1
|
Lv J, Huang R, Zeng K, Zhang Z. Magnetic Immunoassay Based on Au Pt Bimetallic Nanoparticles/Carbon Nanotube Hybrids for Sensitive Detection of Tetracycline Antibiotics. BIOSENSORS 2024; 14:342. [PMID: 39056618 PMCID: PMC11274607 DOI: 10.3390/bios14070342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Misusage of tetracycline (TC) antibiotics residue in animal food has posed a significant threat to human health. Therefore, there is an urgent need to develop highly sensitive and robust assays for detecting TC. In the current study, gold and platinum nanoparticles were deposited on carbon nanotubes (CNTs) through the superposition method (Au@Pt/CNTs-s) and one-pot method (Au@Pt/CNTs-o). Au@Pt/CNTs-s displayed higher enzyme-like activity than Au@Pt/CNTs-o, which were utilized for the development of sensitive magnetic immunoassays. Under the optimized conditions, the limits of detection (LODs) of magnetic immunoassays assisted by Au@Pt/CNTs-s and Au@Pt/CNTs-o against TCs could reach 0.74 ng/mL and 1.74 ng/m, respectively, which were improved 6-fold and 2.5-fold in comparison with conventional magnetic immunoassay. In addition, the measurement of TC-family antibiotics was implemented by this assay, and ascribed to the antibody used that could recognize TC, oxytetracycline, chlortetracycline, and doxycycline with high cross-reactivity. Furthermore, the method showed good accuracy (recoveries, 92.1-114.5% for milk; 88.6-92.4% for pork samples), which also were applied for determination of the targets in real samples. This study provides novel insights into the rapid detection of targets based on high-performance nanocatalysts.
Collapse
Affiliation(s)
- Jianxia Lv
- National Narcotics Laboratory Beijing Regional Center, Beijing 100164, China;
| | - Rui Huang
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; (R.H.); (Z.Z.)
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kun Zeng
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; (R.H.); (Z.Z.)
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Zhang
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; (R.H.); (Z.Z.)
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Leburu E, Qiao Y, Wang Y, Yang J, Liang S, Yu W, Yuan S, Duan H, Huang L, Hu J, Hou H. Flexible electronics for heavy metal ion detection in water: a comprehensive review. Biomed Microdevices 2024; 26:30. [PMID: 38913209 DOI: 10.1007/s10544-024-00710-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 06/25/2024]
Abstract
Flexible electronics offer a versatile, rapid, cost-effective and portable solution to monitor water contamination, which poses serious threat to the environment and human health. This review paper presents a comprehensive exploration of the versatile platforms of flexible electronics in the context of heavy metal ion detection in water systems. The review overviews of the fundamental principles of heavy metal ion detection, surveys the state-of-the-art materials and fabrication techniques for flexible sensors, analyses key performance metrics and limitations, and discusses future opportunities and challenges. By highlighting recent advances in nanomaterials, polymers, wireless integration, and sustainability, this review aims to serve as an essential resource for researchers, engineers, and policy makers seeking to address the critical challenge of heavy metal contamination in water resources. The versatile promise of flexible electronics is thoroughly elucidated to inspire continued innovation in this emerging technology arena.
Collapse
Affiliation(s)
- Ely Leburu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Yuting Qiao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Yanshen Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
- State Key Laboratory of Coal Combustion, Huazhong University of Science of and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Wenbo Yu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Shushan Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Huabo Duan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Liang Huang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China.
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China.
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China.
- State Key Laboratory of Coal Combustion, Huazhong University of Science of and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China.
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China.
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China.
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China.
| |
Collapse
|
3
|
Yuwen T, Shu D, Zou H, Yang X, Wang S, Zhang S, Liu Q, Wang X, Wang G, Zhang Y, Zang G. Carbon nanotubes: a powerful bridge for conductivity and flexibility in electrochemical glucose sensors. J Nanobiotechnology 2023; 21:320. [PMID: 37679841 PMCID: PMC10483845 DOI: 10.1186/s12951-023-02088-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
The utilization of nanomaterials in the biosensor field has garnered substantial attention in recent years. Initially, the emphasis was on enhancing the sensor current rather than material interactions. However, carbon nanotubes (CNTs) have gained prominence in glucose sensors due to their high aspect ratio, remarkable chemical stability, and notable optical and electronic attributes. The diverse nanostructures and metal surface designs of CNTs, coupled with their exceptional physical and chemical properties, have led to diverse applications in electrochemical glucose sensor research. Substantial progress has been achieved, particularly in constructing flexible interfaces based on CNTs. This review focuses on CNT-based sensor design, manufacturing advancements, material synergy effects, and minimally invasive/noninvasive glucose monitoring devices. The review also discusses the trend toward simultaneous detection of multiple markers in glucose sensors and the pivotal role played by CNTs in this trend. Furthermore, the latest applications of CNTs in electrochemical glucose sensors are explored, accompanied by an overview of the current status, challenges, and future prospects of CNT-based sensors and their potential applications.
