1
|
Verdin A, Malherbe C, Sloan-Dennison S, Faulds K, Graham D, Eppe G. Thiol-polyethylene glycol-folic acid (HS-PEG-FA) induced aggregation of Au@Ag nanoparticles: A SERS and extinction UV-Vis spectroscopy combined study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124848. [PMID: 39032228 DOI: 10.1016/j.saa.2024.124848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Plasmonic colloidal nanoparticles (NPs) functionalised with polymers are widely employed in diverse applications, offering advantages demonstrated over non-functionalised NPs such as enhanced colloidal stability or increased biocompatibility. However, functionalisation with polymers does not always increase the stability of the colloidal system. This work explores the intricate relationship between the functionalisation of plasmonic core@shell Au@Ag nanoparticles (NPs) with thiol-polyethylene glycol-folic acid (HS-PEG-FA) polymer chains and the resulting stability and spectral characteristics of Surface-Enhanced Raman Scattering (SERS) nanotags based on these NPs. We demonstrate that varying levels of HS-PEG-FA grafting influence nanotag stability, with a low level of grafting causing aggregation and subsequently affecting the spectral signature of Raman-reporter molecules attached to the surface of the NP. Electrostatic destabilisation is identified as the primary mechanism driving aggregation, impacting the SERS spectrum of Malachite Green isothiocyanate (MGITC) whose spectral shape is different between the aggregated and non-aggregated NPs. The findings provide valuable insights into NPs stability under different conditions, offering essential considerations for the design and optimisation of SERS nanotags in bio-analytical applications, particularly those involving data processing based on spectral shape, such as in multiplex approaches where experimental spectra are decomposed with several reference components.
Collapse
Affiliation(s)
- Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium.
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| | - Sian Sloan-Dennison
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| |
Collapse
|
2
|
Wu Y, Wang Y, Mo T, Liu Q. Surface-enhanced Raman scattering-based strategies for tumor markers detection: A review. Talanta 2024; 280:126717. [PMID: 39167940 DOI: 10.1016/j.talanta.2024.126717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
The presence of malignant tumors poses a significant threat to people's life and well-being. As biochemical parameters indicate the occurrence and development of tumors, tumor markers play a pivotal role in early cancer detection, treatment, prognosis, efficient monitoring, and other aspects. Surface-enhanced Raman scattering (SERS) is considered a potent tool for the detection of tumor markers owing to its exceptional advantages encompassing high sensitivity, superior selectivity, rapid analysis speed, and photobleaching resistance nature. This review aims to provide a comprehensive understanding of SERS applications in the detection of tumor markers. Firstly, we introduce the SERS enhancement mechanism, classification of active substrates, and SERS detection techniques. Secondly, the latest research progress of in vitro SERS detection of different types of tumor markers in body fluids and the application of SERS imaging in biomedical imaging are highlighted in sections of the review. Finally, according to the current status of SERS detection of tumor markers, the challenges and problems of SERS in biomedical detection are discussed, and insights into future developments in SERS are offered.
Collapse
Affiliation(s)
- Yafang Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yinglin Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Tianlu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
3
|
Verdin A, Malherbe C, Eppe G. Designing SERS nanotags for profiling overexpressed surface markers on single cancer cells: A review. Talanta 2024; 276:126225. [PMID: 38749157 DOI: 10.1016/j.talanta.2024.126225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024]
Abstract
This review focuses on the chemical design and the use of Surface-Enhanced Raman Scattering (SERS)-active nanotags for measuring surface markers that can be overexpressed at the surface of single cancer cells. Indeed, providing analytical tools with true single-cell measurements capabilities is capital, especially since cancer research is increasingly leaning toward single-cell analysis, either to guide treatment decisions or to understand complex tumor behaviour including the single-cell heterogeneity and the appearance of treatment resistance. Over the past two decades, SERS nanotags have triggered significant interest in the scientific community owing their advantages over fluorescent tags, mainly because SERS nanotags resist photobleaching and exhibit sharper signal bands, which reduces possible spectral overlap and enables the discrimination between the SERS signals and the autofluorescence background from the sample itself. The extensive efforts invested in harnessing SERS nanotags for biomedical purposes, particularly in cancer research, highlight their potential as the next generation of optical labels for single-cell studies. The review unfolds in two main parts. The first part focuses on the structure of SERS nanotags, detailing their chemical composition and the role of each building block of the tags. The second part explores applications in measuring overexpressed surface markers on single-cells. The latter encompasses studies using single nanotags, multiplexed measurements, quantitative information extraction, monitoring treatment responses, and integrating phenotype measurements with SERS nanotags on single cells isolated from complex biological matrices. This comprehensive review anticipates SERS nanotags to persist as a pivotal technology in advancing single-cell analytical methods, particularly in the context of cancer research and personalized medicine.
