1
|
Tay M, Lee B, Ismail MH, Yam J, Maliki D, Gin KYH, Chae SR, Ho ZJM, Teoh YL, Ng LC, Wong JCC. Usefulness of aircraft and airport wastewater for monitoring multiple pathogens including SARS-CoV-2 variants. J Travel Med 2024; 31:taae074. [PMID: 38813965 DOI: 10.1093/jtm/taae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND As global travel resumed in coronavirus disease 2019 (COVID-19) endemicity, the potential of aircraft wastewater monitoring to provide early warning of disease trends for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and other infectious diseases, particularly at international air travel hubs, was recognized. We therefore assessed and compared the feasibility of testing wastewater from inbound aircraft and airport terminals for 18 pathogens including SARS-CoV-2 in Singapore, a popular travel hub in Asia. METHODS Wastewater samples collected from inbound medium- and long-haul flights and airport terminals were tested for SARS-CoV-2. Next Generation Sequencing was carried out on positive samples to identify SARS-CoV-2 variants. Airport and aircraft samples were further tested for 17 other pathogens through quantitative reverse transcription polymerase chain reaction. RESULTS The proportion of SARS-CoV-2-positive samples and the average virus load was higher for wastewater samples from aircraft as compared with airport terminals. Cross-correlation analyses indicated that viral load trends from airport wastewater led local COVID-19 case trends by 2-5 days. A total of 10 variants (44 sub-lineages) were successfully identified from aircraft wastewater and airport terminals, and four variants of interest and one variant under monitoring were detected in aircraft and airport wastewater 18-31 days prior to detection in local clinical cases. The detection of five respiratory and four enteric viruses in aircraft wastewater samples further underscores the potential to expand aircraft wastewater to monitoring pathogens beyond SARS-CoV-2. CONCLUSION Our findings demonstrate the feasibility of aircraft wastewater testing for monitoring infectious diseases threats, potentially detecting signals before clinical cases are reported. The triangulation of similar datapoints from aircraft wastewater of international travel nodes could therefore serve as a useful early warning system for global health threats.
Collapse
Affiliation(s)
- Martin Tay
- Environmental Health Institute, National Environment Agency, Singapore
| | - Benjamin Lee
- Environmental Health Institute, National Environment Agency, Singapore
| | | | - Jerald Yam
- Environmental Health Institute, National Environment Agency, Singapore
| | | | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
- Department of Civil & Environmental Engineering, National University of Singapore, Singapore
| | - Sae-Rom Chae
- Communicable Diseases Group, Ministry of Health, Singapore
- National Centre for Infectious Diseases, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | | | - Yee Leong Teoh
- Communicable Diseases Group, Ministry of Health, Singapore
- National Centre for Infectious Diseases, Singapore
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | |
Collapse
|
2
|
Boxman ILA, Molin R, Persson S, Juréus A, Jansen CCC, Sosef NP, Le Guyader SF, Ollivier J, Summa M, Hautaniemi M, Suffredini E, Di Pasquale S, Myrmel M, Khatri M, Jamnikar-Ciglenecki U, Kusar D, Moor D, Butticaz L, Lowther JA, Walker DI, Stapleton T, Simonsson M, Dirks RAM. An international inter-laboratory study to compare digital PCR with ISO standardized qPCR assays for the detection of norovirus GI and GII in oyster tissue. Food Microbiol 2024; 120:104478. [PMID: 38431324 DOI: 10.1016/j.fm.2024.104478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 03/05/2024]
Abstract
An optimized digital RT-PCR (RT-dPCR) assay for the detection of human norovirus GI and GII RNA was compared with ISO 15216-conform quantitative real-time RT-PCR (RT-qPCR) assays in an interlaboratory study (ILS) among eight laboratories. A duplex GI/GII RT-dPCR assay, based on the ISO 15216-oligonucleotides, was used on a Bio-Rad QX200 platform by six laboratories. Adapted assays for Qiagen Qiacuity or ThermoFisher QuantStudio 3D were used by one laboratory each. The ILS comprised quantification of norovirus RNA in the absence of matrix and in oyster tissue samples. On average, results of the RT-dPCR assays were very similar to those obtained by RT-qPCR assays. The coefficient of variation (CV%) of norovirus GI results was, however, much lower for RT-dPCR than for RT-qPCR in intra-laboratory replicates (eight runs) and between the eight laboratories. The CV% of norovirus GII results was in the same range for both detection formats. Had in-house prepared dsDNA standards been used, the CV% of norovirus GII could have been in favor of the RT-dPCR assay. The ratio between RT-dPCR and RT-qPCR results varied per laboratory, despite using the distributed RT-qPCR dsDNA standards. The study indicates that the RT-dPCR assay is likely to increase uniformity of quantitative results between laboratories.