Collapse
Affiliation(s)
- Tianyi Yuwen
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Danting Shu
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Hanyan Zou
- Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - Xinrui Yang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Shijun Wang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Shuheng Zhang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Qichen Liu
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Xiangxiu Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- JinFeng Laboratory, Chongqing, 401329, China
- Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - Guixue Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| | - Yuchan Zhang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
| | - Guangchao Zang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
4
|
Mei X, Wang W, Li Q, Wu M, Bu L, Chen Z. A novel electrochemical sensor based on gold nanobipyramids and poly-L-cysteine for the sensitive determination of trilobatin. Analyst 2023; 148:2335-2342. [PMID: 37186001 DOI: 10.1039/d3an00368j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Trilobatin is a flavonoid that has wide application prospects due to its various pharmacological effects, such as anti-inflammation and anti-oxidation. In this work, a novel electrochemical sensor based on gold nanobipyramids (AuNBs) and L-cysteine (L-cys) was constructed for the sensitive and selective determination of trilobatin. The AuNBs, which were prepared by a seed-mediated growth method, had large specific surface areas and excellent electrical conductivity. A layer of L-cys film, which provided more active sites through the amino and hydroxyl groups, was modified on the surface of the AuNBs by electropolymerization. Significantly, the Au-S bond between the L-cys film and AuNBs could improve the stability of the sensor and it exhibited satisfactory electrocatalytic oxidation activity for trilobatin. Under optimized conditions, the sensor based on poly-L-cys/AuNBs/GCE was used to determine trilobatin by differential pulse voltammetry (DPV). Two wide linear ranges between the current peak and the concentration of trilobatin were obtained in the range from 5 to 100 μM and 100 to 1000 μM, and the low detection limit (LOD) was up to 2.55 μM (S/N = 3). The sensor demonstrated desirable reproducibility, stability, and selectivity and was applied to detect real trilobatin samples extracted from Lithocarpus polystachyus Rehd.'s leaves, showing recoveries of 98.36%-104.96%, with satisfactory results.
Collapse
Affiliation(s)
- Xue Mei
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- Analysis and Testing Center, NERC Biomass of Changzhou University, Jiangsu, 213032, China
| | - Qingyi Li
- Changzhou SIMM DRUG R&D Co., Ltd, Changzhou 213164, China
| | - Minxian Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Liyin Bu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
5
|
Eluwale Elugoke S, Esther Fayemi O, Saheed Adekunle A, Ganesh PS, Kim SY, Ebenso EE. Sensitive and selective neurotransmitter epinephrine detection at a carbon quantum dots/copper oxide nanocomposite. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Rizalputri LN, Anshori I, Handayani M, Gumilar G, Septiani NLW, Hartati YW, Annas MS, Purwidyantri A, Prabowo BA, Yuliarto B. Facile and controllable synthesis of monodisperse gold nanoparticle bipyramid for electrochemical dopamine sensor. NANOTECHNOLOGY 2022; 34:055502. [PMID: 36301678 DOI: 10.1088/1361-6528/ac9d3f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
We demonstrated potential features of gold nanoparticle bipyramid (AuNB) for an electrochemical biosensor. The facile synthesis method and controllable shape and size of the AuNB are achieved through the optimization of cetyltrimethylammonium chloride (CTAC) surfactant over citric acid (CA) ratio determining the control of typically spherical Au seed size and its transition into a penta-twinned crystal structure. We observe that the optimized ratio of CTAC and CA facilitates flocculation control in which Au seeds with size as tiny as ∼14.8 nm could be attained and finally transformed into AuNB structures with an average length of ∼55 nm with high reproducibility. To improve the electrochemical sensing performance of a screen-printed carbon electrode, surface modification with AuNB via distinctive linking procedures effectively enhanced the electroactive surface area by 40%. Carried out for the detection of dopamine, a neurotransmitter frequently linked to the risk of Parkinson's, Alzheimer's, and Huntington's diseases, the AuNB decorated-carbon electrode shows outstanding electrocatalytic activity that improves sensing performance, including high sensitivity, low detection limit, wide dynamic range, high selectivity against different analytes, such as ascorbic acid, uric acid and urea, and excellent reproducibility.
Collapse
Affiliation(s)
- Lavita Nuraviana Rizalputri
- Department of Nanotechnology, Graduate School, Bandung Institute of Technology, Bandung, Indonesia
- Research Center for Nanoscience and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung, Indonesia
| | - Isa Anshori
- Research Center for Nanoscience and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung, Indonesia
- Department of Biomedical Engineering, Bandung Institute of Technology, Bandung, Indonesia
| | - Murni Handayani
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Tangerang Selatan, Indonesia
| | - Gilang Gumilar
- Research Center for Nanoscience and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung, Indonesia
- Advanced Functional Materials Laboratory, Engineering Physics Department, Bandung Institute of Technology, Bandung, Indonesia
| | - Ni Luh Wulan Septiani
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Tangerang Selatan, Indonesia
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
- Research Center of Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Agnes Purwidyantri
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, United Kingdom
| | - Briliant Adhi Prabowo
- Research Center for Electronics, National Research and Innovation Agency (BRIN), Bandung, Indonesia
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Brian Yuliarto
- Research Center for Nanoscience and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung, Indonesia
| |
Collapse
|
7
|
Fu W, Zhang K, Zhang X, Fan G, Wang Z, Chen S, Wen Y, Wang P. Synthesis of transition metal sulfide functionalized hierarchically porous carbons and their application as colorimetric-electrochemical dual-mode nanozyme sensing platform for dopamine. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Freestanding 3D-interconnected carbon nanofibers as high-performance transducers in miniaturized electrochemical sensors. Mikrochim Acta 2022; 189:424. [PMID: 36255531 PMCID: PMC9579100 DOI: 10.1007/s00604-022-05492-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/11/2022] [Indexed: 10/31/2022]
Abstract
3D-carbon nanomaterials have proven to be high-performance transducers in electrochemical sensors but their integration into miniaturized devices is challenging. Herein, we develop printable freestanding laser-induced carbon nanofibers (f-LCNFs) with outstanding analytical performance that furthermore can easily allow such miniaturization through a paper-based microfluidic strategy. The f-LCNF electrodes were generated from electrospun polyimide nanofibers and one-step laser carbonization. A three-electrode system made of f-LCNFs exhibited a limit of detection (LOD) as low as 1 nM (S/N = 8) for anodic stripping analysis of silver ions, exhibiting the peak at ca. 100 mV vs f-LCNFs RE, without the need of stirring. The as-described system was implemented in miniaturized devices via wax-based printing, in which their electroanalytical performance was characterized for both outer- and inner-sphere redox markers and then applied to the detection of dopamine (the peak appeared at ca. 200 mV vs f-LCNFs RE) with a remarkable LOD of 55 pM. When modified with Nafion, the f-LCNFs were highly selective to dopamine even against high concentrations of uric and ascorbic acids. Especially the integration into closed microfluidic systems highlights the strength 3D porous structures provides excellent analytical performance paving the way for their translation to affordable lab-on-a-chip devices where mass-production capability, unsophisticated fabrication techniques, transfer-free, and customized electrode designs can be realized.
