1
|
Reid J, Haer M, Chen A, Adams C, Lin YC, Cronin J, Yu Z, Kirkitadze M, Yuan T. Development of automated metabolite control using mid-infrared probe for bioprocesses and vaccine manufacturing. J Ind Microbiol Biotechnol 2024; 51:kuae019. [PMID: 38862198 PMCID: PMC11187416 DOI: 10.1093/jimb/kuae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
Automation of metabolite control in fermenters is fundamental to develop vaccine manufacturing processes more quickly and robustly. We created an end-to-end process analytical technology and quality by design-focused process by replacing manual control of metabolites during the development of fed-batch bioprocesses with a system that is highly adaptable and automation-enabled. Mid-infrared spectroscopy with an attenuated total reflectance probe in-line, and simple linear regression using the Beer-Lambert Law, were developed to quantitate key metabolites (glucose and glutamate) from spectral data that measured complex media during fermentation. This data was digitally connected to a process information management system, to enable continuous control of feed pumps with proportional-integral-derivative controllers that maintained nutrient levels throughout fed-batch stirred-tank fermenter processes. Continuous metabolite data from mid-infrared spectra of cultures in stirred-tank reactors enabled feedback loops and control of the feed pumps in pharmaceutical development laboratories. This improved process control of nutrient levels by 20-fold and the drug substance yield by an order of magnitude. Furthermore, the method is adaptable to other systems and enables soft sensing, such as the consumption rate of metabolites. The ability to develop quantitative metabolite templates quickly and simply for changing bioprocesses was instrumental for project acceleration and heightened process control and automation. ONE-SENTENCE SUMMARY Intelligent digital control systems using continuous in-line metabolite data enabled end-to-end automation of fed-batch processes in stirred-tank reactors.
Collapse
Affiliation(s)
- Jennifer Reid
- Global Bioprocess Development, Sanofi, Toronto, ON M2R 3T4, Canada
| | - Manjit Haer
- Analytical Sciences, Sanofi, Toronto, ON M2R 3T4, Canada
| | - Airong Chen
- Global Bioprocess Development, Sanofi, Toronto, ON M2R 3T4, Canada
| | - Calvin Adams
- Global Bioprocess Development, Sanofi, Toronto, ON M2R 3T4, Canada
| | - Yu Chen Lin
- Analytical Sciences, Sanofi, Toronto, ON M2R 3T4, Canada
| | | | - Zhou Yu
- Global Bioprocess Development, Sanofi, Toronto, ON M2R 3T4, Canada
| | | | - Tao Yuan
- Global Bioprocess Development, Sanofi, Toronto, ON M2R 3T4, Canada
| |
Collapse
|
2
|
Müller DH, Börger M, Thien J, Koß HJ. The Good pH probe: non-invasive pH in-line monitoring using Good buffers and Raman spectroscopy. Anal Bioanal Chem 2023; 415:7247-7258. [PMID: 37982845 PMCID: PMC10684429 DOI: 10.1007/s00216-023-04993-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 11/21/2023]
Abstract
In bioprocesses, the pH value is a critical process parameter that requires monitoring and control. For pH monitoring, potentiometric methods such as pH electrodes are state of the art. However, they are invasive and show measurement value drift. Spectroscopic pH monitoring is a non-invasive alternative to potentiometric methods avoiding this measurement value drift. In this study, we developed the Good pH probe, which is an approach for spectroscopic pH monitoring in bioprocesses with an effective working range between pH 6 and pH 8 that does not require the estimation of activity coefficients. The Good pH probe combines for the first time the Good buffer 3-(N-morpholino)propanesulfonic acid (MOPS) as pH indicator with Raman spectroscopy as spectroscopic technique, and Indirect Hard Modeling (IHM) for the spectral evaluation. During a detailed characterization, we proved that the Good pH probe is reversible, exhibits no temperature dependence between 15 and 40 °C, has low sensitivity to the ionic strength up to 1100 mM, and is applicable in more complex systems, in which other components significantly superimpose the spectral features of MOPS. Finally, the Good pH probe was successfully used for non-invasive pH in-line monitoring during an industrially relevant enzyme-catalyzed reaction with a root mean square error of prediction (RMSEP) of 0.04 pH levels. Thus, the Good pH probe extends the list of critical process parameters monitorable using Raman spectroscopy and IHM by the pH value.
