1
|
Melendreras C, Ortiz-Gómez I, Álvarez-García P, Lastra E, García Alonso FJ, Costa-Fernandez JM, Soldado A. Copper nano metal-organic framework paper-based sensor for dual optical detection of biogenic amines to evaluate the food freshness. Talanta 2025; 282:127026. [PMID: 39406099 DOI: 10.1016/j.talanta.2024.127026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/20/2024]
Abstract
The improvement of food safety and the reduction of food loss and waste require the development of new bioanalytical tools that provide chemical information about the composition of food that is of great value for improving traceability and extending the shelf life of food. Herein, a Cu-based metal-organic framework has been synthesized and immobilized onto cellulose paper disks for colorimetric and fluorescent detection and quantification of biogenic amines in food. The color of the nano metal-organic framework changes from green to brown in the presence of low amounts of biogenic amine vapors. Also, the fluorescence emission of the nano metal-organic framework greatly decreases after exposing the cellulose disks to amine vapors. The developed sensing paper disk exhibits a quick response to the presence of volatile biogenic amines, very low detection limits, and great selectivity. Also, the paper sensor was used for real-time monitoring of biogenic amines in bass samples at different temperature conditions, being a highly valuable method for evaluating food freshness and safeguarding food safety.
Collapse
Affiliation(s)
- Candela Melendreras
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006, Oviedo, Spain
| | - Inmaculada Ortiz-Gómez
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006, Oviedo, Spain.
| | - Pablo Álvarez-García
- Department of Organic and Inorganic Chemistry, University of Oviedo, 33006, Oviedo, Spain
| | - Elena Lastra
- Department of Organic and Inorganic Chemistry, University of Oviedo, 33006, Oviedo, Spain
| | | | - José M Costa-Fernandez
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006, Oviedo, Spain
| | - Ana Soldado
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006, Oviedo, Spain.
| |
Collapse
|
2
|
Kayani KF, Shatery OBA, Mohammed SJ, Ahmed HR, Hamarawf RF, Mustafa MS. Synthesis and applications of luminescent metal organic frameworks (MOFs) for sensing dipicolinic acid in biological and water samples: a review. NANOSCALE ADVANCES 2024; 7:13-41. [PMID: 39583129 PMCID: PMC11579904 DOI: 10.1039/d4na00652f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
The detection of trace quantities of 2,6-dipicolinic acid (DPA) in real-world samples is crucial for early disease diagnosis and routine health monitoring. Metal-organic frameworks (MOFs), recognized for their diverse structural architectures, have emerged as advanced multifunctional hybrid materials. One of the most notable properties of MOFs is their luminescence (L), which can arise from structural ligands, guest molecules, and emissive metal ions. Luminescent MOFs have shown significant promise as platforms for sensor design. This review highlights the application of luminescent MOFs in the detection of DPA in biological and aqueous environments. It provides a comprehensive discussion of the various detection strategies employed in luminescent MOF-based DPA sensors. Additionally, it explores the origins of L in MOFs, their synthesis, and the mechanisms underlying their sensing capabilities. The article also addresses key challenges and limitations in this field, offering practical insights for the development of efficient luminescent MOFs for DPA detection.