Collapse
Affiliation(s)
- Ingeborg L A Boxman
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, the Netherlands.
| | - Ramia Molin
- European Union Reference Laboratory for Foodborne Viruses, Swedish Food Agency, Uppsala, Sweden.
| | - Sofia Persson
- European Union Reference Laboratory for Foodborne Viruses, Swedish Food Agency, Uppsala, Sweden.
| | - Anna Juréus
- European Union Reference Laboratory for Foodborne Viruses, Swedish Food Agency, Uppsala, Sweden.
| | - Claudia C C Jansen
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, the Netherlands.
| | - Nils P Sosef
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, the Netherlands.
| | - Soizick F Le Guyader
- French Research Institute for Exploitation of the Sea (Ifremer) - Laboratoire de Santé, Environnement et Microbiologie, Nantes, France.
| | - Joanna Ollivier
- French Research Institute for Exploitation of the Sea (Ifremer) - Laboratoire de Santé, Environnement et Microbiologie, Nantes, France.
| | | | | | - Elisabetta Suffredini
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy.
| | - Simona Di Pasquale
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy.
| | - Mette Myrmel
- Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine, Virology Unit, Ås, Norway.
| | - Mamata Khatri
- Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine, Virology Unit, Ås, Norway.
| | - Urska Jamnikar-Ciglenecki
- University of Ljubljana Veterinary Faculty, Institute of Food Safety, Feed and Environment, Ljubljana, Slovenia.
| | - Darja Kusar
- University of Ljubljana Veterinary Faculty, Institute of Microbiology and Parasitology, Ljubljana, Slovenia.
| | - Dominik Moor
- Federal Institute of Metrology METAS, Biological Analysis and References Laboratory, Bern, Switzerland.
| | - Lisa Butticaz
- Federal Institute of Metrology METAS, Biological Analysis and References Laboratory, Bern, Switzerland.
| | - James A Lowther
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, United Kingdom.
| | - David I Walker
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, United Kingdom.
| | - Tina Stapleton
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, United Kingdom.
| | - Magnus Simonsson
- European Union Reference Laboratory for Foodborne Viruses, Swedish Food Agency, Uppsala, Sweden.
| | - René A M Dirks
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
3
|
Yang Y, Feng X, Pan Y, Wang X, Peng T, Niu C, Qu W, Zou Q, Dong L, Dai X, Li M, Fang X. A culture-free method for rapidly and accurately quantifying active SARS-CoV-2. Anal Bioanal Chem 2023; 415:5745-5753. [PMID: 37486370 DOI: 10.1007/s00216-023-04855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
Determining the quantity of active virus is the most important basis to judge the risk of virus infection, which usually relies on the virus median tissue culture infectious dose (TCID50) assay performed in a biosafety level 3 laboratory within 5-7 days. We have developed a culture-free method for rapid and accurate quantification of active severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by targeting subgenomic RNA (sgRNA) based on reverse transcription digital PCR (RT-dPCR). The dynamic range of quantitative assays for sgRNA-N and sgRNA-E by RT-dPCR was investigated, and the result showed that the limits of detection (LoD) and quantification (LoQ) were 2 copies/reaction and 10 copies/reaction, respectively. The delta strain (NMDC60042793) of SARS-CoV-2 was cultured at an average titer of 106.13 TCID50/mL and used to evaluate the developed quantification method. Copy number concentrations of the cultured SARS-CoV-2 sgRNA and genomic RNA (gRNA) gave excellent linearity (R2 = 0.9999) with SARS-CoV-2 titers in the range from 500 to 105 TCID50/mL. Validation of 63 positive clinical samples further proves that the quantification of sgRNA-N by RT-dPCR is more sensitive for active virus quantitative detection. It is notable that we can infer the active virus titer through quantification of SARS-CoV-2 sgRNA based on the linear relationship in a biosafety level 2 laboratory within 3 h. It can be used to timely and effectively identify infectious patients and reduce unnecessary isolation especially when a large number of COVID-19 infected people impose a burden on medical resources.