Collapse
Affiliation(s)
- David Heinrich Müller
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstraße 8, 52062, Aachen, Germany
| | - Marieke Börger
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstraße 8, 52062, Aachen, Germany
| | - Julia Thien
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstraße 8, 52062, Aachen, Germany
| | - Hans-Jürgen Koß
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstraße 8, 52062, Aachen, Germany.
| |
Collapse
|
3
|
Brothwell JA, Fortney KR, Williams JS, Batteiger TA, Duplantier R, Grounds D, Jannasch AS, Katz BP, Spinola SM. Formate production is dispensable for Haemophilus ducreyi virulence in human volunteers. Infect Immun 2023; 91:e0017623. [PMID: 37594273 PMCID: PMC10501210 DOI: 10.1128/iai.00176-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/29/2023] [Indexed: 08/19/2023] Open
Abstract
Haemophilus ducreyi is a causative agent of cutaneous ulcers in children who live in the tropics and of the genital ulcer disease chancroid in sexually active persons. In the anaerobic environment of abscesses and ulcers, anaerobic respiration and mixed acid fermentation (MAF) can be used to provide cellular energy. In Escherichia coli, MAF produces formate, acetate, lactate, succinate, and ethanol; however, MAF has not been studied in H. ducreyi. In human challenge experiments with H. ducreyi 35000HP, transcripts of the formate transporter FocA and pyruvate formate lyase (PflB) were upregulated in pustules compared to the inocula. We made single and double mutants of focA and pflB in 35000HP. Growth of 35000HPΔfocA was similar to 35000HP, but 35000HPΔpflB and 35000HPΔfocA-pflB had growth defects during both aerobic and anaerobic growth. Mutants lacking pflB did not secrete formate into the media. However, formate was secreted into the media by 35000HPΔfocA, indicating that H. ducreyi has alternative formate transporters. The pH of the media during anaerobic growth decreased for 35000HP and 35000HPΔfocA, but not for 35000HPΔpflB or 35000HPΔfocA-pflB, indicating that pflB is the main contributor to media acidification during anaerobic growth. We tested whether formate production and transport were required for virulence in seven human volunteers in a mutant versus parent trial between 35000HPΔfocA-pflB and 35000HP. The pustule formation rate was similar for 35000HP (42.9%)- and 35000HPΔfocA-pflB (62%)-inoculated sites. Although formate production occurs during in vitro growth and focA-pflB transcripts are upregulated during human infection, focA and pflB are not required for virulence in humans.
Collapse
Affiliation(s)
- Julie A. Brothwell
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kate R. Fortney
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jalan S. Williams
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Teresa A. Batteiger
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Rory Duplantier
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Danielle Grounds
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Amber S. Jannasch
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA
| | - Barry P. Katz
- Department of Biostatistics and Health Data Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Stanley M. Spinola
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
4
|
Hara R, Kobayashi W, Yamanaka H, Murayama K, Shimoda S, Ozaki Y. Development of Raman Calibration Model Without Culture Data for In-Line Analysis of Metabolites in Cell Culture Media. APPLIED SPECTROSCOPY 2023; 77:521-533. [PMID: 36765462 DOI: 10.1177/00037028231160197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In this study, we developed a method to build Raman calibration models without culture data for cell culture monitoring. First, Raman spectra were collected and then analyzed for the signals of all the mentioned analytes: glucose, lactate, glutamine, glutamate, ammonia, antibody, viable cells, media, and feed agent. Using these spectral data, the specific peak positions and intensities for each factor were detected. Next, according to the design of the experiment method, samples were prepared by mixing the above-mentioned factors. Raman spectra of these samples were collected and were used to build calibration models. Several combinations of spectral pretreatments and wavenumber regions were compared to optimize the calibration model for cell culture monitoring without culture data. The accuracy of the developed calibration model was evaluated by performing actual cell culture and fitting the in-line measured spectra to the developed calibration model. As a result, the calibration model achieved sufficiently good accuracy for the three components, glucose, lactate, and antibody (root mean square errors of prediction, or RMSEP = 0.23, 0.29, and 0.20 g/L, respectively). This study has presented innovative results in developing a culture monitoring method without using culture data, while using a basic conventional method of investigating the Raman spectra of each component in the culture media and then utilizing a design of experiment approach.
