1
|
Singh PP, Reeves GA, Contrepois K, Papsdorf K, Miklas JW, Ellenberger M, Hu CK, Snyder MP, Brunet A. Evolution of diapause in the African turquoise killifish by remodeling the ancient gene regulatory landscape. Cell 2024; 187:3338-3356.e30. [PMID: 38810644 DOI: 10.1016/j.cell.2024.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 11/30/2023] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
Suspended animation states allow organisms to survive extreme environments. The African turquoise killifish has evolved diapause as a form of suspended development to survive a complete drought. However, the mechanisms underlying the evolution of extreme survival states are unknown. To understand diapause evolution, we performed integrative multi-omics (gene expression, chromatin accessibility, and lipidomics) in the embryos of multiple killifish species. We find that diapause evolved by a recent remodeling of regulatory elements at very ancient gene duplicates (paralogs) present in all vertebrates. CRISPR-Cas9-based perturbations identify the transcription factors REST/NRSF and FOXOs as critical for the diapause gene expression program, including genes involved in lipid metabolism. Indeed, diapause shows a distinct lipid profile, with an increase in triglycerides with very-long-chain fatty acids. Our work suggests a mechanism for the evolution of complex adaptations and offers strategies to promote long-term survival by activating suspended animation programs in other species.
Collapse
Affiliation(s)
| | - G Adam Reeves
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Kévin Contrepois
- Department of Genetics, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | | | - Jason W Miklas
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Chi-Kuo Hu
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Teefy BB, Adler A, Xu A, Hsu K, Singh PP, Benayoun BA. Dynamic regulation of gonadal transposon control across the lifespan of the naturally short-lived African turquoise killifish. Genome Res 2023; 33:141-153. [PMID: 36577520 PMCID: PMC9977155 DOI: 10.1101/gr.277301.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
Although germline cells are considered to be functionally "immortal," both the germline and supporting somatic cells in the gonad within an organism experience aging. With increased age at parenthood, the age-related decline in reproductive success has become an important biological issue for an aging population. However, molecular mechanisms underlying reproductive aging across sexes in vertebrates remain poorly understood. To decipher molecular drivers of vertebrate gonadal aging across sexes, we perform longitudinal characterization of the gonadal transcriptome throughout the lifespan in the naturally short-lived African turquoise killifish (Nothobranchius furzeri). By combining mRNA-seq and small RNA-seq from 26 individuals, we characterize the aging gonads of young-adult, middle-aged, and old female and male fish. We analyze changes in transcriptional patterns of genes, transposable elements (TEs), and piRNAs. We find that testes seem to undergo only marginal changes during aging. In contrast, in middle-aged ovaries, the time point associated with peak female fertility in this strain, PIWI pathway components are transiently down-regulated, TE transcription is elevated, and piRNA levels generally decrease, suggesting that egg quality may already be declining at middle-age. Furthermore, we show that piRNA ping-pong biogenesis declines steadily with age in ovaries, whereas it is maintained in aging testes. To our knowledge, this data set represents the most comprehensive transcriptomic data set for vertebrate gonadal aging. This resource also highlights important pathways that are regulated during reproductive aging in either ovaries or testes, which could ultimately be leveraged to help restore aspects of youthful reproductive function.
Collapse
Affiliation(s)
- Bryan B Teefy
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, USA
| | - Ari Adler
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, USA
| | - Alan Xu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, USA.,Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, California 90089, USA
| | - Katelyn Hsu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, USA.,Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, California 90089, USA
| | - Param Priya Singh
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, USA.,Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, California 90089, USA.,Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, California 90089, USA.,USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, California 90089, USA.,USC Stem Cell Initiative, Los Angeles, California 90089, USA
| |
Collapse
|
3
|
Wang D, Ma M, Huang J, Gu TJ, Cui Y, Li M, Wang Z, Zetterberg H, Li L. Boost-DiLeu: Enhanced Isobaric N, N-Dimethyl Leucine Tagging Strategy for a Comprehensive Quantitative Glycoproteomic Analysis. Anal Chem 2022; 94:11773-11782. [PMID: 35960654 PMCID: PMC9966376 DOI: 10.1021/acs.analchem.2c01773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Intact glycopeptide analysis has been of great interest because it can elucidate glycosylation site information and glycan structural composition at the same time. However, mass spectrometry (MS)-based glycoproteomic analysis is hindered by the low abundance and poor ionization efficiency of glycopeptides. Relatively large amounts of starting materials are needed for the enrichment, which makes the identification and quantification of intact glycopeptides from samples with limited quantity more challenging. To overcome these limitations, we developed an improved isobaric labeling strategy with an additional boosting channel to enhance N,N-dimethyl leucine (DiLeu) tagging-based quantitative glycoproteomic analysis, termed as Boost-DiLeu. With the integration of a one-tube sample processing workflow and high-pH fractionation, 3514 quantifiable N-glycopeptides were identified from 30 μg HeLa cell tryptic digests with reliable quantification performance. Furthermore, this strategy was applied to human cerebrospinal fluid (CSF) samples to differentiate N-glycosylation profiles between Alzheimer's disease (AD) patients and non-AD donors. The results revealed processes and pathways affected by dysregulated N-glycosylation in AD, including platelet degranulation, cell adhesion, and extracellular matrix, which highlighted the involvement of N-glycosylation aberrations in AD pathogenesis. Moreover, weighted gene coexpression network analysis (WGCNA) showed nine modules of glycopeptides, two of which were associated with the AD phenotype. Our results demonstrated the feasibility of using this strategy for in-depth glycoproteomic analysis of size-limited clinical samples. Taken together, we developed and optimized a strategy for the enhanced comprehensive quantitative intact glycopeptide analysis with DiLeu labeling, showing significant promise for identifying novel therapeutic targets or biomarkers in biological systems with a limited sample quantity.
