1
|
Wang J, Peng P, Li J, Chen Y, Lv Y, Meng X. Functional modification of edible film based on egg white protein and its application in food preservation: A review. Int J Biol Macromol 2025; 307:142096. [PMID: 40089226 DOI: 10.1016/j.ijbiomac.2025.142096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Based on the urgent need for environmental protection, traditional petroleum-based packaging materials are gradually being replaced by non-toxic and biodegradable biopolymer packaging materials such as proteins, polysaccharides and lipids. Among them, egg white protein (EWP) has been widely concerned because of its excellent gel film forming properties and high nutritional value. EWP film has the advantages of high mechanical strength, good stability, high transparency, controllable cost, good compatibility with human tissue, etc. However, the common problems such as humidity sensitivity and poor flexibility of protein-based films limit its application. In this paper, the characteristics and film-forming mechanism of EWP were introduced, and the film-forming methods, influencing factors, performance improvement (such as physical modification, chemical modification, enzymatic modification and mixing with other functional ingredients, etc.) as well as its application in food packaging were reviewed. In addition, the existing problems and prospects of EWP based films are discussed, which provides a new idea for improving the properties of EWP films and expanding its application in the future.
Collapse
Affiliation(s)
- Jing Wang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Pei Peng
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Jun Li
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yiyi Chen
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yuanqi Lv
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xiangren Meng
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, China; Chinese Cuisine Promotion and Research Base, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
2
|
Hu X, Wang H, Hu Y, Wen P, Wu X, Tu Z. Modulating allergenicity of prawn tropomyosin (penaeus chinensis) via pulsed electric field-induced conformational changes. Food Chem 2025; 463:141376. [PMID: 39321652 DOI: 10.1016/j.foodchem.2024.141376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The effect of electric field intensities (EFIs, 5-20 kV/cm) and treatment times (0.5-2 h) on allergenicity and spatial conformation of prawn tropomyosin was evaluated. The results demonstrated that the IgG and IgE binding capacity of tropomyosin maximally increased by 24.34 % and 29.16 % respectively, followed by a subsequent decrease after 20 kV/cm treatment for 1 h. Interestingly, 5-10 kV/cm treatments significantly decreased the α-helix content (P < 0.05) and fluorescence intensity, while 20 kV/cm treatment promoted extensive spiralization, resulting in a tightly packed structure. The increased flexibility further exposed the hydrolysis sites and strengthened the gastrointestinal digestibility of tropomyosin. Additionally, molecular dynamic simulation indicated that extended EFIs increased structural flexibility and depolymerized the tropomyosin dimers through destroying intermolecular hydrogen bonds (formed within arginine and glutamate), which allowed tropomyosin to be easily recognized by IgG/IgE. Whereas, decrease of solvent-accessibility surface area (SASA), hydrophobic surface area induced conformation folded and caused epitopes masked.
Collapse
Affiliation(s)
- Xiangfei Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yueming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; Chongqing Research Institute of Nanchang University, Chongqing 402660, China
| | - Pingwei Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; Chongqing Research Institute of Nanchang University, Chongqing 402660, China
| | - Xiongchen Wu
- Jiangxi Agricultural Development Group Co., Ltd, Nanchang, Jiangxi, 330038, China.
| | - Zongcai Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; National Research and Development Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
3
|
Li R, True AD, Sha L, Xiong YL. Structure-functionality relationship and modification strategies of oat protein: Challenges and opportunities. Compr Rev Food Sci Food Saf 2025; 24:e70091. [PMID: 39828399 DOI: 10.1111/1541-4337.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/21/2024] [Accepted: 11/29/2024] [Indexed: 01/22/2025]
Abstract
The increasing preference for plant-based proteins over animal-derived equivalents has intensified research into alternative protein sources, with oats emerging as a noteworthy specialty crop due to their rich array of functional and bioactive components. Despite the growing interest, research into oat proteins remains in its early stages, particularly in understanding the structure-function relationship and modification strategies within food systems. Designing novel food products using oat protein presents both opportunities and challenges; the compact quaternary structure and high thermal stability of oat globulin limit its functionality in diverse applications. This review aims to detail the composition and structural characteristics of oat protein, highlighting the complex relationship between these structural traits and their functional properties. A significant focus is placed on innovative structural modification techniques that enable the cost-effective transformation of oat protein into a functional ingredient or base for new food product development.