Collapse
Affiliation(s)
- Risa Hara
- Department of Research and Development, Yokogawa Electric Corporation, Musashino, Japan
| | - Wataru Kobayashi
- Department of Life Business, Yokogawa Electric Corporation, Musashino, Japan
| | - Hiroaki Yamanaka
- Department of Life Business, Yokogawa Electric Corporation, Musashino, Japan
| | - Kodai Murayama
- Department of Research and Development, Yokogawa Electric Corporation, Musashino, Japan
| | - Soichiro Shimoda
- Department of Life Business, Yokogawa Electric Corporation, Musashino, Japan
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
5
|
Lee JA, Kim HU, Na JG, Ko YS, Cho JS, Lee SY. Factors affecting the competitiveness of bacterial fermentation. Trends Biotechnol 2022; 41:798-816. [PMID: 36357213 DOI: 10.1016/j.tibtech.2022.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
Sustainable production of chemicals and materials from renewable non-food biomass using biorefineries has become increasingly important in an effort toward the vision of 'net zero carbon' that has recently been pledged by countries around the world. Systems metabolic engineering has allowed the efficient development of microbial strains overproducing an increasing number of chemicals and materials, some of which have been translated to industrial-scale production. Fermentation is one of the key processes determining the overall economics of bioprocesses, but has recently been attracting less research attention. In this Review, we revisit and discuss factors affecting the competitiveness of bacterial fermentation in connection to strain development by systems metabolic engineering. Future perspectives for developing efficient fermentation processes are also discussed.
Collapse
Affiliation(s)
- Jong An Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea
| | - Hyun Uk Kim
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea; Systems Biology and Medicine Laboratory, Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon 34141, Republic of Korea
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Yoo-Sung Ko
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea
| | - Jae Sung Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
6
|
Zhang Q, Han P, Xu H, Wang Q, Xu G. Survival strategies of Nitrospira in a stable nitritation-denitritation system treating low-strength fermented wastewater. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Raman Spectroscopy for Food Quality Assurance and Safety Monitoring: A Review. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Santos MV, Rodrigues KCS, Veloso IIK, Badino AC, Cruz AJG. Real-Time Monitoring of Ethanol Fermentation Using Mid-Infrared Spectroscopy Analysis of the Gas Phase. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mayara V. Santos
- Graduate Program of Chemical Engineering, Federal University of São Carlos, C.P. 676, São Carlos, 13565-905 São Paulo, Brazil
| | - Kaio C. S. Rodrigues
- Federal University of Western Bahia, Luís Eduardo Magalhães, 47850-000 Bahia, Brazil
| | - Ivan I. K. Veloso
- Graduate Program of Chemical Engineering, Federal University of São Carlos, C.P. 676, São Carlos, 13565-905 São Paulo, Brazil
| | - Alberto C. Badino
- Graduate Program of Chemical Engineering, Federal University of São Carlos, C.P. 676, São Carlos, 13565-905 São Paulo, Brazil
| | - Antonio J. G. Cruz
- Graduate Program of Chemical Engineering, Federal University of São Carlos, C.P. 676, São Carlos, 13565-905 São Paulo, Brazil
| |
Collapse
|
9
|
