1
|
Ayala J, Kerrigan S. Comment on 'Comprehensive toxicological screening of common drugs of abuse, new psychoactive substances, and cannabinoids in blood using supported liquid extraction and liquid chromatography-quadrupole time-of-flight mass spectrometry'. J Anal Toxicol 2024; 48:519-522. [PMID: 38937875 DOI: 10.1093/jat/bkae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024] Open
Affiliation(s)
- Jessica Ayala
- Houston Forensic Science Center, Houston, TX 77002, USA
- Department of Forensic Science, Sam Houston State University, Huntsville, TX 77341, USA
| | - Sarah Kerrigan
- Department of Forensic Science, Sam Houston State University, Huntsville, TX 77341, USA
| |
Collapse
|
2
|
Al-Asmari AI. Special issues in forensic toxicology in the Middle East and North Africa (MENA) region: The importance of toxicology amid MENA drug challenges. Saudi Pharm J 2024; 32:102071. [PMID: 38690208 PMCID: PMC11059284 DOI: 10.1016/j.jsps.2024.102071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Affiliation(s)
- Ahmed Ibrahim Al-Asmari
- Special Toxicological Analysis Section, Pathology and Laboratory Medicine Department, King Faisal Special Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Kotta-Loizou I, Pritsa A, Antasouras G, Vasilopoulos SN, Voulgaridou G, Papadopoulou SK, Coutts RHA, Lechouritis E, Giaginis C. Fetus Exposure to Drugs and Chemicals: A Holistic Overview on the Assessment of Their Transport and Metabolism across the Human Placental Barrier. Diseases 2024; 12:114. [PMID: 38920546 PMCID: PMC11202568 DOI: 10.3390/diseases12060114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND The placenta exerts a crucial role in fetus growth and development during gestation, protecting the fetus from maternal drugs and chemical exposure. However, diverse drugs and chemicals (xenobiotics) can penetrate the maternal placental barrier, leading to deleterious, adverse effects concerning fetus health. Moreover, placental enzymes can metabolize drugs and chemicals into more toxic compounds for the fetus. Thus, evaluating the molecular mechanisms through which drugs and chemicals transfer and undergo metabolism across the placental barrier is of vital importance. In this aspect, this comprehensive literature review aims to provide a holistic approach by critically summarizing and scrutinizing the potential molecular processes and mechanisms governing drugs and chemical transfer and metabolism across the placental barrier, which may lead to fetotoxicity effects, as well as analyzing the currently available experimental methodologies used to assess xenobiotics placental transfer and metabolism. METHODS A comprehensive and in-depth literature review was conducted in the most accurate scientific databases such as PubMed, Scopus, and Web of Science by using relevant and effective keywords related to xenobiotic placental transfer and metabolism, retrieving 8830 published articles until 5 February 2024. After applying several strict exclusion and inclusion criteria, a final number of 148 relevant published articles were included. RESULTS During pregnancy, several drugs and chemicals can be transferred from the mother to the fetus across the placental barrier by either passive diffusion or through placental transporters, resulting in fetus exposure and potential fetotoxicity effects. Some drugs and chemicals also appear to be metabolized across the placental barrier, leading to more toxic products for both the mother and the fetus. At present, there is increasing research development of diverse experimental methodologies to determine the potential molecular processes and mechanisms of drug and chemical placental transfer and metabolism. All the currently available methodologies have specific strengths and limitations, highlighting the strong demand to utilize an efficient combination of them to obtain reliable evidence concerning drug and chemical transfer and metabolism across the placental barrier. To derive the most consistent and safe evidence, in vitro studies, ex vivo perfusion methods, and in vivo animal and human studies can be applied together with the final aim to minimize potential fetotoxicity effects. CONCLUSIONS Research is being increasingly carried out to obtain an accurate and safe evaluation of drug and chemical transport and metabolism across the placental barrier, applying a combination of advanced techniques to avoid potential fetotoxic effects. The improvement of the currently available techniques and the development of novel experimental protocols and methodologies are of major importance to protect both the mother and the fetus from xenobiotic exposure, as well as to minimize potential fetotoxicity effects.