Collapse
|
9
|
Ni Y, Kan C, Xu J. Optimized plasmonic performances and derivate applications of Au nanobipyramids. Phys Chem Chem Phys 2022; 24:21522-21537. [PMID: 36082804 DOI: 10.1039/d2cp02811e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold nanobipyramids (AuBPs) with narrow size distribution and high monodispersity have driven intensive attention because they display more advantageous plasmonic properties than gold nanorods (AuNRs). Applications of AuBPs based on tunable plasmonic properties and enhanced electromagnetic fields are being widely investigated in recent years. In this article, we focused on the preparation of well-defined AuBPs using the seed-mediated method, the plasmonic properties, and the exploration of AuBP-supported derivatives. The synergetic contributions of penta-twinned and appropriate growth environment could produce high-purity AuBPs. Systematic comparisons of plasmonic properties between AuBPs and AuNRs are illustrated. In addition, the well-defined AuBPs can be used as a template to synthesize multi-metallic nanostructures. The development of the epitaxial growth based on the AuBPs and corresponding applications are introduced. This study will provide a guide for the fabrication of composite nanostructures and advance their plasmonic applications.
Collapse
Affiliation(s)
- Yuan Ni
- College of Science, Jinling Institute of Technology, Nanjing 210016, China.
| | - Caixia Kan
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Juan Xu
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| |
Collapse
|
10
|
Li J, Wang Y, Zang J, Zhou Y, Su S, Zou Q, Yuan Y. A film electrode composed of micron-diamond embedded in phenolic resin derived amorphous carbon for electroanalysis of dopamine in the presence of uric acid. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Rather I, Sofi FA, Bhat MA, Ali R. Synthesis of Novel One-Walled meso-Phenylboronic Acid-Functionalized Calix[4]pyrrole: A Highly Sensitive Electrochemical Sensor for Dopamine. ACS OMEGA 2022; 7:15082-15089. [PMID: 35572746 PMCID: PMC9089685 DOI: 10.1021/acsomega.2c00926] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/12/2022] [Indexed: 05/29/2023]
Abstract
Facile access to new one-walled meso-substituted phenylboronic acid-functionalized calix[4]pyrrole (C4P) has been revealed for the first time, starting from cost-effective and easily accessible materials. The structures of both the intermediate dipyrromethane (DPM) and the targeted functionalized C4P have been confirmed by means of 1H-NMR, 13C-NMR, IR, and HRMS spectral data. The voltammetric investigations of the functionalized C4P films cast over a glassy carbon electrode (C4P-GCE) clearly establish the redox stability and redox accessibility of the boronic acid functional moiety present in the C4P framework. We demonstrate that the presence of the unique boronic acid functionality in the C4P endows it with an excellent potential for the highly sensitive electrochemical sensing of the neurotransmitter dopamine (DA). A linear correlation between the strength of the Faradaic signals corresponding to the electro-oxidation of DA over C4P-GCE and the concentration of DA was observed in a concentration range as wide as 0.165-2.302 μM. The C4P-GCE has revealed exceptional stability and reproducibility in the electrochemical sensing of DA, with a nanomolar level limit of detection as low as 15 nM.
Collapse
Affiliation(s)
- Ishfaq
Ahmad Rather
- Organic
and Supramolecular Functional Materials Research Laboratory, Department
of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Feroz Ahmad Sofi
- Department
of Chemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Mohsin Ahmad Bhat
- Department
of Chemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Rashid Ali
- Organic
and Supramolecular Functional Materials Research Laboratory, Department
of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
12
|
Panahi Y, Dadkhah M, Talei S, Gharari Z, Asghariazar V, Abdolmaleki A, Matin S, Molaei S. Can anti-parasitic drugs help control COVID-19? Future Virol 2022. [PMID: 35359702 PMCID: PMC8940209 DOI: 10.2217/fvl-2021-0160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/28/2022] [Indexed: 01/18/2023]
Abstract
Novel COVID-19 is a public health emergency that poses a serious threat to people worldwide. Given the virus spreading so quickly, novel antiviral medications are desperately needed. Repurposing existing drugs is the first strategy. Anti-parasitic drugs were among the first to be considered as a potential treatment option for this disease. Even though many papers have discussed the efficacy of various anti-parasitic drugs in treating COVID-19 separately, so far, no single study comprehensively discussed these drugs. This study reviews some anti-parasitic recommended drugs to treat COVID-19, in terms of function and in vitro as well as clinical results. Finally, we briefly review the advanced techniques, such as artificial intelligence, that have been used to find effective drugs for the treatment of COVID-19.