Collapse
Affiliation(s)
- Runnan Li
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Alma D True
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Lei Sha
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Youling L Xiong
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Kim YJ, Shin DM, Oh EJ, Chun YG, Shin JK, Choi YS, Kim BK. Mechanisms underlying the changes in the structural, physicochemical, and emulsification properties of porcine myofibrillar proteins induced by prolonged pulsed electric field treatment. Food Chem 2024; 456:140024. [PMID: 38870818 DOI: 10.1016/j.foodchem.2024.140024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/19/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
This study aimed to explore how pulsed electric field (PEF) treatment affects the structural, physicochemical, and emulsification properties of porcine-derived myofibrillar proteins (MPs). Increasing PEF treatment induced partial polarization and protein unfolding, resulting in notable denaturation that affected both the secondary and tertiary structures. PEF treatment also improved the solubility and emulsification ability of MPs by reducing their pH and surface hydrophobicity. Confocal laser scanning microscopy confirmed the effective adsorption of MPs and PEF-treated MPs at the oil/water interface, resulting in well-fabricated Pickering emulsions. A weak particle network increased the apparent viscosity in short-term PEF-treated Pickering emulsions. Conversely, in emulsions with long-term PEF-treated MP, rheological variables decreased, and dispersion stability increased. These results endorse the potential application of PEF-treated porcine-derived MPs as efficient Pickering stabilizers, offering valuable insights into the creative use of PEF for enhancing high-quality meat products, meeting the increasing demand for clean-label choices.
Collapse
Affiliation(s)
- Yun Jeong Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea.; Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Dong-Min Shin
- Food Science and Technology, Keimyung University, Daegu 42601, Republic of Korea
| | - Eun-Jae Oh
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yong Gi Chun
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jung-Kue Shin
- Department of Korean Cuisine, Jeonju University, Jeonju 55069, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea..
| | - Bum-Keun Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea.; Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea..
| |
Collapse
|
5
|
Ye XW, Tian W, Han L, Li YJ, Liu S, Lai WJ, Liu YX, Wang L, Yang PP, Wang H. High-Throughput Screening of pH-Dependent β-sheet Self-Assembling Peptide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307963. [PMID: 38183362 DOI: 10.1002/smll.202307963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/20/2023] [Indexed: 01/08/2024]
Abstract
pH-dependent peptide biomaterials hold tremendous potential for cell delivery and tissue engineering. However, identification of responsive self-assembling sequences with specified secondary structure remains a challenge. In this work, An experimental procedure based on the one-bead one-compound (OBOC) combinatorial library is developed to rapidly screen self-assembling β-sheet peptides at neutral aqueous solution (pH 7.5) and disassemble at weak acidic condition (pH 6.5). Using the hydrophobic fluorescent molecule thioflavin T (ThT) as a probe, resin beads displaying self-assembling peptides show fluorescence under pH 7.5 due to the insertion of ThT into the hydrophobic domain, and are further cultured in pH 6.5 solution. The beads with extinguished fluorescence are selected. Three heptapeptides are identified that can self-assemble into nanofibers or nanoparticles at pH 7.5 and disassemble at pH 6.5. P1 (LVEFRHY) shows a rapid acid response and morphology transformation with pH modulation. Changes in the charges of histidine and hydrophobic phenyl motif of phenylalanine may play important roles in the formation of pH-responsive β-sheet nanofiber. This high-throughput screening method provides an efficient way to identify pH-dependent β-sheet self-assembling peptide and gain insights into structural design of such nanomaterials.
Collapse
Affiliation(s)
- Xin-Wei Ye
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- China Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Tian
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Lu Han
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yi-Jing Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Shan Liu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Wen-Jia Lai
- Division of Nanotechnology Development, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yi-Xuan Liu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Pei-Pei Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- China Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Institution, Beijing, 100049, China
| |
Collapse
|
6
|
Guo L, Wang X, Ren Y, Zhang X, Li Q, Zhang C, Qian JY. Outcomes of structure, function and flavor of pea protein isolate treated by AC, DC and pulsed electric fields. Food Res Int 2024; 176:113817. [PMID: 38163685 DOI: 10.1016/j.foodres.2023.113817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Based on the standpoint of low carbon footprint processing and less denaturation of plant protein ingredient, the effects of pulsed electric field (PEF), direct current electric field (DCEF), and alternating current electric field (ACEF) treatments on the structure, functional properties and volatile compounds of pea protein isolate were investigated. The results showed that the electric fields (EFs) caused both blueshifts (max. ∼8 cm-1) and redshifts (max. ∼7 cm-1) in the IR spectra and blueshifts (max. ∼5 nm) in the UV spectra. PEF caused an increase of emulsifying activity index and a decrease of emulsion stability index to DCEF and ACEF. A total of 27 volatile compounds were identified and the EFs could cause emerging of new volatiles and disappearing of inherent volatiles potentially to modify the flavor of products. Alterations were significantly observed among the types of EF, but seldomly among the operating parameter levels in the same EF.