Collapse
Affiliation(s)
- Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK;
| | - Agathi Pritsa
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (G.V.); (S.K.P.)
| | - Georgios Antasouras
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Lemnos, Greece; (G.A.); (E.L.); (C.G.)
| | - Spyridon N. Vasilopoulos
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece;
| | - Gavriela Voulgaridou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (G.V.); (S.K.P.)
| | - Sousana K. Papadopoulou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (G.V.); (S.K.P.)
| | - Robert H. A. Coutts
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK;
| | - Eleftherios Lechouritis
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Lemnos, Greece; (G.A.); (E.L.); (C.G.)
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Lemnos, Greece; (G.A.); (E.L.); (C.G.)
| |
Collapse
|
4
|
Kleinnijenhuis AJ, van Holthoon FL. Convergent analysis of food products using molecular barcodes, based on LC-HRMS data. Food Chem 2024; 442:138466. [PMID: 38245987 DOI: 10.1016/j.foodchem.2024.138466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
There are various analytical techniques available to address the growing interest in the composition of food products. LC-HRMS(/MS) is the most comprehensive technique, providing detailed information at the molecular level. However, given the vast number of different molecules encountered in food products, it is important to obtain a global overview of the dataset before focusing on similarities and differences. Therefore, a convergent strategy was employed, going from non-targeted to targeted analysis, with insightful data representations, most notably Molecular Barcode. Additionally an intermediate, semi-targeted analysis was defined, aimed at the specific detection of animal tissue in food products, using pG+ and related fragments after all ion fragmentation. The use of Molecular Barcode as a starting point to obtain relevant molecular data was also demonstrated. In conclusion, the convergent approach facilitates the design of suitable targeted methods, either to discriminate between samples or to find a generic target.
Collapse
|
5
|
Casals G, Ballesteros MA, Zamora A, Martínez I, Fernández-Varo G, Mora M, Hanzu FA, Morales-Ruiz M. LC-HRMS and GC-MS Profiling of Urine Free Cortisol, Cortisone, 6Β-, and 18-Hydroxycortisol for the Evaluation of Glucocorticoid and Mineralocorticoid Disorders. Biomolecules 2024; 14:558. [PMID: 38785966 PMCID: PMC11117527 DOI: 10.3390/biom14050558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
INTRODUCTION Urine free cortisol measurements are routinely performed to evaluate hypercortisolism. Despite their analytical inaccuracy, immunoassay-based methods are frequently used. Advances in liquid chromatography-high-resolution mass spectrometry (LC-HRMS) facilitate the incorporation of powerful diagnostic tools into clinical laboratories. In addition to its high analytical specificity and simultaneous analysis of different metabolites, accurate mass measurement allows for untargeted compound identification, which may help to identify clinically relevant metabolites or drugs. METHODS The present study aimed to validate a simple routine LC-HRMS method to quantify cortisol, cortisone, 6β-hydroxycortisol, and 18-hydroxycortisol simultaneously in human urine. Additionally, the study also validated a GC-MS method for the same steroids, evaluated their cross-reactivity with commercial cortisol immunoassays, and quantified the 24 h urine excretion in patients under clinical suspicion or follow-up for hypercortisolism. RESULTS The LC-HRMS method involved liquid-liquid extraction using dichloromethane, micro-LC for chromatographic separation and detection using the accurate masses of the steroids, and simultaneous high-resolution full scan acquisition. The method presented acceptable linearity, precision, and accuracy. Significant interference from 6β-hydroxycortisol and cortisone was demonstrated in the cortisol immunoassays, which impacted their reliability in the follow-up of patients with hypercortisolism and significant changes in these cortisol metabolites (i.e., due to drug-induced changes in CYP3A4 activity). CONCLUSION A rapid and accurate routine LC-HRMS method was validated, which is useful for the evaluation of hypercortisolism and other disorders of glucocorticoid and mineralocorticoid metabolism.
Collapse
Affiliation(s)
- Gregori Casals
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain; (I.M.); (G.F.-V.); (M.M.-R.)
- Department of Fundamental and Clinical Nursing, Faculty of Nursing, University of Barcelona, 08036 Barcelona, Spain
| | | | - Angielys Zamora
- Department of Clinical Biochemistry, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain;
| | - Irene Martínez
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain; (I.M.); (G.F.-V.); (M.M.-R.)
| | - Guillermo Fernández-Varo
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain; (I.M.); (G.F.-V.); (M.M.-R.)
| | - Mireia Mora
- Department of Endocrinology and Nutrition, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- Department of Medicine, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
| | - Felicia A. Hanzu
- Department of Endocrinology and Nutrition, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- Department of Medicine, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
| | - Manuel Morales-Ruiz
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain; (I.M.); (G.F.-V.); (M.M.-R.)