Collapse
Affiliation(s)
- Yasin Panahi
- Department of Pharmacology & Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sahand Talei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Gharari
- Department of Biotechnology, Faculty of Biological Sciences, Al-Zahra University, Tehran, Iran
| | - Vahid Asghariazar
- Deputy of Research & Technology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Arash Abdolmaleki
- Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran.,Bio Science & Biotechnology Research center (BBRC), Sabalan University of Advanced Technologies (SUAT), Namin, Iran
| | - Somayeh Matin
- Department of Internal Medicine, Imam Khomeini Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Soheila Molaei
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.,Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
13
|
Liu B, Guo H, Sun L, Pan Z, Peng L, Wang M, Wu N, Chen Y, Wei X, Yang W. Electrochemical sensor based on covalent organic frameworks/MWCNT for simultaneous detection of catechol and hydroquinone. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
A surface protein-imprinted biosensor based on boronate affinity for the detection of anti-human immunoglobulin G. Mikrochim Acta 2022; 189:106. [PMID: 35166940 PMCID: PMC8853174 DOI: 10.1007/s00604-022-05204-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/29/2022] [Indexed: 11/22/2022]
Abstract
A surface protein-imprinted biosensor was constructed on a screen-printed carbon electrode (SPCE) for the detection of anti-human immunoglobulin G (anti-IgG). The SPCE was successively decorated with aminated graphene (NH2-G) and gold nanobipyramids (AuNBs) for signal amplification. Then 4-mercaptophenylboric acid (4-MPBA) was covalently anchored to the surface of AuNBs for capturing anti-IgG template through boronate affinity binding. The decorated SPCE was then deposited with an imprinting layer generated by the electropolymerization of pyrrole. After removal of the anti-IgG template by the dissociation of the boronate ester in an acidic solution, three-dimensional (3D) cavities complementary to the anti-IgG template were formed in the imprinting layer of polypyrrole (PPy). The molecularly imprinted polymers (MIP)-based biosensor was used for the detection of anti-IgG, exhibiting a wide linear range from 0.05 to 100 ng mL−1 and a low limit of detection of 0.017 ng mL−1 (S/N = 3). In addition, the MIP-based anti-IgG biosensor also shows high selectivity, reproducibility and stability. Finally, the practicability of the fabricated anti-IgG biosensor was demonstrated by accurate determination of anti-IgG in serum sample.
Collapse
|
15
|
Emran MY, Shenashen MA, Eid AI, Selim MM, El-Safty SA. Portable sensitive and selective biosensing assay of dopamine in live cells using dual phosphorus and nitrogen doped carbon urchin-like structure. CHEMICAL ENGINEERING JOURNAL 2022; 430:132818. [DOI: 10.1016/j.cej.2021.132818] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
16
|
Direksilp C, Scheiger JM, Ariyasajjamongkol N, Sirivat A. A highly selective and sensitive electrochemical sensor for dopamine based on a functionalized multi-walled carbon nanotube and poly( N-methylaniline) composite. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:469-479. [PMID: 35029250 DOI: 10.1039/d1ay01943k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dopamine (DA) is an important neurotransmitter used for diagnosing various diseases from its abnormal concentrations in human fluids. Herein, an electrochemical sensor based on a composite of re-doped poly(N-methylaniline) (rePNMA) and modified multi-walled carbon nanotubes (fMWCNTs), termed fMWCNT-rePNMA, was developed to measure DA concentration. The successful modification of the fMWCNT surface was confirmed by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Cyclic voltammetry (CV) displayed an excellent electrocatalytic activity of the fMWCNTs-rePNMA composite towards the oxidation of DA. The developed fMWCNTs-rePNMA composite demonstrated a broad linear range from 5 to 90 μmol L-1 with a low limit of detection (LOD) value of 2.23 μmol L-1, and a fast response with a high sensitivity of 251.5 nA μmol-1 L as determined from the calibration curve of the DA determination. In addition, the fMWCNTs-rePNMA composite selectively identified and quantified DA in the presence of ascorbic acid (AA) and uric acid (UA). Therefore, the fMWCNTs-rePNMA composite sensor shows potential to determine the level of DA in human urine.
Collapse
Affiliation(s)
- Chatrawee Direksilp
- The Conductive and Electroactive Polymer Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand.
- Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University Research Building, Soi Chula 12, Phayathai Road, Bangkok 10330, Thailand
| | - Johannes M Scheiger
- Institute of Technical Chemistry and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 20, Karlsruhe 76131, Germany
| | - Nuttha Ariyasajjamongkol
- The Conductive and Electroactive Polymer Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Anuvat Sirivat
- The Conductive and Electroactive Polymer Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand.
- Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University Research Building, Soi Chula 12, Phayathai Road, Bangkok 10330, Thailand
| |
Collapse
|
17
|
A visible and near-infrared light dual responsive "signal-off" and "signal-on" photoelectrochemical aptasensor for prostate-specific antigen. Biosens Bioelectron 2021; 202:113905. [PMID: 35033829 DOI: 10.1016/j.bios.2021.113905] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
A visible and near-infrared light dual responsive "signal-off" and "signal-on" photoelectrochemical aptasensor was constructed for determining prostate-specific antigen (PSA) based on MoS2 nanoflowers and gold nanobipyramids. The dual responsive photoelectrochemical aptasensor can provide accurate results for PSA determination. For the photoelectrochemical aptasensor fabrication, amino-group functionalized aptamers were immobilized on a MoS2 nanoflowers modified glassy carbon electrode surface for the specific recognition, and thus to achieve a "signal-off" aptasensor for PSA under visible light illumination. Subsequently, gold nanobipyramids integrated with thiol-functional aptamer were introduced to the "signal-off" aptasensing interface after PSA recognition. Under excitation with near-infrared light at 808 nm, the photocurrent response can be amplified significantly due to the excellent conductivity and local surface plasmon resonance effect of gold nanobipyramids, thus to producing a "signal-on" model for determining PSA. Under the optimized conditions, the dual-responsive photoelectrochemical aptasensor shows a linear response to the logarithm of PSA concentration in the range of 0.005-100 ng/mL. The detection limits for PSA determination with a "signal-off" or a "signal-on" mode are 1.75 pg mL-1 and 0.39 pg mL-1, respectively. The dual-responsive photoelectrochemical aptasensor was also employed for determining PSA in clinical serum samples with satisfactory selectivity and excellent accuracy.
Collapse
|
18
|
Narouie S, Rounaghi GH, Saravani H, Shahbakhsh M. Multiwalled Carbon Nanotubes/4,4′‐dihydroxybiphenyl Nanolayered Composite for Voltammetric Detection of Phenol. ELECTROANAL 2021. [DOI: 10.1002/elan.202100572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- S. Narouie
- Department of Chemistry, Faculty of Sciences Ferdowsi University of Mashhad Mashhad P.O. Box 9177948974 Iran
| | - G. H. Rounaghi
- Department of Chemistry, Faculty of Sciences Ferdowsi University of Mashhad Mashhad P.O. Box 9177948974 Iran
| | - H. Saravani
- Inorganic Chemistry Research Laboratory, Department of Chemistry University of Sistan and Baluchestan Zahedan P.O. Box 98135-674 Iran
| | - M. Shahbakhsh
- Analytical Chemistry Research Laboratory, Department of Chemistry University of Sistan and Baluchestan P.O. Box 98135-674 Zahedan Iran
| |
Collapse
|
19
|
Ali MR, Hasan MA, Rahman MS, Billah M, Karmakar S, Shimu AS, Hossain MF, Maruf MMH, Rahman MS, Saju MSR, Hasan MR, Acharjee UK, Hasan MF. Clinical manifestations and socio-demographic status of COVID-19 patients during the second-wave of pandemic: A Bangladeshi experience. J Infect Public Health 2021; 14:1367-1374. [PMID: 34215560 PMCID: PMC8233048 DOI: 10.1016/j.jiph.2021.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Bangladesh is a densely populated country with a substandard healthcare system and a mediocre economic framework. Due to the enormous number of people who have been unaware until now, the development of COVID-19's second-wave infection has become a severe threat. The present investigation aimed to characterize the clinical and socio-demographic characteristics of COVID-19 in Bangladesh. METHODS A cross-sectional analysis was carried out from all the other COVID-19 patients and confirmed by RT-PCR undergoing a specialized COVID-19 hospital. From March 1 to April 15, 2021, a total of 1326 samples were collected. Samples were only obtained from non-critical COVID-19 patients as critically ill patients required emergency intensive care medications. Then, from April 17 to May 03, 2021, SARS-CoV-2 infection and clinical assessment was performed based on interim guidelines from the WHO. The diagnosis was conducted through RT-PCR. Later, identifying the symptomatic and asymptomatic patient based on checking the Clinical Observation Form (COF). The patients filled the COF form. Finally, statistical analyses were done using the SPSS 20 statistical program. RESULTS In this investigation, a total of 326 patients were diagnosed as COVID-19 positive. Among them, approximately 19.02% (n = 62) were asymptomatic, and 80.98% (n = 264) were symptomatic. Here, the finding shows that the occurrence of this infection was varied depending on age, sex, residence, occupation, smoking habit, comorbidities, etc. However, Males (60.12%) were more affected than females (39.88%), and, surprisingly, this pandemic infected both urban and rural residents almost equally (urban = 50.92%; rural = 49.08%). Approximately 19% of the asymptomatic and 62% of symptomatic cases had at least one comorbid disorder. Interestingly, an unexpected result was exhibited in the case of smokers, where non-smokers were more affected than smokers. The study indicates community transmission of COVID 19, where people were highly infected at their occupations (35.58%), at houses (23.93%) and by traveling (12.88%). Noteworthy, according to this report, a large number (19.33%) of individuals did not know exactly how they were contaminated with SARS-CoV-2. Patients were most commonly treated by an antibiotic 95.09%, followed in second by corticosteroid 46.01%. Anti-viral drugs, remdesivir, and oxygenation are also needed for other patients. Among those, who were being treated, approximately 69.33% were isolated at home, 27.91% were being treated at dedicated COVID-19 hospitals. Finally, 96.63% were discharged without complications, and 0.03% has died. CONCLUSION This investigation concludes that males became more infected than females. Interestingly, both urban and rural people became nearly equally infected. It noticed community transmission of SARS-CoV-2, where people were highly infected at their workplaces. A higher rate of silent transmission indicates that more caution is needed to identify asymptomatic patients. Most of the infected people were isolated at home whereas nearly one-fourth were treated at hospitals. Clinically, antibiotics were the most widely used treatment. However, the majority of the patients were discharged without complications. The current investigation would be helpful to understand the clinical manifestations and socio-demographic situations during the second wave of the COVID-19 pandemic in Bangladesh.