Collapse
Affiliation(s)
- Yi Yang
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, 518107, China
| | - Xiaoli Feng
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
| | - Yang Pan
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Control and Prevention, Beijing, 100029, China
| | - Xia Wang
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
| | - Tao Peng
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
| | - Chunyan Niu
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
| | - Wang Qu
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, 518107, China
| | - Qingcui Zou
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, 518107, China
| | - Lianhua Dong
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China.
| | - Xinhua Dai
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China.
| | - Minghua Li
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, 518107, China.
| | - Xiang Fang
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China.
| |
Collapse
|
4
|
Development of highly accurate digital PCR method and reference material for monkeypox virus detection. Anal Bioanal Chem 2023; 415:1333-1337. [PMID: 36680591 PMCID: PMC9862235 DOI: 10.1007/s00216-023-04518-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023]
Abstract
Human monkeypox has attracted attention recently. Monkeypox virus (MPXV) keeps evolving as it spreading around the world rapidly, which may threaten the health of more and more people. Here, we have developed a high order reference method based on digital PCR (dPCR) for MPXV detection, of which the limits of quantification (LoQ) and detection (LoD) are 38 and 6 copies/reaction, respectively. Pseudovirus reference materials (RM) containing the conserved F3L gene has been developed, and the homogeneity assessment showed that the RM was homogeneous. The reference value with its expanded uncertainty determined by the established dPCR is (2.74 ± 0.46) × 103 copies/μL. Six different MPXV test kits were accessed by the RM. Four out of six test kits cannot reach their claimed LoDs. The poor analytical sensitivity might cause false-negative results, which lead to incorrect diagnosis and treatment. The establishment of a high order reference method of dPCR and pseudovirus RM is very useful for improving the accuracy and reliability of MPXV detection.
Collapse
|
5
|
Hou Y, Chen S, Zheng Y, Zheng X, Lin JM. Droplet-based digital PCR (ddPCR) and its applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Nyaruaba R, Mwaliko C, Dobnik D, Neužil P, Amoth P, Mwau M, Yu J, Yang H, Wei H. Digital PCR Applications in the SARS-CoV-2/COVID-19 Era: a Roadmap for Future Outbreaks. Clin Microbiol Rev 2022; 35:e0016821. [PMID: 35258315 PMCID: PMC9491181 DOI: 10.1128/cmr.00168-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global public health disaster. The current gold standard for the diagnosis of infected patients is real-time reverse transcription-quantitative PCR (RT-qPCR). As effective as this method may be, it is subject to false-negative and -positive results, affecting its precision, especially for the detection of low viral loads in samples. In contrast, digital PCR (dPCR), the third generation of PCR, has been shown to be more effective than the gold standard, RT-qPCR, in detecting low viral loads in samples. In this review article, we selected publications to show the broad-spectrum applications of dPCR, including the development of assays and reference standards, environmental monitoring, mutation detection, and clinical diagnosis of SARS-CoV-2, while comparing it analytically to the gold standard, RT-qPCR. In summary, it is evident that the specificity, sensitivity, reproducibility, and detection limits of RT-dPCR are generally unaffected by common factors that may affect RT-qPCR. As this is the first time that dPCR is being tested in an outbreak of such a magnitude, knowledge of its applications will help chart a course for future diagnosis and monitoring of infectious disease outbreaks.