- Department of Biomedicine, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
6
|
Al-Asmari AI. A critical review of workplace drug testing methods for old and new psychoactive substances: Gaps, advances, and perspectives. Saudi Pharm J 2024; 32:102065. [PMID: 38645754 PMCID: PMC11031841 DOI: 10.1016/j.jsps.2024.102065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024] Open
Abstract
Workplace drug testing (WDT) is essential to prevent drug abuse disorders among the workforce because it can impair work performance and safety. However, WDT is limited by many challenges, such as urine adulteration, specimen selection, and new psychoactive substances (NPS). This review examined the issues related to WDT. Various scientific databases were searched for articles on WDT for drug detection published between 1986 (when WDT started) and January 2024. The review discussed the history, importance, and challenges of WDT, such as time of specimen collection/testing, specimen adulteration, interference in drug testing, and detection of NPS. It evaluated the best methods to detect NPS in forensic laboratories. Moreover, it compared different techniques that can enhance WDT, such as immunoassays, targeted mass spectrometry, and nontargeted mass spectrometry. These techniques can be used to screen for known and unknown drugs and metabolites in biological samples. This review assessed the strengths and weaknesses of such techniques, such as their validation, identification, library search, and reference standards. Furthermore, this review contrasted the benefits and drawbacks of different specimens for WDT and discussed studies that have applied these techniques for WDT. WDT remains the best approach for preventing drug abuse in the workplace, despite the challenges posed by NPS and limitations of the screening methods. Nontargeted techniques using high-resolution liquid chromatography-mass spectrometry (MS)/gas chromatography-tandem MS can improve the detection and identification of drugs during WDT and provide useful information regarding the prevalence, trends, and toxicity of both traditional and NPS drugs. Finally, this review suggested that WDT can be improved by using a combination of techniques, multiple specimens, and online library searches in case of new NPS as well as by updating the methods and databases to include new NPS and metabolites as they emerge. To the best of the author's knowledge, this is the first review to address NPS as an issue in WDT and its application and propose the best methods to detect these substances in the workplace environment.
Collapse
Affiliation(s)
- Ahmed Ibrahim Al-Asmari
- Special Toxicological Analysis Section, Pathology and Laboratory Medicine Department, King Faisal Special Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
7
|
Jacobs CM, Wagmann L, Meyer MR. Sample Matrices for Mass Spectrometry-Based Adherence Monitoring: A Systematic Critical Review. Ther Drug Monit 2024; 46:6-15. [PMID: 37798828 DOI: 10.1097/ftd.0000000000001145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/12/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Analytical monitoring of adherence using mass spectrometry (MS) plays an important role in clinical toxicology. Unambiguous detection of drugs (of abuse) and/or their metabolites in body fluids is needed to monitor intake of medication as prescribed or to monitor abstinence as a follow-up to detoxification procedures. This study focused on the advantages and disadvantages of different sample matrices used for MS-based adherence monitoring. METHODS Relevant articles were identified through a literature search in the PubMed database. English articles published between January 01, 2017, and December 31, 2022, were selected using the keywords "adherence assess*" or "adherence monit*" or "compliance assess*" or "compliance monit*" in combination with "mass spectrom*" in the title or abstract. RESULTS A total of 51 articles were identified, 37 of which were within the scope of this study. MS-based monitoring was shown to improve patient adherence to prescribed drugs. However, MS analysis may not be able to assess whether treatment was rigorously followed beyond the last few days before the sampling event, except when hair is the sample matrix. For medication adherence monitoring, blood-based analyses may be preferred because reference plasma concentrations are usually available, whereas for abstinence control, urine and hair samples have the advantage of extended detection windows compared with blood. Alternative sample matrices, such as dried blood samples, oral fluid, and exhaled breath, are suitable for at-home sampling; however, little information is available regarding the pharmacokinetics and reference ranges of drug (of abuse) concentrations. CONCLUSIONS Each sample matrix has strengths and weaknesses, and no single sample matrix can be considered the gold standard for monitoring adherence. It is important to have sufficient information regarding the pharmacokinetics of target substances to select a sample matrix in accordance with the desired purpose.