Collapse
Affiliation(s)
- Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium.
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| |
Collapse
|
4
|
Elsheikh S, Coles NP, Achadu OJ, Filippou PS, Khundakar AA. Advancing Brain Research through Surface-Enhanced Raman Spectroscopy (SERS): Current Applications and Future Prospects. BIOSENSORS 2024; 14:33. [PMID: 38248410 PMCID: PMC10813143 DOI: 10.3390/bios14010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has recently emerged as a potent analytical technique with significant potential in the field of brain research. This review explores the applications and innovations of SERS in understanding the pathophysiological basis and diagnosis of brain disorders. SERS holds significant advantages over conventional Raman spectroscopy, particularly in terms of sensitivity and stability. The integration of label-free SERS presents promising opportunities for the rapid, reliable, and non-invasive diagnosis of brain-associated diseases, particularly when combined with advanced computational methods such as machine learning. SERS has potential to deepen our understanding of brain diseases, enhancing diagnosis, monitoring, and therapeutic interventions. Such advancements could significantly enhance the accuracy of clinical diagnosis and further our understanding of brain-related processes and diseases. This review assesses the utility of SERS in diagnosing and understanding the pathophysiological basis of brain disorders such as Alzheimer's and Parkinson's diseases, stroke, and brain cancer. Recent technological advances in SERS instrumentation and techniques are discussed, including innovations in nanoparticle design, substrate materials, and imaging technologies. We also explore prospects and emerging trends, offering insights into new technologies, while also addressing various challenges and limitations associated with SERS in brain research.
Collapse
Affiliation(s)
- Suzan Elsheikh
- National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington DL1 1HG, UK (N.P.C.); (O.J.A.); (P.S.F.)
| | - Nathan P. Coles
- National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington DL1 1HG, UK (N.P.C.); (O.J.A.); (P.S.F.)
| | - Ojodomo J. Achadu
- National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington DL1 1HG, UK (N.P.C.); (O.J.A.); (P.S.F.)
- School of Health and Life Science, Teesside University, Campus Heart, Southfield Rd, Middlesbrough TS1 3BX, UK
| | - Panagiota S. Filippou
- National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington DL1 1HG, UK (N.P.C.); (O.J.A.); (P.S.F.)
- School of Health and Life Science, Teesside University, Campus Heart, Southfield Rd, Middlesbrough TS1 3BX, UK
| | - Ahmad A. Khundakar
- National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington DL1 1HG, UK (N.P.C.); (O.J.A.); (P.S.F.)
- School of Health and Life Science, Teesside University, Campus Heart, Southfield Rd, Middlesbrough TS1 3BX, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
5
|
Fu L, Lin CT, Karimi-Maleh H, Chen F, Zhao S. Plasmonic Nanoparticle-Enhanced Optical Techniques for Cancer Biomarker Sensing. BIOSENSORS 2023; 13:977. [PMID: 37998152 PMCID: PMC10669140 DOI: 10.3390/bios13110977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
This review summarizes recent advances in leveraging localized surface plasmon resonance (LSPR) nanotechnology for sensitive cancer biomarker detection. LSPR arising from noble metal nanoparticles under light excitation enables the enhancement of various optical techniques, including surface-enhanced Raman spectroscopy (SERS), dark-field microscopy (DFM), photothermal imaging, and photoacoustic imaging. Nanoparticle engineering strategies are discussed to optimize LSPR for maximum signal amplification. SERS utilizes electromagnetic enhancement from plasmonic nanostructures to boost inherently weak Raman signals, enabling single-molecule sensitivity for detecting proteins, nucleic acids, and exosomes. DFM visualizes LSPR nanoparticles based on scattered light color, allowing for the ultrasensitive detection of cancer cells, microRNAs, and proteins. Photothermal imaging employs LSPR nanoparticles as contrast agents that convert light to heat, producing thermal images that highlight cancerous tissues. Photoacoustic imaging detects ultrasonic waves generated by LSPR nanoparticle photothermal expansion for deep-tissue imaging. The multiplexing capabilities of LSPR techniques and integration with microfluidics and point-of-care devices are reviewed. Remaining challenges, such as toxicity, standardization, and clinical sample analysis, are examined. Overall, LSPR nanotechnology shows tremendous potential for advancing cancer screening, diagnosis, and treatment monitoring through the integration of nanoparticle engineering, optical techniques, and microscale device platforms.