Collapse
Affiliation(s)
- Kawan F Kayani
- Department of Chemistry, College of Science, Charmo University Peshawa Street, Chamchamal Sulaimani City 46023 Iraq
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Omer B A Shatery
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Sewara J Mohammed
- Department of Anesthesia, College of Health Sciences, Cihan University Sulaimaniya Sulaymaniyah City Kurdistan Iraq
- Research and Development Center, University of Sulaimani Qlyasan Street, Kurdistan Regional Government Sulaymaniyah 46001 Iraq
| | - Harez Rashid Ahmed
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Rebaz F Hamarawf
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Muhammad S Mustafa
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| |
Collapse
|
3
|
Ma W, Zhang Q, Xiang D, Mao K, Xue J, Chen Z, Chen Z, Du W, Zhai K, Zhang H. Metal-Organic Framework (MOF)-Based Sensors for Mercury (Hg) Detection: Design Strategies and Recent Progress. Chemistry 2024:e202403760. [PMID: 39567351 DOI: 10.1002/chem.202403760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/22/2024]
Abstract
Monitoring mercury (Hg) is critical for environmental and public health. Metal-organic framework (MOF)-based sensors demonstrate the advantage of high sensitivity and rapid response. We summarize the advances of MOF sensors for Hg2+ detection from the perspective of MOF type and role in the sensors. First, we introduce three MOFs used in Hg sensors-UIO, ZIF, and MIL-that have demonstrated superior performance. Then, we discuss the specifics of MOF-based sensors for Hg2+ detection in terms of the recognition and signal elements. Currently, the recognition elements include T-rich aptamers, noble metal nanoparticles, central metal ions, and organic functional groups inherent to MOFs. Sensors with fluorescence and colorimetric signals are the two main types of optical MOF sensors used for Hg detection. Electrochemical sensors have also been fabricated, but these are less frequently reported, potentially due to the limited conductivity and cycling stability of MOFs. Notably, dual-signal sensors mitigate background signals interference and enhance the accuracy of Hg2+ detection. Furthermore, to facilitate portability and user-friendliness, portable devices such as microfluidics, paper-based devices, and smartphones have been developed for Hg2+ detection, showcasing potential applications. We also address the challenges related to MOF-based sensors for Hg2+ and future outlook.
Collapse
Affiliation(s)
- Wei Ma
- School of Chemistry and Environmental Engineeing, Hubei Minzu University, Enshi, 445000, China
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Qidu Zhang
- College of Civil Engineeing, Tongji University, Shanghai, 200092, China
| | - Dongshan Xiang
- School of Chemistry and Environmental Engineeing, Hubei Minzu University, Enshi, 445000, China
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Jiaqi Xue
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Zhuo Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Zhen Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Kun Zhai
- School of Chemistry and Environmental Engineeing, Hubei Minzu University, Enshi, 445000, China
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| |
Collapse
|
4
|
Zuliani A, Ramos V, Escudero A, Khiar N. "Sweet MOFs": exploring the potential and restraints of integrating carbohydrates with metal-organic frameworks for biomedical applications. NANOSCALE HORIZONS 2024. [PMID: 39560345 DOI: 10.1039/d4nh00525b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The unique features of metal-organic frameworks (MOFs) such as biodegradability, reduced toxicity and high surface area offer the possibility of developing smart nanosystems for biomedical applications through the simultaneous functionalization of their structure with biologically relevant ligands and the loading of biologically active cargos, ranging from small drugs to large biomacromolecules, into their pores. Aiming to develop efficient, naturally inspired biocompatible systems, recent research has combined organic and materials chemistry to design innovative composites that exploit carbohydrate chemistry for the functionalization and structural modification of MOFs. Scientific investigation in the field has seen a significant rise in the past five years, and it is becoming crucial to acknowledge both the limits and benefits of this approach for future investigation. In this review, the latest research results merging carbohydrates and MOFs are discussed, with a particular emphasis on the advances in the field and the remaining challenges, including addressing sustainability and real-case applicability.
Collapse
Affiliation(s)
- Alessio Zuliani
- Asymmetric Synthesis and Nanosystems Group (Art&Fun), Institute for Chemical Research (IIQ), CSIC-University of Seville, 41092 Seville, Spain.
| | - Victor Ramos
- Asymmetric Synthesis and Nanosystems Group (Art&Fun), Institute for Chemical Research (IIQ), CSIC-University of Seville, 41092 Seville, Spain.
| | - Alberto Escudero
- Asymmetric Synthesis and Nanosystems Group (Art&Fun), Institute for Chemical Research (IIQ), CSIC-University of Seville, 41092 Seville, Spain.