Collapse
Affiliation(s)
- Md Roushan Ali
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; The First Affiliated Hospital, School of Life Sciences and Medical Center, University of Science and Technology of China (USTC), Hefei, Anhui 230027, China.
| | - Md Amit Hasan
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Siddikur Rahman
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mutasim Billah
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Sumon Karmakar
- Department of Genetic Engineering & Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Ajmeri Sultana Shimu
- Department of Medical Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Md Firose Hossain
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue 690-8504, Japan
| | - Md Mahmudul Hasan Maruf
- Department of Genetic Engineering & Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Sojiur Rahman
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | | | | | - Uzzal Kumar Acharjee
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Faruk Hasan
- Department of Microbiology, University of Rajshahi, Rajshahi 6205, Bangladesh.
| |
Collapse
|
20
|
Li J, Wang Y, Li R, Lu B, Yuan Y, Gao H, Song S, Zhou S, Zang J. Amorphous Carbon Film with Self‐modified Carbon Nanoparticles Synthesized by Low Temperature Carbonization of Phenolic Resin for Simultaneous Sensing of Dopamine and Uric Acid. ELECTROANAL 2021. [DOI: 10.1002/elan.202100182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jilong Li
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering Yanshan University Qinhuangdao 066004 PR China
| | - Yanhui Wang
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering Yanshan University Qinhuangdao 066004 PR China
| | - Rushuo Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 PR China
| | - Bowen Lu
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering Yanshan University Qinhuangdao 066004 PR China
| | - Yungang Yuan
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering Yanshan University Qinhuangdao 066004 PR China
| | - Hongwei Gao
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering Yanshan University Qinhuangdao 066004 PR China
| | - Shiwei Song
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering Yanshan University Qinhuangdao 066004 PR China
| | - Shuyu Zhou
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering Yanshan University Qinhuangdao 066004 PR China
| | - Jianbing Zang
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering Yanshan University Qinhuangdao 066004 PR China
| |
Collapse
|
21
|
Islam S, Shaheen Shah S, Naher S, Ali Ehsan M, Aziz MA, Ahammad AJS. Graphene and Carbon Nanotube-based Electrochemical Sensing Platforms for Dopamine. Chem Asian J 2021; 16:3516-3543. [PMID: 34487610 DOI: 10.1002/asia.202100898] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/05/2021] [Indexed: 12/24/2022]
Abstract
Dopamine (DA) is an important neurotransmitter, which is created and released from the central nervous system. It plays a crucial role in human activities, like cognition, emotions, and response to anything. Maladjustment of DA in human blood serum results in different neural diseases, like Parkinson's and Schizophrenia. Consequently, researchers have started working on DA detection in blood serum, which is undoubtedly a hot research area. Electrochemical sensing techniques are more promising to detect DA in real samples. However, utilizing conventional electrodes for selective determination of DA encounters numerous problems due to the coexistence of other materials, such as uric acid and ascorbic acid, which have an oxidation potential close to DA. To overcome such problems, researchers have put their focus on the modification of bare electrodes. The aim of this review is to present recent advances in modifications of most used bare electrodes with carbonaceous materials, especially graphene, its derivatives, and carbon nanotubes, for electrochemical detection of DA. A brief discussion about the mechanistic phenomena at the electrode interface has also been included in this review.
Collapse
Affiliation(s)
- Santa Islam
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Syed Shaheen Shah
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
| | - Shamsun Naher
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Muhammad Ali Ehsan
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
22
|
Label-free rapid electrochemical detection of DNA hybridization using ultrasensitive standalone CNT aerogel biosensor. Biosens Bioelectron 2021; 191:113480. [PMID: 34242998 DOI: 10.1016/j.bios.2021.113480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/10/2021] [Accepted: 07/02/2021] [Indexed: 01/14/2023]
Abstract
We report the development of an ultrasensitive label-free DNA biosensor device with fully integrated standalone carbon nanotube (CNT) aerogel electrode. The multi-directional tenuous network of clustered CNT embedding into the CNT aerogel electrode demonstrates linear ohmic and near isotropic electrical properties, thereby providing high sensitivity for nucleic acid detection. Using this device, the target DNA hybridization is detected by a quantifiable change in the electrochemical impedance, with a distinct response to the single-stranded probe alone or double-stranded target-probe complex. The target DNA is specifically detected with limit of detection (LoD) of 1 pM with a turnaround time of less than 20 min, which is unprecedented for a miniaturized CNT aerogel sensor and impedance spectroscopy without an intermediate DNA amplification step. Moreover, this system is able to differentiate between the closely related target sequences by the distinct impedance response rendering it highly specific. To the best of our knowledge, this is the first report showing the use of standalone bare CNT aerogel electrode without any substrate support, coupled with electrochemical impedance spectroscopy, for the detection of DNA hybridization. Altogether, the results show that our system is fast, sensitive and specific for label-free rapid direct DNA detection, promising a novel avenue for bio-sensing.