Collapse
Affiliation(s)
- Cathy M Jacobs
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | | | | |
Collapse
|
8
|
Tamama K. Dilute and shoot approach for toxicology testing. Front Chem 2023; 11:1278313. [PMID: 38146427 PMCID: PMC10749341 DOI: 10.3389/fchem.2023.1278313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023] Open
Abstract
Toxicology testing is performed in clinical settings, forensic settings, and for controlling doping. Drug screening is a toxicology test to determine if drugs are present in biological samples. The most common specimen type for drug testing is urine, as drugs and/or their metabolites are often more concentrated in the urine, extending the detection window of drugs. The dilute-and-shoot method is a simple procedure used in toxicology testing, where a sample is diluted before being directly injected into the liquid chromatography-mass spectrometry (LC-MS) system. This method is easy, quick, and cost-saving, and can be used for protein-poor liquid specimens such as urine. Thus, it is reasonable and attractive for busy toxicology laboratories to combine the dilute-and-shoot method with high-resolution hyphenated-MS for urine drug screening. This method has several disadvantages, including a suboptimal detection capability for certain analytes, as well as interference from co-eluting matrix components called matrix effects, in which co-eluting matrix molecules alter the ionization efficiency of the analyte molecules at the ionization source in LC-MS, altering (mostly reducing) the analyte detection capability. The matrix effect testing is essential for the validation of LC-MS-based assays. A reasonable approach to addressing these undesirable effects would be to minimize these components. The most straightforward approach is to reduce the amounts of matrix components by using a higher dilution of the specimen and a lower volume for specimen injection. Optimization of the chromatographic separation is another reasonable approach for reducing co-eluting matrix components with the analyte.
Collapse
Affiliation(s)
- Kenichi Tamama
- Clinical Laboratories, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Matey JM, Zapata F, Menéndez-Quintanal LM, Montalvo G, García-Ruiz C. Identification of new psychoactive substances and their metabolites using non-targeted detection with high-resolution mass spectrometry through diagnosing fragment ions/neutral loss analysis. Talanta 2023; 265:124816. [PMID: 37423179 DOI: 10.1016/j.talanta.2023.124816] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/24/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Affiliation(s)
- José Manuel Matey
- Department of Chemistry and Drugs, National Institute of Toxicology and Forensic Sciences, C/ José Echegaray Nº4, 28232, Las Rozas de Madrid, Madrid, Spain; Universidad de Alcalá, Instituto Universitario de Investigación en Ciencias Policiales (IUICP), calle Libreros 27, 28801, Alcalá de Henares, Madrid, España(1); Chemical and Forensic Sciences (CINQUIFOR) Research Group, University of Alcalá, Ctra. Madrid-Barcelona km 33.600, 28871, Alcalá de Henares, Madrid, Spain(2).
| | - Félix Zapata
- Department of Analytical Chemistry, University of Murcia, Campus Espinardo, 30100, Murcia, Spain.
| | - Luis Manuel Menéndez-Quintanal
- Department of Chemistry and Drugs, National Institute of Toxicology and Forensic Sciences, Campus de Ciencias de la Salud, La Cuesta, 38320, La Laguna (Sta. Cruz de Tenerife), Spain.
| | - Gemma Montalvo
- Universidad de Alcalá, Instituto Universitario de Investigación en Ciencias Policiales (IUICP), calle Libreros 27, 28801, Alcalá de Henares, Madrid, España(1); Chemical and Forensic Sciences (CINQUIFOR) Research Group, University of Alcalá, Ctra. Madrid-Barcelona km 33.600, 28871, Alcalá de Henares, Madrid, Spain(2); Universidad de Alcalá, Departamento de Química Analítica, Quimica Física e Ingeniería Química, Ctra. Madrid-Barcelona km 33,6, 28871 Alcalá de Henares, Madrid, España.
| | - Carmen García-Ruiz
- Universidad de Alcalá, Instituto Universitario de Investigación en Ciencias Policiales (IUICP), calle Libreros 27, 28801, Alcalá de Henares, Madrid, España(1); Chemical and Forensic Sciences (CINQUIFOR) Research Group, University of Alcalá, Ctra. Madrid-Barcelona km 33.600, 28871, Alcalá de Henares, Madrid, Spain(2); Universidad de Alcalá, Departamento de Química Analítica, Quimica Física e Ingeniería Química, Ctra. Madrid-Barcelona km 33,6, 28871 Alcalá de Henares, Madrid, España.