- Inorganic Chemistry Department, University of Seville, Calle Profesor García González 1, 41012 Seville, Spain
| | - Noureddine Khiar
- Asymmetric Synthesis and Nanosystems Group (Art&Fun), Institute for Chemical Research (IIQ), CSIC-University of Seville, 41092 Seville, Spain.
| |
Collapse
|
5
|
Farwa U, Sandhu ZA, Kiran A, Raza MA, Ashraf S, Gulzarab H, Fiaz M, Malik A, Al-Sehemi AG. Revolutionizing environmental cleanup: the evolution of MOFs as catalysts for pollution remediation. RSC Adv 2024; 14:37164-37195. [PMID: 39569125 PMCID: PMC11578092 DOI: 10.1039/d4ra05642f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/19/2024] [Indexed: 11/22/2024] Open
Abstract
The global problem of ecological safety and public health necessitates, the development of new sustainable ideas for pollution remediation. In recent development, metal-organic frameworks (MOF) are the emerging technology with remarkable potential, which have been employed in environmental remediation. MOFs are networks that are created by the coordination of metals or polyanions with ligands and contain organic components that can be customized. The interesting features of MOFs are a large surface area, tuneable porosity, functional diversity, and high predictability of pollutant adsorption, catalysis, and degradation. It is a solid material that occupies a unique position in the war against environmental pollutants. One of the main benefits of MOFs is that they exhibit selective adsorption of a wide range of pollutants, including heavy metals, organics, greenhouse gases, water and soil. Only particles with the right combination of pore size and chemical composition will achieve this selectivity, derived from the high level of specificity. Besides, they possess high catalytic ability for the removal of pollutants by means of different methods such as photocatalysis, Fenton-like reactions, and oxidative degradation. By generating mobile active sites within the framework of MOFs, we can not only ensure high affinity for pollutants but also effective transformation of toxic chemicals into less harmful or even inert end products. However, the long-term stability of MOFs is becoming more important as eco-friendly parts are replaced with those that can be used repeatedly, and systems based on MOFs that can remove pollutants in more than one way are fabricated. MOFs can reduce waste production, energy consumption as compared to the other removal process. With its endless capacities, MOF technology brings a solution to the environmental cleansing problem, working as a flexible problem solver from one field to another. The investigation of MOF synthesis and principles will allow researchers to fully understand the potential of MOFs in environmental problem solving, making the world a better place for all of us.
Collapse
Affiliation(s)
- Umme Farwa
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Zeshan Ali Sandhu
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Azwa Kiran
- Department of Chemistry, Faculty of Science, University of Engineering and Technology Lahore Lahore Pakistan
| | - Muhammad Asam Raza
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Sufyan Ashraf
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Hamza Gulzarab
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Muhammad Fiaz
- Department of Chemistry, University of Texas at Austin USA
| | - Adnan Malik
- Department of Physics and Chemistry, Faculty of Applied Science and Technology, University Tun Hussein Onn Malaysia Pagoh Campus Malaysia
| | | |
Collapse
|
6
|
Huang X, Sun Q, Zhao J, Wu G, Zhang Y, Shen Y. Recent progress on charge transfer engineering in reticular framework for efficient electrochemiluminescence. Anal Bioanal Chem 2024; 416:3859-3867. [PMID: 38613684 DOI: 10.1007/s00216-024-05279-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/05/2024] [Accepted: 03/27/2024] [Indexed: 04/15/2024]
Abstract
Electrochemiluminescence (ECL) is a luminescence production technique triggered by electrochemistry, which has emerged as a powerful analytical technique in bioanalysis and clinical diagnosis. During ECL, charge transfer (CT) is an important process between electrochemical excitation and luminescent emission, and dramatically affects the efficiency of exciton generation, playing a pivotal role in the light-emitting properties of nanomaterials. Reticular framework materials with intramolecular/intermolecular interactions offer a promising platform for regulating CT pathways and enhancing luminescence efficiency. Deciphering the role of intramolecular/intermolecular CT processes in reticular framework materials allows for the targeted design and synthesis of emitters with precisely controlled CT properties. This sheds light on the microscopic mechanisms of electro-optical conversion in ECL, propelling advancements in their efficiency and breakthrough applications. This mini-review focuses on recent advancements in engineering CT within reticular frameworks to boost ECL efficiency. We summarized strategies including intra-reticular charge transfer, CT between the metal and ligands, and CT between guest molecules and frameworks within reticular frameworks, which holds promise for developing next-generation ECL devices with enhanced sensitivity and light emission.
Collapse
Affiliation(s)
- Xinzhou Huang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Qian Sun
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Jinjin Zhao
- Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China.