Collapse
|
23
|
N-doped porous molybdenum carbide nanoflowers: A novel sensing platform for organophosphorus pesticides detecting. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106169] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Fabrication of bisferrocenyl derivative grafted HTPB with high iron content and its application in dopamine detection. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Asif A, Heiskanen A, Emnéus J, Keller SS. Pyrolytic carbon nanograss electrodes for electrochemical detection of dopamine. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Park Y, Hong MS, Lee WH, Kim JG, Kim K. Highly Sensitive Electrochemical Aptasensor for Detecting the VEGF 165 Tumor Marker with PANI/CNT Nanocomposites. BIOSENSORS 2021; 11:114. [PMID: 33918811 PMCID: PMC8069203 DOI: 10.3390/bios11040114] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 01/18/2023]
Abstract
Sensing targeted tumor markers with high sensitivity provides vital information for the fast diagnosis and treatment of cancer patients. A vascular endothelial growth factor (VEGF165) have recently emerged as a promising biomarker of tumor cells. The electrochemical aptasensor is a promising tool for detecting VEGF165 because of its advantages such as a low cost and quantitative analysis. To produce a sensitive and stable sensor electrode, nanocomposites based on polyaniline (PANI) and carbon nanotube (CNT) have potential, as they provide for easy fabrication, simple synthesis, have a large surface area, and are suitable in biological environments. Here, a label-free electrochemical aptasensor based on nanocomposites of CNT and PANI was prepared for detecting VEGF165 as a tumor marker. The nanocomposite was assembled with immobilized VEGF165 aptamer as a highly sensitive VEGF165 sensor. It exhibited stable and wide linear detection ranges from 0.5 pg/mL to 1 μg/mL, with a limit of detection of 0.4 pg/mL because of the complementary effect of PANI/CNT. The fabricated aptasensor also exhibited good stability in biological conditions, selectivity, and reproducibility after several measurement times after the dissociation process. Thus, it could be applied for the non-invasive determination of VEGF, in biological fluid diagnosis kits, or in an aptamer-based biosensor platform in the near future.
Collapse
Affiliation(s)
- Yunjeong Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea;
| | - Min-Sung Hong
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea; (M.-S.H.); (W.-H.L.)
| | - Woo-Hyuk Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea; (M.-S.H.); (W.-H.L.)
| | - Jung-Gu Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea; (M.-S.H.); (W.-H.L.)
| | - Kyunghoon Kim
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea;
| |
Collapse
|
27
|
Yao X, Zhang Y, Jin W, Hu Y, Cui Y. Carbon Nanotube Field-Effect Transistor-Based Chemical and Biological Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:995. [PMID: 33540641 PMCID: PMC7867273 DOI: 10.3390/s21030995] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/05/2023]
Abstract
Chemical and biological sensors have attracted great interest due to their importance in applications of healthcare, food quality monitoring, environmental monitoring, etc. Carbon nanotube (CNT)-based field-effect transistors (FETs) are novel sensing device configurations and are very promising for their potential to drive many technological advancements in this field due to the extraordinary electrical properties of CNTs. This review focuses on the implementation of CNT-based FETs (CNTFETs) in chemical and biological sensors. It begins with the introduction of properties, and surface functionalization of CNTs for sensing. Then, configurations and sensing mechanisms for CNT FETs are introduced. Next, recent progresses of CNTFET-based chemical sensors, and biological sensors are summarized. Finally, we end the review with an overview about the current application status and the remaining challenges for the CNTFET-based chemical and biological sensors.
Collapse
Affiliation(s)
- Xuesong Yao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China; (X.Y.); (Y.Z.)
| | - Yalei Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China; (X.Y.); (Y.Z.)
| | - Wanlin Jin
- Key Laboratory for the Physics and Chemistry of Nanodevices, Center for Carbon-Based Electronics, Frontiers Science Center for Nano-Optoelectronics, and Department of Electronics, Peking University, Beijing 100871, China;
| | - Youfan Hu
- Key Laboratory for the Physics and Chemistry of Nanodevices, Center for Carbon-Based Electronics, Frontiers Science Center for Nano-Optoelectronics, and Department of Electronics, Peking University, Beijing 100871, China;
| | - Yue Cui
- School of Materials Science and Engineering, Peking University, Beijing 100871, China; (X.Y.); (Y.Z.)
| |
Collapse
|
28
|
Kang K, Wang B, Ji X, Liu Y, Zhao W, Du Y, Guo Z, Ren J. Hemin-doped metal-organic frameworks based nanozyme electrochemical sensor with high stability and sensitivity for dopamine detection. RSC Adv 2021; 11:2446-2452. [PMID: 35424163 PMCID: PMC8693727 DOI: 10.1039/d0ra08224d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/28/2020] [Indexed: 12/26/2022] Open
Abstract
This study reports a new type of artificial nanozyme based on Hemin-doped-HKUST-1 (HKUST-1, also referred to as MOF-199; a face-centered-cubic MOF containing nanochannels) as a redox mediator for the detection of dopamine (DA). Hemin-doped-HKUST-1 was successfully synthesized by one-pot hydrothermal method, which was combined with reduced graphene oxide (rGO) modified on a glassy carbon electrode (GCE) to construct a sensor (Hemin-doped HKUST-1/rGO/GCE). The morphology and structure of Hemin-doped-HKUST-1 were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and infrared spectra (IR) techniques. The Hemin-doped HKUST-1/rGO nanozyme showed an excellent electrocatalytic activity for DA oxidation, which is due to the enhanced Hemin activity through the formation of a metal-organic framework (MOFs) and the synergy between the Hemin-doped HKUST-1 and rGO in nanozyme. The resulted sensor exhibited a high sensitivity of 1.224 μA μM-1, with a lower detection limit of 3.27 × 10-8 M (S/N = 3) and a wide linear range of 0.03-10 μM for DA detection. In addition, due to the stabilizing effect of MOFs on heme, the sensor showed satisfactory stability and has been successfully applied to the detection of DA in serum samples, indicating that this work has potential value in clinical work.