| |
Collapse
|
10
|
Peters FT, Wissenbach D. Current state-of-the-art approaches for mass spectrometry in clinical toxicology: an overview. Expert Opin Drug Metab Toxicol 2023; 19:487-500. [PMID: 37615282 DOI: 10.1080/17425255.2023.2252324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 08/25/2023]
Abstract
INTRODUCTION Hyphenated mass spectrometry (MS) has evolved into a very powerful analytical technique of high sensitivity and specificity. It is used to analyze a very wide spectrum of analytes in classical and alternative matrices. The presented paper will provide an overview of the current state-of-the-art of hyphenated MS applications in clinical toxicology primarily based on review articles indexed in PubMed (1990 to April 2023). AREAS COVERED A general overview of matrices, sample preparation, analytical systems, detection modes, and validation and quality control is given. Moreover, selected applications are discussed. EXPERT OPINION A more widespread use of hyphenated MS techniques, especially in systematic toxicological analysis and drugs of abuse testing, would help overcome limitations of immunoassay-based screening strategies. This is currently hampered by high instrument cost, qualification requirements for personnel, and less favorable turnaround times, which could be overcome by more user-friendly, ideally fully automated MS instruments. This would help making hyphenated MS-based analysis available in more laboratories and expanding analysis to a large number of organic drugs, poisons, and/or metabolites. Even the most recent novel psychoactive substances (NPS) could be presumptively identified by high-resolution MS methods, their likely presence be communicated to treating physicians, and be confirmed later on.
Collapse
Affiliation(s)
- Frank T Peters
- Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Daniela Wissenbach
- Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
11
|
Wissenbach DK, Steuer AE. Advances in testing for sample manipulation in clinical and forensic toxicology - Part A: urine samples. Anal Bioanal Chem 2023:10.1007/s00216-023-04711-w. [PMID: 37145190 PMCID: PMC10404192 DOI: 10.1007/s00216-023-04711-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023]
Abstract
In many countries, adherence testing is used to monitor consumption behavior or to prove abstinence. Urine and hair are most commonly used, although other biological fluids are available. Positive test results are usually associated with serious legal or economic consequences. Therefore, various sample manipulation and adulteration strategies are used to circumvent such a positive result. In these critical review articles on sample adulteration of urine (part A) and hair samples (part B) in the context of clinical and forensic toxicology, recent trends and strategies to improve sample adulteration and manipulation testing published in the past 10 years are described and discussed. Typical manipulation and adulteration strategies include undercutting the limits of detection/cut-off by dilution, substitution, and adulteration. New or alternative strategies for detecting sample manipulation attempts can be generally divided into improved detection of established urine validity markers and direct and indirect techniques or approaches to screening for new adulteration markers. In this part A of the review article, we focused on urine samples, where the focus in recent years has been on new (in)direct substitution markers, particularly for synthetic (fake) urine. Despite various and promising advances in detecting manipulation, it remains a challenge in clinical and forensic toxicology, and simple, reliable, specific, and objective markers/techniques are still lacking, for example, for synthetic urine.
Collapse
Affiliation(s)
- Dirk K Wissenbach
- Institute of Forensic Medicine, Jena University Hospital, Jena, Germany
| | - Andrea E Steuer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, CH-8057, Zurich, Switzerland.
| |
Collapse
|
12
|
Becam J, Pelissier-Alicot AL, Doudka N, Richez M, Solas C, Fabresse N. Validation of a non-targeted method devoted to identification and quantitation of toxicologically relevant compounds in plasma with HRMS. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1224:123739. [PMID: 37172558 DOI: 10.1016/j.jchromb.2023.123739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
The objective of this study was to develop and validate a simple method using liquid chromatography hyphenated to high resolution mass spectrometry (HRMS) allowing both the performance of a non-targeted screening and the simultaneous quantification of 29 compounds of interest in clinical and forensic toxicology. Extraction was done with QuEChERS salts and acetonitrile, after addition of internal standard to 200 μL of human plasma samples. The mass spectrometer was an Orbitrap, with a heated electrospray ionization (HESI) probe. The analyses were carried out in full scan experiment with a nominal resolving power of 60,000 FWHM within the 125-650 m/z mass range, followed by four cycles of data dependent analysis (DDA) with a mass resolution of 16,000 FWHM. The untargeted screening was evaluated using 132 compounds, mean limit of identification (LOI) was 8.8 ng/mL (min = 0.05 ng/mL, max = 500 ng/mL) and mean limit of detection (LOD) was 0.25 ng/mL (min = 0.05 ng/mL, max = 5 ng/mL). The method was linear in the 5 to 500 ng/mL range (0.5 to 50 ng/mL for cannabinoids, 6-acetylmorphine and buprenorphine) with correlation coefficients > 0.99, intra- and inter-day accuracy and precision were < 15% for all compounds. The method was successfully applied to 31 routine samples.