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Maru K, Singh A, Jangir R, Jangir KK. Amyloid detection in neurodegenerative diseases using MOFs. J Mater Chem B 2024; 12:4553-4573. [PMID: 38646795 DOI: 10.1039/d4tb00373j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Neurodegenerative diseases (amyloid diseases such as Alzheimer's and Parkinson's), stemming from protein misfolding and aggregation, encompass a spectrum of disorders with severe systemic implications. Timely detection is pivotal in managing these diseases owing to their significant impact on organ function and high mortality rates. The diverse array of amyloid disorders, spanning localized and systemic manifestations, underscores the complexity of these conditions and highlights the need for advanced detection methods. Traditional approaches have focused on identifying biomarkers using imaging techniques (PET and MRI) or invasive procedures. However, recent efforts have focused on the use of metal-organic frameworks (MOFs), a versatile class of materials known for their unique properties, in revolutionizing amyloid disease detection. The high porosity, customizable structures, and biocompatibility of MOFs enable their integration with biomolecules, laying the groundwork for highly sensitive and specific biosensors. These sensors have been employed using electrochemical and photophysical techniques that target amyloid species under neurodegenerative conditions. The adaptability of MOFs allows for the precise detection and quantification of amyloid proteins, offering potential advancements in early diagnosis and disease management. This review article delves into how MOFs contribute to detecting amyloid diseases by categorizing their uses based on different sensing methods, such as electrochemical (EC), electrochemiluminescence (ECL), fluorescence, Förster resonance energy transfer (FRET), up-conversion luminescence resonance energy transfer (ULRET), and photoelectrochemical (PEC) sensing. The drawbacks of MOF biosensors and the challenges encountered in the field are also briefly explored from our perspective.
Collapse
Affiliation(s)
- Ketan Maru
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Amarendra Singh
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Ritambhara Jangir
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | | |
Collapse
|
8
|
Li D, Yadav A, Zhou H, Roy K, Thanasekaran P, Lee C. Advances and Applications of Metal-Organic Frameworks (MOFs) in Emerging Technologies: A Comprehensive Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300244. [PMID: 38356684 PMCID: PMC10862192 DOI: 10.1002/gch2.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/19/2023] [Indexed: 02/16/2024]
Abstract
Metal-organic frameworks (MOFs) that are the wonder material of the 21st century consist of metal ions/clusters coordinated to organic ligands to form one- or more-dimensional porous structures with unprecedented chemical and structural tunability, exceptional thermal stability, ultrahigh porosity, and a large surface area, making them an ideal candidate for numerous potential applications. In this work, the recent progress in the design and synthetic approaches of MOFs and explore their potential applications in the fields of gas storage and separation, catalysis, magnetism, drug delivery, chemical/biosensing, supercapacitors, rechargeable batteries and self-powered wearable sensors based on piezoelectric and triboelectric nanogenerators are summarized. Lastly, this work identifies present challenges and outlines future opportunities in this field, which can provide valuable references.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| | - Anurag Yadav
- Department of ChemistryPondicherry UniversityPuducherry605014India
| | - Hong Zhou
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| | - Kaustav Roy
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| | | | - Chengkuo Lee
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| |
Collapse
|
9
|
Damacet P, Hannouche K, Gouda A, Hmadeh M. Controlled Growth of Highly Defected Zirconium-Metal-Organic Frameworks via a Reaction-Diffusion System for Water Remediation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38230659 DOI: 10.1021/acsami.3c16327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The relentless growth of metal-organic framework (MOF) chemistry is paralleled by the persistent urge to control the MOFs physical and chemical properties. While this control is mostly achieved by solvothermal syntheses, room temperature procedures stand out as more convenient and sustainable pathways for the production of MOF materials. Herein, a novel approach to control the crystal size and defect numbers of a dihydroxy-functionalized zirconium-based metal-organic framework (UiO-66(OH)2) at room temperature is reported. Through a reaction-diffusion method in a 1D system, zirconium salt was diffused into an agar gel matrix containing the organic linker to form nanocrystals of UiO-66(OH)2 with tailored structural features that include crystal size distribution, surface area, and defect number. By variation of the synthesis parameters of the system, hierarchical MOF nanocrystals with an average size ranging from 30 nm up to 270 nm and surface areas between 201 and 500 m2 g-1 were obtained in a one-pot synthetic route. To stress the importance of crystal size, morphology, and structural defects on the adsorption properties of UiO-66(OH)2, the adsorption capacity of the MOF toward methylene blue dye was tested with the largest and most defected crystals achieving the best performance of 202 mg/g. The distinctive structural characteristics including the hierarchical micromesoporous frameworks, the nanosized particles, and the highly defective crystals obtained by our synthesis procedure are deemed challenging through the conventional synthesis methods. This work paves the way for engineering MOF crystals with tunable physical and chemical properties, using a green synthesis procedure, for their advantageous use in many desirable applications.