Collapse
Affiliation(s)
- Danqing Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Min Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ting-Jia Gu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yusi Cui
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Miyang Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zicong Wang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 43141, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 43130, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, WC1N 3BG, U.K.,UK Dementia Research Institute at UCL, London, WC1N 3BG, U.K.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.,To whom correspondence should be addressed. . Phone: +1-(608)-265- 8491, Fax: +1-(608)-262-5345. Mailing Address: 5125 Rennebohm Hall, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
4
|
Trabelcy B, Gerchman Y, Sapir A. A sterol-defined system for quantitative studies of sterol metabolism in C. elegans. STAR Protoc 2021; 2:100710. [PMID: 34409305 PMCID: PMC8361321 DOI: 10.1016/j.xpro.2021.100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This protocol describes the culturing of the nematode Caenorhabditis elegans (C. elegans) in a sterol-defined experimental system and the subsequent quantitative analysis of C. elegans sterols through gas chromatography-mass spectrometry. Although studied primarily in mammals, sterols are essential biomolecules for most eukaryotes. C. elegans cannot synthesize sterols and thus relies on the uptake of dietary sterols. Therefore, C. elegans is a powerful system to study metabolism in sterol-defined conditions that are described in our protocol. For complete details on the use and execution of this protocol, please refer to Shamsuzzama et al. (2020).
Collapse
Affiliation(s)
- Benjamin Trabelcy
- Faculty of Natural Sciences, University of Haifa, Haifa 3498838 Israel
- Corresponding author
| | - Yoram Gerchman
- Faculty of Natural Sciences, University of Haifa, Haifa 3498838 Israel
| | - Amir Sapir
- Faculty of Natural Sciences, University of Haifa, Haifa 3498838 Israel
- Corresponding author
| |
Collapse
|
5
|
Annibal A, Ripa R, Ballhysa E, Latza C, Hochhard N, Antebi A. Mass spectrometric characterization of cyclic dinucleotides (CDNs) in vivo. Anal Bioanal Chem 2021; 413:6457-6468. [PMID: 34476522 PMCID: PMC8412381 DOI: 10.1007/s00216-021-03628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/03/2022]
Abstract
Cyclic dinucleotides (CDNs) are key secondary messenger molecules produced by cyclic dinucleotide synthases that trigger various cellular signaling cascades from bacteria to vertebrates. In mammals, cyclic GMP-AMP synthase (cGAS) has been shown to bind to intracellular DNA and catalyze the production of the dinucleotide 2′3′ cGAMP, which signals downstream effectors to regulate immune function, interferon signaling, and the antiviral response. Despite the importance of CDNs, sensitive and accurate methods to measure their levels in vivo are lacking. Here, we report a novel LC-MS/MS method to quantify CDNs in vivo. We characterized the mass spectrometric behavior of four different biologically relevant CDNs (c-di-AMP, c-di-GMP, 3′3′ cGAMP, 2′3′ cGAMP) and provided a means of visually representing fragmentation resulting from collision-induced dissociation at different energies using collision energy breakdown graphs. We then validated the method and quantified CDNs in two in vivo systems, the bacteria Escherichia coli OP50 and the killifish Nothobranchius furzeri. We found that optimization of LC-MS/MS parameters is crucial to sensitivity and accuracy. These technical advances should help illuminate physiological and pathological roles of these CDNs in in vivo settings. Graphical abstract ![]()
Collapse
Affiliation(s)
- Andrea Annibal
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
| | - Roberto Ripa
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Eugen Ballhysa
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Christian Latza
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Nadine Hochhard
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Identification of a Novel Link between the Intermediate Filament Organizer IFO-1 and Cholesterol Metabolism in the Caenorhabditis elegans Intestine. Int J Mol Sci 2020; 21:ijms21218219. [PMID: 33153048 PMCID: PMC7672635 DOI: 10.3390/ijms21218219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 01/16/2023] Open
Abstract
The intestine is an organ essential to organismal nutrient absorption, metabolic control, barrier function and immunoprotection. The Caenorhabditis elegans intestine consists of 20 cells harboring a dense intermediate filament network positioned below the apical plasma membrane that forms a junction-anchored sheath around the intestinal lumen. This evolutionarily conserved arrangement provides mechanical and overall stress-protection, and it serves as an important model for deciphering the role of intestinal architecture in metazoan biology. We recently reported that the loss-of-function mutation of the intestinal intermediate filament organizer IFO-1 perturbs this architecture, leading to reduced body size and reproduction. Here, we demonstrate that the IFO-1 mutation dramatically affects cholesterol metabolism. Mutants showed an increased sensitivity to cholesterol depletion, reduced cholesterol uptake, and cholesterol transfer to the gonads, which is also observed in worms completely lacking an intermediate filament network. Accordingly, we found striking similarities to transcriptome and lipidome profiles of a nuclear hormone receptor (NHR)-8 mutant. NHR-8 is homologous to mammalian LXR (liver X receptor) that serves as a sterol sensor and transcriptional regulator of lipid metabolism. Remarkably, increasing exogenous cholesterol partially rescues the developmental retardation in IFO-1 mutants. Our results uncover a novel link of the intestinal intermediate filament cytoskeleton to cholesterol metabolism that contributes to compromised growth and reproduction.
Collapse
|