Collapse
Affiliation(s)
- Jenny Becam
- Laboratory of Pharmacokinetics and Toxicology, La Timone University Hospital, 264, rue Saint Pierre, 13385 Marseille Cedex 5, France
| | | | - Natalia Doudka
- Laboratory of Pharmacokinetics and Toxicology, La Timone University Hospital, 264, rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Magali Richez
- Laboratory of Pharmacokinetics and Toxicology, La Timone University Hospital, 264, rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Caroline Solas
- Laboratory of Pharmacokinetics and Toxicology, La Timone University Hospital, 264, rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Nicolas Fabresse
- Laboratory of Pharmacokinetics and Toxicology, La Timone University Hospital, 264, rue Saint Pierre, 13385 Marseille Cedex 5, France; Aix Marseille University, INSERM, IRD, SESSTIM, Economic and Social Sciences of Health and Medical Information Processing, 27 Bd Jean Moulin, 13385 Marseille, France.
| |
Collapse
|
13
|
Yanto DHY, Anita SH, Solihat NN. Enzymatic degradation and metabolic pathway of acid blue 129 dye by crude laccase from newly isolated Trametes hirsuta EDN 082. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2138360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dede Heri Yuli Yanto
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Research Collaboration Center for Marine Biomaterials, Jatinangor, Indonesia
| | - Sita Heris Anita
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Nissa Nurfajrin Solihat
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| |
Collapse
|
14
|
Long time stability of 35 small endogenous biomolecules in dried urine spotted on various surfaces and environmental conditions. Forensic Sci Int 2022; 339:111420. [PMID: 35985138 DOI: 10.1016/j.forsciint.2022.111420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022]
Abstract
Analysis of endogenous biomolecules is an important aspect of many forensic investigations especially with focus on DNA analysis for perpetrator/victim identification and protein analysis for body fluid identification. Recently, small endogenous biomolecules have been used for differentiation of synthetic "fake" urine from authentic urine and might be also useful for biofluid identification. Therefore, the aim of this study was to adapt and optimize a method for analysis of small EBs and to investigate long time stability of 35 small endogenous biomolecules (including acylcarnitines with their isomers and metabolites as well as amino acids with their metabolites) in spotted urine samples. Urine samples were spotted on seven different surfaces (Whatman 903 Protein Saver Cards, cotton swabs, cotton glove, denim, underwear, and smooth and rough flagstone) and stored under six environmental conditions (reference condition, sunlight, LED light, 4 °C, 37 °C, humidity of 95%). At certain time points (d0, d7, d28 and d56) samples were analyzed in triplicates by an optimized extraction and LC-HRMS approach. In addition, the urine marker Tamm-Horsfall-Protein was determined on cotton swabs at the same time points using a commercial lateral flow test. Twenty-one of 35 small endogenous biomolecules were stable on most materials/surfaces and under most storage conditions. Significant lower endogenous biomolecule peak areas were found for rough flagstone and underwear as well as for high humidity storage. Kynurenic acid proved to be photo labile. While high long time stabilities were found for 19 of 28 acylcarnitines, nine acylcarnitines showed aberrant stability patterns without evident structural reason. For Tamm-Horsfall-Protein degradation within 28 days was observed even under reference conditions. The presented study demonstrated the value of sensitive LC-HRMS analysis for small endogenous biomolecules / pattern. However, further studies will be indispensable for unambiguous body fluid identification by small endogenous biomolecules.