Collapse
Affiliation(s)
- Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (F.C.); (S.Z.)
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China;
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Hassan Karimi-Maleh
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Wenzhou 325015, China;
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Engineering, Lebanese American University, Byblos 13-5053, Lebanon
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (F.C.); (S.Z.)
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (F.C.); (S.Z.)
| |
Collapse
|
6
|
Anti-CD44 antibodies grafted immunoaffinity Fe 3O 4@MnO 2 nanozymes with highly oxidase-like catalytic activity for specific detection of triple-negative breast cancer MDA-MB-231 cells. Anal Chim Acta 2023; 1249:340947. [PMID: 36868774 DOI: 10.1016/j.aca.2023.340947] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/07/2023]
Abstract
Cell-enzyme-linked immunosorbent assay (CELISA) is extensively applied for cancer diagnosis and screening because of its simple operation, high sensitivity, and intuitive color change. However, the unstable horseradish peroxidase (HRP), hydrogen peroxide (H2O2) and non-specificity have led to a high false negative rate, which limits its application. In this study, we have developed an innovative immunoaffinity nanozyme aided CELISA based on anti-CD44 monoclonal antibodies (mAbs) bioconjugated manganese dioxide-modified magnetite nanoparticles (Fe3O4@MnO2 NPs) for the specific detection of triple-negative breast cancer MDA-MB-231 cells. The CD44FM nanozymes were fabricated to replace unstable HRP and H2O2 to counteract possible negative effects in conventional CELISA. Results suggested that CD44FM nanozymes displayed remarkable oxidase-like activities over an extensive pH and temperature range. The bioconjugation of CD44 mAbs enabled CD44FM nanozymes to enter MDA-MB-231 cells selectively via over-expressed CD44 antigens on the membrane surface of these cells, and then catalyzed oxidation of the chromogenic substrate TMB, further achieving specific detection of these cells. Additionally, this study exhibited high sensitivity and low detection limit for MDA-MB-231 cells with a quantitation range of just 186 cells. To sum up, this report developed a simple, specific and sensitive assay platform based on CD44FM nanozymes, which could provide a promising strategy for targeted diagnosis and screening of breast cancer.
Collapse
|
7
|
Awiaz G, Lin J, Wu A. Recent advances of Au@Ag core-shell SERS-based biosensors. EXPLORATION (BEIJING, CHINA) 2023; 3:20220072. [PMID: 37323623 PMCID: PMC10190953 DOI: 10.1002/exp.20220072] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/18/2022] [Indexed: 06/17/2023]
Abstract
The methodological advancements in surface-enhanced Raman scattering (SERS) technique with nanoscale materials based on noble metals, Au, Ag, and their bimetallic alloy Au-Ag, has enabled the highly efficient sensing of chemical and biological molecules at very low concentration values. By employing the innovative various type of Au, Ag nanoparticles and especially, high efficiency Au@Ag alloy nanomaterials as substrate in SERS based biosensors have revolutionized the detection of biological components including; proteins, antigens antibodies complex, circulating tumor cells, DNA, and RNA (miRNA), etc. This review is about SERS-based Au/Ag bimetallic biosensors and their Raman enhanced activity by focusing on different factors related to them. The emphasis of this research is to describe the recent developments in this field and conceptual advancements behind them. Furthermore, in this article we apex the understanding of impact by variation in basic features like effects of size, shape varying lengths, thickness of core-shell and their influence of large-scale magnitude and morphology. Moreover, the detailed information about recent biological applications based on these core-shell noble metals, importantly detection of receptor binding domain (RBD) protein of COVID-19 is provided.