Collapse
Affiliation(s)
- Patrick Damacet
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Karen Hannouche
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Abdelaziz Gouda
- Department of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6 Toronto, Canada
| | - Mohamad Hmadeh
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
10
|
Abid HR, Azhar MR, Iglauer S, Rada ZH, Al-Yaseri A, Keshavarz A. Physiochemical characterization of metal organic framework materials: A mini review. Heliyon 2024; 10:e23840. [PMID: 38192763 PMCID: PMC10772179 DOI: 10.1016/j.heliyon.2023.e23840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
Metal-organic frameworks (MOFs) are promising materials offering exceptional performance across a myriad of applications, attributable to their remarkable physicochemical properties such as regular porosity, crystalline structure, and tailored functional groups. Despite their potential, there is a lack of dedicated reviews that focus on key physicochemical characterizations of MOFs for the beginners and new researchers in the field. This review is written based on our expertise in the synthesis and characterization of MOFs, specifically to provide a right direction for the researcher who is a beginner in this area. In this way, experimental errors can be reduced, and wastage of time and chemicals can be avoided when new researchers conduct a study. In this article, this topic is critically analyzed, and findings and conclusions are presented. We reviewed three well-known XRD techniques, including PXRD, single crystal XRD, and SAXS, which were used for XRD analysis depending on the crystal size and the quality of crystal morphology. The TGA profile was an effective factor for evaluating the quality of the activation process and for ensuring the successful investigation for other characterizations. The BET and pore size were significantly affected by the activation process and selective benzene chain cross-linkers. FTIR is a prominent method that is used to investigate the functional groups on pore surfaces, and this method is successfully used to evaluate the activation process, characterize functionalized MOFs, and estimate their applications. The most significant methods of characterization include the X-ray diffraction, which is utilized for structural identification, and thermogravimetric analysis (TGA), which is used for exploring thermal decomposition. It is important to note that the thermal stability of MOFs is influenced by two main factors: the metal-ligand interaction and the type of functional groups attached to the organic ligand. The textural properties of the MOFs, on the other hand, can be scrutinized through nitrogen adsorption-desorption isotherms experiments at 77 K. However, for smaller pore size, the Argon adsorption-desorption isotherm at 87.3 K is preferred. Furthermore, the CO2 adsorption isotherm at 273 K can be used to measure ultra-micropore sizes and sizes lower than these, which cannot be measured by using the N2 adsorption-desorption isotherm at 77 K. The highest BET was observed in high-valence MOFs that are constructed based on the metal-oxo cluster, which has an excellent ability to control their textural properties. It was found that the synthesis procedure (including the choice of solvent, cross-linker, secondary metal, surface functional groups, and temperature), activation method, and pressure significantly impact the surface area of the MOF and, by extension, its structural integrity. Additionally, Fourier-transform infrared spectroscopy plays a crucial role in identifying active MOF functional groups. Understanding these physicochemical properties and utilizing relevant characterization techniques will enable more precise MOF selection for specific applications.