Collapse
|
15
|
Wille SMR, Desharnais B, Pichini S, Trana AD, Busardò FP, Wissenbach DK, Peters FT. Liquid Chromatography High Resolution Mass Spectrometry in Forensic Toxicology: What Are the Specifics of Method Development, Validation and Quality Assurance for Comprehensive Screening Approaches? Curr Pharm Des 2022; 28:1230-1244. [PMID: 35619258 DOI: 10.2174/1381612828666220526152259] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
The use of High Resolution Mass Spectrometry (HRMS) has increased over the past decade in clinical and forensic toxicology, especially for comprehensive screening approaches. Despite this, few guidelines of this field have specifically addressed HRMS issues concerning compound identification, validation, measurement uncertainty and quality assurance. To fully implement this technique, certainly in an era in which the quality demands for laboratories are ever increasing due to various norms (e.g. the International Organization for Standardization's ISO 17025), these specific issues need to be addressed. This manuscript reviews 26 HRMS-based methods for qualitative systematic toxicological analysis (STA) published between 2011 and 2021. Key analytical data such as samples matrices, analytical platforms, numbers of analytes and employed mass spectral reference databases/libraries as well as the studied validation parameters are summarized and discussed. The article further includes a critical review of targeted and untargeted data acquisition approaches, available HRMS reference databases and libraries as well as current guidelines for HRMS data interpretation with a particular focus on identification criteria. Moreover, it provides an overview on current recommendations for the validation and determination measurement uncertainty of qualitative methods. Finally, the article aims to put forward suggestions for method development, compound identification, validation experiments to be performed, and adequate determination of measurement uncertainty for this type of wide-range qualitative HRMS-based methods.
Collapse
Affiliation(s)
- Sarah M R Wille
- Unit Toxicology, National Institute of Criminalistics and Criminology (NICC), Brussels, Belgium
| | - Brigitte Desharnais
- Laboratoire de sciences judiciaires et de médecine légale, Department of Toxicology, 1701 Parthenais St., Montréal, Québec, H2K 3S7, Canada
| | - Simona Pichini
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, Rome, Italy
| | - Annagiulia Di Trana
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche", Ancona, Italy
| | - Francesco Paolo Busardò
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche", Ancona, Italy
| | - Dirk K Wissenbach
- Institute of Forensic Medicine, Jena University Hospital, Jena, Germany
| | | |
Collapse
|
16
|
Methods of Detection, Identification, and Quantitation. Forensic Toxicol 2022. [DOI: 10.1016/b978-0-12-819286-3.00014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Gerona RR, French D. Drug testing in the era of new psychoactive substances. Adv Clin Chem 2022; 111:217-263. [DOI: 10.1016/bs.acc.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
OUP accepted manuscript. Clin Chem 2022; 68:848-855. [DOI: 10.1093/clinchem/hvac045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/22/2022] [Indexed: 11/12/2022]
|
19
|
Interest of high-resolution mass spectrometry in analytical toxicology: Focus on pharmaceuticals. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2022. [DOI: 10.1016/j.toxac.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Kumar P, Sharma A, Kumar D, Sharma L. Use of Spectroscopic Methods and Their Clinical Applications in Drug Abuse: A Review. Crit Rev Anal Chem 2021; 53:360-373. [PMID: 34376090 DOI: 10.1080/10408347.2021.1958196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Assurance of substance abuse in plasma and different parts of the body is vital in clinical and legal toxicology. Detection techniques are evaluated for their appropriateness in scientific and clinical sciences, where extraordinary prerequisites must be met. Recognition and affirmation are for the most part done by gas chromatography-Mass spectrometry (GC-MS) or liquid chromatography (LC-MS), Surface-enhanced Raman spectroscopy (SERS), Magnetic resonance imaging, Positron Emission Tomography, Infrared Spectroscopy, and UV Spectroscopy. Progressed spectroscopic techniques provided helpful quantitative or qualitative data about the natural chemistry and science of exploited substances. These spectroscopic techniques are assumed as quick, precise, and some of them are non-damaging investigation apparatus that may be assumed as a substitution for previously used compound investigation. Spectroscopy with its advances in technology is centralized to novel applications in the detection of abused drug substances and clinical toxicology. These techniques have attracted growing interest as forensic tools for the early detection and monitoring of exploited drugs. This review describes the principle, role, and clinical application of various spectroscopic techniques which are utilized for the identification of drug abuse like morphine, cocaine, codeine, alcohol, amphetamines, and their metabolites in whole blood, plasma, hair, and nails.
Collapse
Affiliation(s)
- Pardeep Kumar
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| |
Collapse
|