Collapse
Affiliation(s)
- Gul Awiaz
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jie Lin
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| |
Collapse
|
8
|
Li M, Jiang F, Xue L, Peng C, Shi Z, Zhang Z, Li J, Pan Y, Wang X, Feng C, Qiao D, Chen Z, Luo Q, Chen X. Recent Progress in Biosensors for Detection of Tumor Biomarkers. Molecules 2022; 27:7327. [PMID: 36364157 PMCID: PMC9658374 DOI: 10.3390/molecules27217327] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 10/07/2023] Open
Abstract
Cancer is a leading cause of death worldwide, with an increasing mortality rate over the past years. The early detection of cancer contributes to early diagnosis and subsequent treatment. How to detect early cancer has become one of the hot research directions of cancer. Tumor biomarkers, biochemical parameters for reflecting cancer occurrence and progression have caused much attention in cancer early detection. Due to high sensitivity, convenience and low cost, biosensors have been largely developed to detect tumor biomarkers. This review describes the application of various biosensors in detecting tumor markers. Firstly, several typical tumor makers, such as neuron-specific enolase (NSE), carcinoembryonic antigen (CEA), prostate-specific antigen (PSA), squamous cell carcinoma antigen (SCCA), carbohydrate, antigen19-9 (CA19-9) and tumor suppressor p53 (TP53), which may be helpful for early cancer detection in the clinic, are briefly described. Then, various biosensors, mainly focusing on electrochemical biosensors, optical biosensors, photoelectrochemical biosensors, piezoelectric biosensors and aptamer sensors, are discussed. Specifically, the operation principles of biosensors, nanomaterials used in biosensors and the application of biosensors in tumor marker detection have been comprehensively reviewed and provided. Lastly, the challenges and prospects for developing effective biosensors for early cancer diagnosis are discussed.
Collapse
Affiliation(s)
- Mantong Li
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Feng Jiang
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Liangyi Xue
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cheng Peng
- Guangzhou Institute of Food Inspection, Guangzhou 510080, China
| | - Zhengzheng Shi
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zheng Zhang
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jia Li
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yupeng Pan
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xinya Wang
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunqiong Feng
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Dongfang Qiao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhenzhong Chen
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qizhi Luo
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xuncai Chen
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
9
|
Chauhan P, Bhargava A, Kumari R, Ratre P, Tiwari R, Kumar Srivastava R, Yu Goryacheva I, Kumar Mishra P. Surface-enhanced Raman scattering biosensors for detection of oncomiRs in breast cancer. Drug Discov Today 2022; 27:2121-2136. [PMID: 35460892 DOI: 10.1016/j.drudis.2022.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/03/2022] [Accepted: 04/13/2022] [Indexed: 12/16/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has emerged as one of the most promising platforms for various biosensing applications. These sensing systems encompass the advantages of specificity, ultra-high sensitivity, stability, low cost, repeatability, and easy-to-use methods. Moreover, their ability to offer a molecular fingerprint and identify the target analyte at low levels make SERS a promising technique for detecting circulating cancer biomarkers with greater sensitivity and reliability. Among the various circulating biomolecules, oncomiRs are emerging as prominent biomarkers for the early screening of breast cancers (BCs). In this review, we provide a comprehensive understanding of different SERS-based biosensors and their application to identify BC-specific oncomiRs. We also discuss different SERS-based sensing strategies, nano-analytical frameworks, and challenges to be addressed for effective clinical translation.
Collapse
Affiliation(s)
- Prachi Chauhan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pooja Ratre
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | | | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
10
|
Iakab SA, Baquer G, Lafuente M, Pina MP, Ramírez JL, Ràfols P, Correig-Blanchar X, García-Altares M. SALDI-MS and SERS Multimodal Imaging: One Nanostructured Substrate to Rule Them Both. Anal Chem 2022; 94:2785-2793. [PMID: 35102738 PMCID: PMC8851428 DOI: 10.1021/acs.analchem.1c04118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Imaging techniques
based on mass spectrometry or spectroscopy methods
inform in situ about the chemical composition of
biological tissues or organisms, but they are sometimes limited by
their specificity, sensitivity, or spatial resolution. Multimodal
imaging addresses these limitations by combining several imaging modalities;
however, measuring the same sample with the same preparation using
multiple imaging techniques is still uncommon due to the incompatibility
between substrates, sample preparation protocols, and data formats.