Collapse
Affiliation(s)
- Kai Kang
- School of Pharmacy, Hebei Medical University Shijiazhuang 050017 PR China +86-311-86265593
| | - Beibei Wang
- School of Pharmacy, Hebei Medical University Shijiazhuang 050017 PR China +86-311-86265593
| | - Xueping Ji
- School of Pharmacy, Hebei Medical University Shijiazhuang 050017 PR China +86-311-86265593
- Hebei Key Laboratory of Forensic Medicine Shijiazhuang 050017 PR China
| | - Yuheng Liu
- School of Pharmacy, Hebei Medical University Shijiazhuang 050017 PR China +86-311-86265593
| | - Wenrui Zhao
- School of Pharmacy, Hebei Medical University Shijiazhuang 050017 PR China +86-311-86265593
| | - Yaqing Du
- School of Pharmacy, Hebei Medical University Shijiazhuang 050017 PR China +86-311-86265593
| | - Zhiyong Guo
- School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 PR China
| | - Jujie Ren
- Department of Chemistry, School of Sciences, Hebei University of Science and Technology Shijiazhuang 050018 PR China
| |
Collapse
|
29
|
da Silva LV, dos Santos ND, de Almeida AK, dos Santos DDE, Santos ACF, França MC, Lima DJP, Lima PR, Goulart MO. A new electrochemical sensor based on oxidized capsaicin/multi-walled carbon nanotubes/glassy carbon electrode for the quantification of dopamine, epinephrine, and xanthurenic, ascorbic and uric acids. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114919] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Suhito IR, Koo KM, Kim TH. Recent Advances in Electrochemical Sensors for the Detection of Biomolecules and Whole Cells. Biomedicines 2020; 9:15. [PMID: 33375330 PMCID: PMC7824644 DOI: 10.3390/biomedicines9010015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Electrochemical sensors are considered an auspicious tool to detect biomolecules (e.g., DNA, proteins, and lipids), which are valuable sources for the early diagnosis of diseases and disorders. Advances in electrochemical sensing platforms have enabled the development of a new type of biosensor, enabling label-free, non-destructive detection of viability, function, and the genetic signature of whole cells. Numerous studies have attempted to enhance both the sensitivity and selectivity of electrochemical sensors, which are the most critical parameters for assessing sensor performance. Various nanomaterials, including metal nanoparticles, carbon nanotubes, graphene and its derivatives, and metal oxide nanoparticles, have been used to improve the electrical conductivity and electrocatalytic properties of working electrodes, increasing sensor sensitivity. Further modifications have been implemented to advance sensor platform selectivity and biocompatibility using biomaterials such as antibodies, aptamers, extracellular matrix (ECM) proteins, and peptide composites. This paper summarizes recent electrochemical sensors designed to detect target biomolecules and animal cells (cancer cells and stem cells). We hope that this review will inspire researchers to increase their efforts to accelerate biosensor progress-enabling a prosperous future in regenerative medicine and the biomedical industry.
Collapse
Affiliation(s)
- Intan Rosalina Suhito
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (I.R.S.); (K.-M.K.)
| | - Kyeong-Mo Koo
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (I.R.S.); (K.-M.K.)
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (I.R.S.); (K.-M.K.)
- Integrative Research Center for Two-Dimensional Functional Materials, Institute of Interdisciplinary Convergence Research, Chung Ang University, Seoul 06974, Korea
| |
Collapse
|
31
|
Patel BR, Imran S, Ye W, Weng H, Noroozifar M, Kerman K. Simultaneous voltammetric detection of six biomolecules using a nanocomposite of titanium dioxide nanorods with multi-walled carbon nanotubes. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137094] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Zhang M, Wanfeng W, Chen F, Zhang W, Halder A. Amino Acid Assisted One‐Pot Green Synthesis of N‐Doped 3D Graphene for Ultrasensitive Neurochemical Sensing. ChemistrySelect 2020. [DOI: 10.1002/slct.202003569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Minwei Zhang
- College Life Science & Technology Xinjiang University 830046 Shengli Road Urumqi China
- Department of Chemistry Technical University of Denmark DK 2800 Kongens Lyngby Denmark
| | - Wu Wanfeng
- College Life Science & Technology Xinjiang University 830046 Shengli Road Urumqi China
| | - Fei Chen
- College Life Science & Technology Xinjiang University 830046 Shengli Road Urumqi China
| | - Wenrui Zhang
- College Life Science & Technology Xinjiang University 830046 Shengli Road Urumqi China
| | - Arnab Halder
- Department of Chemistry Technical University of Denmark DK 2800 Kongens Lyngby Denmark
| |
Collapse
|
33
|
Ahmed A, Salam B, Mohammad M, Akgül A, H. A. Khoshnaw S. Analysis coronavirus disease (COVID-19) model using numerical approaches and logistic model. AIMS BIOENGINEERING 2020. [DOI: 10.3934/bioeng.2020013] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|