Collapse
Affiliation(s)
- Raphael Nyaruaba
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- International College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Caroline Mwaliko
- International College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - David Dobnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Pavel Neužil
- Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Patrick Amoth
- Ministry of Health, Government of Kenya, Nairobi, Kenya
| | - Matilu Mwau
- Center for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Busia, Kenya
| | - Junping Yu
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hang Yang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hongping Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
7
|
Accurate quantification of SARS-CoV-2 RNA by isotope dilution mass spectrometry and providing a correction of reverse transcription efficiency in droplet digital PCR. Anal Bioanal Chem 2022; 414:6771-6777. [PMID: 35941317 PMCID: PMC9360635 DOI: 10.1007/s00216-022-04238-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/01/2022]
Abstract
The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 505 million confirmed cases, including over 6 million deaths. Reference materials (RMs) of SARS-CoV-2 RNA played a crucial role in performance evaluation and quality control of testing laboratories. As the potential primary characterization method of RMs, reverse transcription digital PCR (RT-dPCR) measures the copy number of RNA, but the accuracy of reverse transcription (RT) efficiency has yet to be confirmed. This study established a method of enzymatic digestion followed by isotope dilution mass spectrometry (IDMS), which does not require an RT reaction, to quantify in vitro-transcribed SARS-CoV-2 RNA. RNA was digested to nucleotide monophosphate (NMP) within 15 min and analyzed by IDMS within 5 min. The consistency among the results of four different NMPs demonstrated the reliability of the proposed method. Compared to IDMS, the quantitative result of RT-dPCR turned out to be about 10% lower, possibly attributed to the incompleteness of the reverse transcription process. Therefore, the proposed approach could be valuable and reliable for quantifying RNA molecules and evaluating the RT efficiency of RT-based methods.
Collapse
|
8
|
Ahmed MA, Quirino JP. Micelle to cyclodextrin stacking in open-tubular liquid chromatography using capillaries coated with surfactant admicelles. Anal Bioanal Chem 2021; 414:1415-1423. [PMID: 34773144 DOI: 10.1007/s00216-021-03773-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022]
Abstract
In-line sample concentration by micelle to cyclodextrin stacking (MCDS) in open-tubular liquid chromatography (OT-LC) with UV detection is described. OT-LC of two sets of analytes (small-molecule drugs and neutral alkenylbenzenes) was by the use of a fused-silica capillary that was coated with admicelles of didodecyldimethyl ammonium bromide (DDAB). These admicelles acted as a stationary chromatographic pseudophase. The mobile phase was 25 mM sodium tetraborate in 10% methanol, pH 9.2. MCDS was by long pressure injection of samples prepared in 10 mM hexadecyltrimethyl ammonium bromide (CTAB) in 25 mM sodium tetraborate, pH 9.2 (buffer), followed by injection of 50 mM α-CD in buffer (CD solution). Stacking was by application of voltage at -20 kV prior to pressure-driven OT-LC. The factors that influenced MCDS such as type and concentration of CD, concentration of CTAB in the sample, injection time ratio of the sample and the CD solution and stacking time were studied. Under optimised conditions, sensitivity enhancement factors (SEFs) were between 19 and 23, linear ranges were between 0.5 and 10 µg/mL with r2 > 0.99 and inter-day/intra-day repeatability in retention time and peak area were ≤5.6% for the model small-molecule drugs. Application to real samples was by the determination of potentially toxic alkenylbenzenes (SEFs = 10 to 12) in basil-leaf and whole-clove extracts. The assay results were comparable to those obtained from an in-house high-performance liquid chromatography-UV method.
Collapse
Affiliation(s)
- Mohamed Adel Ahmed
- Australian Centre for Research On Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Joselito P Quirino
- Australian Centre for Research On Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Hobart, TAS, 7001, Australia.
| |
Collapse
|