We present a multimodal imaging approach that employs a gold-coated
nanostructured silicon substrate to couple surface-assisted laser
desorption/ionization mass spectrometry (SALDI-MS) and surface-enhanced
Raman spectroscopy (SERS). Our approach integrates both imaging modalities
by using the same substrate, sample preparation, and data analysis
software on the same sample, allowing the coregistration of both images.
We transferred molecules from clean fingertips and fingertips covered
with plasticine modeling clay onto our nanostructure and analyzed
their chemical composition and distribution by SALDI-MS and SERS.
Multimodal analysis located the traces of plasticine on fingermarks
and provided chemical information on the composition of the clay.
Our multimodal approach effectively combines the advantages of mass
spectrometry and vibrational spectroscopy with the signal enhancing
abilities of our nanostructured substrate.
Collapse
Affiliation(s)
- Stefania-Alexandra Iakab
- Department of Electronic Engineering, Rovira i Virgili University, Tarragona 43007, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid 28029, Spain
| | - Gerard Baquer
- Department of Electronic Engineering, Rovira i Virgili University, Tarragona 43007, Spain
| | - Marta Lafuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.,Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Universidad de Zaragoza, Campus Río Ebro-Edificio I+D+i, C/Mariano Esquillor s/n, Zaragoza 50018, Spain
| | - Maria Pilar Pina
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.,Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Universidad de Zaragoza, Campus Río Ebro-Edificio I+D+i, C/Mariano Esquillor s/n, Zaragoza 50018, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid 28029, Spain
| | - José Luis Ramírez
- Department of Electronic Engineering, Rovira i Virgili University, Tarragona 43007, Spain
| | - Pere Ràfols
- Department of Electronic Engineering, Rovira i Virgili University, Tarragona 43007, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid 28029, Spain
| | - Xavier Correig-Blanchar
- Department of Electronic Engineering, Rovira i Virgili University, Tarragona 43007, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid 28029, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus 43204, Spain
| | - María García-Altares
- Department of Electronic Engineering, Rovira i Virgili University, Tarragona 43007, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid 28029, Spain
| |
Collapse
|
11
|
Verdin A, Sloan-Dennison S, Malherbe C, Graham D, Eppe G. SERS nanotags for folate receptor α detection at the single cell level: discrimination of overexpressing cells and potential for live cell applications. Analyst 2022; 147:3328-3339. [DOI: 10.1039/d2an00706a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of nanotags based on Surface-Enhanced Raman Scattering (SERS) for the discrimination of cancer cells overexpressing folate receptor α. Nanotags are also applicable for live cell measurements.
Collapse
Affiliation(s)
- Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Allée du 6 Août, 4000 Liège, Belgium
| | - Sian Sloan-Dennison
- Department of Pure and Applied Chemistry, Technology and Innovation Center, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Allée du 6 Août, 4000 Liège, Belgium
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Center, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Allée du 6 Août, 4000 Liège, Belgium
| |
Collapse
|
12
|
Zhang Q, Deng TS, Wei MZ, Chen X, Cheng Z, Li S, Gu YJ. Symmetric and asymmetric overgrowth of a Ag shell onto gold nanorods assisted by Pt pre-deposition. RSC Adv 2021; 11:34516-34524. [PMID: 35494784 PMCID: PMC9042676 DOI: 10.1039/d1ra07415f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 01/13/2023] Open
Abstract
The plasmonic properties of noble metallic nanoparticles could be tuned by morphology and composition, enabling opportunities for applications in sensors, photocatalysis, biomedicine, and energy conversion. Here, we report a method of the symmetric and asymmetric overgrowth of a Ag shell onto gold nanorods assisted by Pt pre-deposition via a 2-step approach. Firstly, gold nanorods (AuNRs), synthesized via a seed-mediated method, were used as seeds to form a AuNR–Pt structure, by using K2PtCl4 as the precursor. In this step, most of the Pt material was selectively deposited on the tips of the AuNR. Secondly, by using AgNO3 as the precursor, a Ag shell was overgrown on the surface of the AuNRs–Pt nanoparticles, resulting in a (AuNR–Pt)–Ag core–shell tri-metallic nanostructure. Due to the surface energy and lattice matching between Au and Ag, the Ag shell preferred to be epitaxially overgrown on the side of AuNR. The Ag shell thickness and symmetry of the (AuNR–Pt)–Ag could be tuned by changing the amounts of AgNO3 precursor. With the increase of the Ag shell thickness, the (AuNR–Pt)–Ag nanostructures changed from symmetric to asymmetric. The obtained (AuNR–Pt)–Ag nanostructures were studied using UV-vis-NIR spectroscopy, transmission electron microscopy, EDS mapping, DLS, and ICP-MS. The growth mechanism was discussed. Demonstrating asymmetric (AuNR–Pt)–Ag tri-metallic nanostructures by a two-step seed-mediated method. The shell thickness was controlled by the amount of AgNO3.![]()