Metcalfe GD, Sargent F, Hippler M. Hydrogen production in the presence of oxygen by Escherichia coli K-12. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35343886 PMCID: PMC9558352 DOI: 10.1099/mic.0.001167] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Escherichia coli is a facultative anaerobe that can grow in a variety of environmental conditions. In the complete absence of O2, E. coli can perform a mixed-acid fermentation that contains within it an elaborate metabolism of formic acid. In this study, we use cavity-enhanced Raman spectroscopy (CERS), FTIR, liquid Raman spectroscopy, isotopic labelling and molecular genetics to make advances in the understanding of bacterial formate and H2 metabolism. It is shown that, under anaerobic (anoxic) conditions, formic acid is generated endogenously, excreted briefly from the cell, and then taken up again to be disproportionated to H2 and CO2 by formate hydrogenlyase (FHL-1). However, exogenously added D-labelled formate behaves quite differently from the endogenous formate and is taken up immediately, independently, and possibly by a different mechanism, by the cell and converted to H2 and CO2. Our data support an anion-proton symport model for formic acid transport. In addition, when E. coli was grown in a micro-aerobic (micro-oxic) environment it was possible to analyse aspects of formate and O2 respiration occurring alongside anaerobic metabolism. While cells growing under micro-aerobic conditions generated endogenous formic acid, no H2 was produced. However, addition of exogenous formate at the outset of cell growth did induce FHL-1 biosynthesis and resulted in formate-dependent H2 production in the presence of O2.
Collapse
Affiliation(s)
- George D Metcalfe
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
| | - Frank Sargent
- School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Michael Hippler
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
| |
Collapse
|
10
|
Wang K, Li Z, Li J, Lin H. Raman spectroscopic techniques for nondestructive analysis of agri-foods: A state-of-the-art review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Metcalfe GD, Smith TW, Hippler M. Advanced spectroscopic analysis and 15N-isotopic labelling study of nitrate and nitrite reduction to ammonia and nitrous oxide by E. coli. Analyst 2021; 146:7021-7033. [PMID: 34693414 DOI: 10.1039/d1an01261d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrate and nitrite reduction to ammonia and nitrous oxide by anaerobic E. coli batch cultures is investigated by advanced spectroscopic analytical techniques with 15N-isotopic labelling. Non-invasive, in situ analysis of the headspace is achieved using White cell FTIR and cavity-enhanced Raman (CERS) spectroscopies alongside liquid-phase Raman spectroscopy. For gas-phase analysis, White cell FTIR measures CO2, ethanol and N2O while CERS allows H2, N2 and O2 monitoring. The 6 m pathlength White cell affords trace gas detection of N2O with a noise equivalent detection limit of 60 nbar or 60 ppbv in 1 atm. Quantitative analysis is discussed for all four 14N/15N-isotopomers of N2O. Monobasic and dibasic phosphates, acetate, formate, glucose and NO3- concentrations are obtained by liquid-phase Raman spectroscopy, with a noise equivalent detection limit of 0.6 mM for NO3- at 300 s integration time. Concentrations of the phosphate anions are used to calculate the pH in situ using a modified Henderson-Hasselbalch equation. NO2- concentrations are determined by sampling for colorimetric analysis and NH4+ by basifying samples to release 14N/15N-isotopomers of NH3 for measurement in a second FTIR White cell. The reductions of 15NO3-, 15NO2-, and mixed 15NO3- and 14NO2- by anaerobic E. coli batch cultures are discussed. In a major pathway, NO3- is reduced to NH4+via NO2-, with the bulk of NO2- reduction occurring after NO3- depletion. Using isotopically labelled 15NO3-, 15NH4+ production is distinguished from background 14NH4+ in the growth medium. In a minor pathway, NO2- is reduced to N2O via the toxic radical NO. With excellent detection sensitivities, N2O serves as a monitor for trace NO2- reduction, even when cells are predominantly reducing NO3-. The analysis of N2O isotopomers reveals that for cultures supplemented with mixed 15NO3- and 14NO2- enzymatic activity to reduce 14NO2- occurs immediately, even before 15NO3- reduction begins. Optical density and pH measurements are discussed in the context of acetate, formate and CO2 production. H2 production is repressed by NO3-; but in experiments with NO2- supplementation only, CERS detects H2 produced by formate disproportionation after NO2- depletion.
