucile Marigliano
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM), Pau 64053, France
| | - Joachim Allouche
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM), Pau 64053, France
| | - Bruno Grassl
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM), Pau 64053, France
| | - Joanna Szpunar
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM), Pau 64053, France
| | - Stéphanie Reynaud
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM), Pau 64053, France
| |
Collapse
|
10
|
Hashemi F, Zanganeh AR, Naeimi F, Tayebani M. Fabrication of an electrochemical sensor based on metal-organic framework ZIF-8 for quantitation of silver ions: optimizing experimental conditions using central composite design (CCD). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3045-3055. [PMID: 32930165 DOI: 10.1039/d0ay00843e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
ZIF-8 was synthesized and carbon paste electrodes (CPEs) modified with this metal-organic framework were utilized for quantitation of silver(i) by the differential pulse anodic stripping voltammetry (DPASV) technique.Prepared ZIF-8 and the matrix of the electrodes were distinguished by impedance spectroscopy (EIS), XRD, FT-IR spectroscopy, cyclic voltammetry (CV), TEM and SEM/EDX methods. To obtain the strongest stripping peak currents, several significant variables were optimized with response surface methodology (RSM), including the ligand amount (near 11% w/w), applied potential for preconcentration (approximately -1.36 V), pH of the preconcentration solution (about 8.5) and preconcentration time (about 275 s). A calibration curve was acquired in the limits from 1.0 × 10-10 to 5.0 × 10-7 M with the Pearson correlation coefficient R = 0.9993. The limiting detectable concentration (LDC) was determined to be 1.0 × 10-11 M. The developed sensor has high selectivity for mercury(ii). The excellent pH, potential and especially size-exclusion based selectivity of the prepared sensor are unique characteristics that are very important in the determination of silver ions. The developed method was effectively employed for the quantitation of silver(i) ions in environmental and industrial samples.
Collapse
Affiliation(s)
- Farzaneh Hashemi
- Department of Chemistry, Shahreza Branch, Islamic Azad University, Shahreza, Iran
| | - Ali Reza Zanganeh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, Shahreza, Iran
| | - Farid Naeimi
- Advanced Materials Research Center, Materials Engineering Department, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Maryam Tayebani
- Department of Chemistry, Shahreza Branch, Islamic Azad University, Shahreza, Iran
| |
Collapse
|