Collapse
Affiliation(s)
- Qi Zhang
- School of Electronics and Information Engineering, Hangzhou Dianzi University Hangzhou 310018 P. R. China
| | - Tian-Song Deng
- School of Electronics and Information Engineering, Hangzhou Dianzi University Hangzhou 310018 P. R. China
| | - Ming-Zhang Wei
- School of Electronics and Information Engineering, Hangzhou Dianzi University Hangzhou 310018 P. R. China
| | - Xi Chen
- School of Electronics and Information Engineering, Hangzhou Dianzi University Hangzhou 310018 P. R. China
| | - Zhiqun Cheng
- School of Electronics and Information Engineering, Hangzhou Dianzi University Hangzhou 310018 P. R. China
| | - Shiqi Li
- School of Electronics and Information Engineering, Hangzhou Dianzi University Hangzhou 310018 P. R. China
| | - Yi-Jie Gu
- School of Electronics and Information Engineering, Hangzhou Dianzi University Hangzhou 310018 P. R. China
| |
Collapse
|
13
|
Lin T, Song YL, Kuang P, Chen S, Mao Z, Zeng TT. Nanostructure-based surface-enhanced Raman scattering for diagnosis of cancer. Nanomedicine (Lond) 2021; 16:2389-2406. [PMID: 34530631 DOI: 10.2217/nnm-2021-0298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer is a malignant disease that seriously affects human health and life. Early diagnosis and timely treatment can significantly improve the survival rate of cancer patients. Surface-enhanced Raman scattering (SERS) is an optical technology that can detect and image samples at the single-molecule level. It has the advantages of rapidity, high specificity, high sensitivity and no damage to the sample. The performance of SERS is highly dependent on the properties, size and morphology of the SERS substrate. Preparation of SERS substrates with good reproducibility and chemical stability is a key factor in realizing the wide application of SERS technology in cancer diagnosis. In this review we provide a detailed presentation of the latest research on SERS in cancer diagnosis and the detection of cancer biomarkers, mainly focusing on nanotechnological approaches in cancer diagnosis by using SERS. We also consider the future development of nanostructure-based SERS in cancer diagnosis.
Collapse
Affiliation(s)
- Ting Lin
- Department of Hematology, Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ya-Li Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pu Kuang
- Department of Hematology, Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Si Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhigang Mao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting-Ting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
14
|
Verdin A, Malherbe C, Eppe G. Spatially resolved determination of the abundance of the HER2 marker in microscopic breast tumors using targeted SERS imaging. Mikrochim Acta 2021; 188:288. [PMID: 34350526 DOI: 10.1007/s00604-021-04943-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/10/2021] [Indexed: 10/20/2022]
Abstract
Highly selective nanoprobes have been developed based on SERS-active Au@Ag nanoparticles protected by a PEG coating and functionalized with monoclonal antibodies against human epidermal growth factor receptor 2 (HER2). The PEG coating allows to drastically reduce unspecific interactions during incubation on tissues, while the monoclonal antibodies allow a highly specific targeting of HER2. Using the designed SERS nanoprobes combined with a spectral imaging and data weighting approach, we demonstrate the proportionality between the SERS signal and the amount of HER2 antigen on the cell membranes as measured by digital image analysis of IHC staining in microscopic breast tumors (linear fit R2 = 0.87). We also show that the level of expression of HER2 measured by SERS is significantly different between several microscopic tumor parts of the same tissue slide. Therefore, SERS is proving to be a suitable technique for the localized quantitative measurement of specific markers in breast cancerous tissues. Owing to its high multiplexing capabilities, SERS could be a future tool of choice for characterizing the molecular heterogeneity of tumors at the microscopic scale.