Collapse
Affiliation(s)
- George D Metcalfe
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK.
| | - Thomas W Smith
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK. .,School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, UK
| | - Michael Hippler
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK.
| |
Collapse
|
12
|
Feng Y, Tian X, Chen Y, Wang Z, Xia J, Qian J, Zhuang Y, Chu J. Real-time and on-line monitoring of ethanol fermentation process by viable cell sensor and electronic nose. BIORESOUR BIOPROCESS 2021; 8:37. [PMID: 38650202 PMCID: PMC10991113 DOI: 10.1186/s40643-021-00391-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023] Open
Abstract
In this study, introduction of a viable cell sensor and electronic nose into ethanol fermentation was investigated, which could be used in real-time and on-line monitoring of the amount of living cells and product content, respectively. Compared to the conventional off-line biomass determination, the capacitance value exhibited a completely consistent trend with colony forming units, indicating that the capacitance value could reflect the living cells in the fermentation broth. On the other hand, in comparison to the results of off-line determination by high-performance liquid chromatography, the ethanol concentration measured by electronic nose presented an excellent consistency, so as to realize the on-line monitoring during the whole process. On this basis, a dynamic feeding strategy of glucose guided by the changes of living cells and ethanol content was developed. And consequently, the ethanol concentration, productivity and yield were enhanced by 15.4%, 15.9% and 9.0%, respectively. The advanced sensors adopted herein to monitor the key parameters of ethanol fermentation process could be readily extended to an industrial scale and other similar fermentation processes.
Collapse
Affiliation(s)
- Yao Feng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 329#, Shanghai, 200237, China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 329#, Shanghai, 200237, China.
| | - Yang Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 329#, Shanghai, 200237, China
| | - Zeyu Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 329#, Shanghai, 200237, China
| | - Jianye Xia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 329#, Shanghai, 200237, China
| | - Jiangchao Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 329#, Shanghai, 200237, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 329#, Shanghai, 200237, China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 329#, Shanghai, 200237, China
| |
Collapse
|
13
|
Wieland K, Masri M, von Poschinger J, Brück T, Haisch C. Non-invasive Raman spectroscopy for time-resolved in-line lipidomics. RSC Adv 2021; 11:28565-28572. [PMID: 35478569 PMCID: PMC9038134 DOI: 10.1039/d1ra04254h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
Oil-producing yeast cells are a valuable alternative source for palm oil production and, hence, may be one important piece of the puzzle for a more sustainable future.
Collapse
Affiliation(s)
- Karin Wieland
- Chair of Analytical Chemistry, Technical University of Munich, Elisabeth-Winterhalter-Weg 6, 81377 Germany
- Competence Center CHASE GmbH, Altenbergerstraße 69, 4040 Linz, Austria
| | - Mahmoud Masri
- Werner Siemens-Chair of Synthetic Biotechnology, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Jeremy von Poschinger
- TUM Pilot Plant for Industrial Biotechnology, Ernst-Otto-Fischerstrasse 3, 85748 Garching, Germany
| | - Thomas Brück
- TUM Pilot Plant for Industrial Biotechnology, Ernst-Otto-Fischerstrasse 3, 85748 Garching, Germany
| | - Christoph Haisch
- Chair of Analytical Chemistry, Technical University of Munich, Elisabeth-Winterhalter-Weg 6, 81377 Germany
| |
Collapse
|