Collapse
Affiliation(s)
- Hussein Rasool Abid
- Energy and Resource Discipline, School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia
- Environmental Health Department, Applied Medical Sciences, University of Kerbala, Karbala 56001, Iraq
| | - Muhammad Rizwan Azhar
- Chemical Engineering Discipline, School of Engineering, Edith Cowan University, Joondalup, WA
| | - Stefan Iglauer
- Energy and Resource Discipline, School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Zana Hassan Rada
- Energy and Resource Discipline, School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Ahmed Al-Yaseri
- College of Petroleum Engineering and Geoscience, King Fahd University of Petroleum and Minerals, Saudi Arabia
| | - Alireza Keshavarz
- Energy and Resource Discipline, School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
11
|
Shubhangi, Nandi I, Rai SK, Chandra P. MOF-based nanocomposites as transduction matrices for optical and electrochemical sensing. Talanta 2024; 266:125124. [PMID: 37657374 DOI: 10.1016/j.talanta.2023.125124] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Metal Organic Frameworks (MOFs), a class of crystalline microporous materials have been into research limelight lately due to their commendable physio-chemical properties and easy fabrication methods. They have enormous surface area which can be a working ground for innumerable molecule adhesions and site for potential sensor matrices. Their biocompatibility makes them valuable for in vitro detection systems but a compromised conductivity requires a lot of surface engineering of these molecules for their usage in electrochemical biosensors. However, they are not just restricted to a single type of transduction system rather can also be modified to achieve feat as optical (colorimetry, luminescence) and electro-luminescent biosensors. This review emphasizes on recent advancements in the area of MOF-based biosensors with focus on various MOF synthesis methods and their general properties along with selective attention to electrochemical, optical and opto-electrochemical hybrid biosensors. It also summarizes MOF-based biosensors for monitoring free radicals, metal ions, small molecules, macromolecules and cells in a wide range of real matrices. Extensive tables have been included for understanding recent trends in the field of MOF-composite probe fabrication. The article sums up the future scope of these materials in the field of biosensors and enlightens the reader with recent trends for future research scope.
Collapse
Affiliation(s)
- Shubhangi
- School of Biomedical Engineering, Indian Institute of Technology Laboratory (BHU) Varanasi, Uttar Pradesh, 221005, India; Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - Indrani Nandi
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - S K Rai
- School of Biomedical Engineering, Indian Institute of Technology Laboratory (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
12
|
Kilic NM, Singh S, Keles G, Cinti S, Kurbanoglu S, Odaci D. Novel Approaches to Enzyme-Based Electrochemical Nanobiosensors. BIOSENSORS 2023; 13:622. [PMID: 37366987 DOI: 10.3390/bios13060622] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Electrochemistry is a genuinely interdisciplinary science that may be used in various physical, chemical, and biological domains. Moreover, using biosensors to quantify biological or biochemical processes is critical in medical, biological, and biotechnological applications. Nowadays, there are several electrochemical biosensors for various healthcare applications, such as for the determination of glucose, lactate, catecholamines, nucleic acid, uric acid, and so on. Enzyme-based analytical techniques rely on detecting the co-substrate or, more precisely, the products of a catalyzed reaction. The glucose oxidase enzyme is generally used in enzyme-based biosensors to measure glucose in tears, blood, etc. Moreover, among all nanomaterials, carbon-based nanomaterials have generally been utilized thanks to the unique properties of carbon. The sensitivity can be up to pM levels using enzyme-based nanobiosensor, and these sensors are very selective, as all enzymes are specific for their substrates. Furthermore, enzyme-based biosensors frequently have fast reaction times, allowing for real-time monitoring and analyses. These biosensors, however, have several drawbacks. Changes in temperature, pH, and other environmental factors can influence the stability and activity of the enzymes, affecting the reliability and repeatability of the readings. Additionally, the cost of the enzymes and their immobilization onto appropriate transducer surfaces might be prohibitively expensive, impeding the large-scale commercialization and widespread use of biosensors. This review discusses the design, detection, and immobilization techniques for enzyme-based electrochemical nanobiosensors, and recent applications in enzyme-based electrochemical studies are evaluated and tabulated.
Collapse
Affiliation(s)
- Nur Melis Kilic
- Faculty of Science Biochemistry Department, Ege University, 35100 Bornova, Turkey
| | - Sima Singh
- Department of Pharmacy, University of Naples Federico II, 80138 Naples, Italy
| | - Gulsu Keles
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
| | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, 80138 Naples, Italy
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
| | - Dilek Odaci
- Faculty of Science Biochemistry Department, Ege University, 35100 Bornova, Turkey
| |
Collapse
|