Collapse
Affiliation(s)
- Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000, Liège, Belgium
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000, Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000, Liège, Belgium.
| |
Collapse
|
15
|
Liu MX, Zhang H, Chen S, Yu YL, Wang JH. MnO 2-graphene oxide hybrid nanomaterial with oxidase-like activity for ultrasensitive colorimetric detection of cancer cells. Anal Bioanal Chem 2021; 413:4451-4458. [PMID: 34002276 DOI: 10.1007/s00216-021-03399-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
Robust and sensitive cell-based enzyme-linked immunosorbent assay (CELISA) is of great significance in the diagnosis and screening of cancer. However, the method is limited by the high rate of negative results attributed to the instability of horseradish peroxidase (HRP), H2O2, and antibody. Here, we construct a folic acid-functionalized in situ-grown MnO2 nanosheet/graphene oxide hybrid (FA-MnO2/GO) with oxidase-like activity instead of the anti-folate receptor antibody in traditional CELISA to resist the possible negative interference arising from unstable HRP, H2O2, and antibodies for more robust colorimetric detection of cancer cells. The functionalization of FA enables the selective binding between hybrid and cancer cells through the over-expressed folate receptor, and then the binding events are converted into quantitative colorimetric signals though the oxidation of the chromogenic substrate TMB catalyzed by MnO2, allowing the detection of cancer cells with colorimetric method. Moreover, the construction of MnO2/GO hybrid can synergistically enhance the oxidase-like activity of MnO2 and promote its dispersion in water, further ensuring the accuracy and sensitivity of the detection. A detection limit of 20 cancer cells is obtained by a plate reader, which is lower than those obtained by most reported CELISA methods for cancer cell detection, and as few as 75 cancer cells can be identified by the naked eye. This study not only provides a multifunctional sensing platform for robust and sensitive cancer cell detection, but also offers a promising oxidase-like mimic in the field of bioanalysis.
Collapse
Affiliation(s)
- Meng-Xian Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, Liaoning, China
| | - He Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, Liaoning, China
| | - Shuai Chen
- College of Life and Health Sciences, Northeastern University, Shenyang, 110169, Liaoning, China.
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, Liaoning, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, Liaoning, China
| |
Collapse
|
16
|
Li J, Wang Q, Wang J, Li M, Zhang X, Luan L, Li P, Xu W. Quantitative SERS sensor based on self-assembled Au@Ag heterogeneous nanocuboids monolayer with high enhancement factor for practical quantitative detection. Anal Bioanal Chem 2021; 413:4207-4215. [PMID: 33987702 DOI: 10.1007/s00216-021-03366-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/31/2021] [Accepted: 04/21/2021] [Indexed: 01/10/2023]
Abstract
Accurate and rapid quantitative detection of pesticide and pollutant levels in the actual sample can aid in protecting food security, environmental security, and human health. A high Raman enhancement factor and good repeatability of the surface-enhanced Raman spectroscopy (SERS) substrates are favorable to quantitative analysis. Herein, a quantitative SERS sensor based on constructed self-assembled plasmonic Au@Ag heterogeneous nanocuboids (Au@Ag NCs) monolayer was developed. The sensor was used to quantitatively detect the trace pesticides extracted from pear surfaces and pollutants in fishpond water. Densely packed Au@Ag NCs fabricated into large-scale monolayer films were chemically functionalized using 4-methyl-thiobenzoic acid (4-MBA) at the organic/aqueous interface, in which plentiful nanogaps contribute to increase hotspots. Their sharp corners and edges make the sensor have high SERS performance through providing abundant "hot spots." The obtained optically SERS-based sensor with uniform liquid-state interfacial nanoparticle arrays appeared to have nice SERS performance and uniformity using crystal violet (CV) as a probe molecule. In particular, the proposed SERS sensor was applied for quantitative detection of thiabendazole (TBZ) extracted from pear surfaces and malachite green (MG) in fishpond water down to levels of 0.0105 nM and 0.87 nM for SERS assay respectively. As a result, our proposed SERS quantitative detection strategy is quite preferred to on-site analysis and supervision of contaminant in food samples.
Collapse
Affiliation(s)
- Jingya Li
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
- Department of Biological Physics, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Qianqian Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
| | - Juan Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
| | - Man Li
- Department of Bioengineering, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xiang Zhang
- Department of Bioengineering, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Longlong Luan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Pan Li
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, CAS, Hefei, 230021, Anhui, China.
| | - Weiping Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China.
| |
Collapse
|