Collapse
Affiliation(s)
- Lunan Guo
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Xijing Wang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Yiping Ren
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Xiunan Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Qian Li
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Chen Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
7
|
Shi R, Mu Z, Hu J, Jiang Z, Hou J. Non-thermal techniques as an approach to modify the structure of milk proteins and improve their functionalities: a review of novel preparation. Crit Rev Food Sci Nutr 2023; 65:1-29. [PMID: 37811663 DOI: 10.1080/10408398.2023.2263571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND Milk proteins (MPs) have been widely used in the food industry due to their excellent functionalities. However, MPs are thermal-unstable substances and their functional properties are easily affected by heat treatment. Emerging non-thermal approaches (i.e., high-pressure homogenization (HPH), ultrasound (US), pulsed electric field (PEF)) have been increasingly popular. A detailed understanding of these approaches' impacts on the structure and functionalities of MPs can provide theoretical guidance for further development to accelerate their industrialization. SCOPE AND APPROACH This review assesses the mechanisms of HPH, US and PEF technologies on the structure and functionalities of MPs from molecular, mesoscopic and macroscopic levels, elucidates the modifications of MPs by these theologies combined with other methods, and further discusses their existing issues and the development in the food filed. KEY FINDINGS AND CONCLUSIONS The structure of MPs changed after HPH, US and PEF treatment, affecting their functionalities. The changes in these properties of MPs are related to treated-parameters of used-technologies, the concentration of MPs, as well as molecular properties. Additionally, these technologies combined with other methods could obtain some outstanding functional properties for MPs. If properly managed, these theologies can be tailored for manufacturing superior functional MPs for various processing fields.
Collapse
Affiliation(s)
- Ruijie Shi
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, PR China
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng, PR China
- National Enterprise Technology Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd, Huhhot, PR China
| | - Zhishen Mu
- National Enterprise Technology Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd, Huhhot, PR China
| | - Jialun Hu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, PR China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, PR China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, PR China
| |
Collapse
|
8
|
Taha A, Casanova F, Talaikis M, Stankevič V, Žurauskienė N, Šimonis P, Pakštas V, Jurkūnas M, Gomaa MAE, Stirkė A. Effects of Pulsed Electric Field on the Physicochemical and Structural Properties of Micellar Casein. Polymers (Basel) 2023; 15:3311. [PMID: 37571205 PMCID: PMC10422647 DOI: 10.3390/polym15153311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Pulsed electric field (PEF) as a green processing technology is drawing greater attention due to its eco-friendliness and potential to promote sustainable development goals. In this study, the effects of different electric field strengths (EFS, 0-30 kV/cm) on the structure and physicochemical features of casein micelles (CSMs) were investigated. It was found that the particle sizes of CSMs increased at low EFS (10 kV/cm) but decreased at high EFS (30 kV/cm). The absolute ζ-potential at 30 kV/cm increased from -26.6 (native CSMs) to -29.5 mV. Moreover, it was noticed that PEF treatment leads to changes in the surface hydrophobicity; it slightly increased at low EFS (10 kV/cm) but decreased at EFS > 10 kV/cm. PEF enhanced the protein solubility from 84.9 (native CSMs) to 87.1% (at 10 kV/cm). PEF at low EFS (10 kV/cm) intensified the emission fluorescence spectrum of CSMs, while higher EFS reduced the fluorescence intensity compared to native CSMs. Moreover, the analysis of the Amide Ι region showed that PEF-treated CSMs reduced the α-helix and increased the β-sheet content. Raman spectra confirmed that PEF treatment > 10 kV/cm buried tyrosine (Tyr) residues in a hydrophobic environment. It was also found that PEF treatment mainly induced changes in the disulfide linkages. In conclusion, PEF technology can be employed as an eco-friendly technology to change the structure and physiochemical properties of CSMs; this could improve their techno-functional properties.
Collapse
Affiliation(s)
- Ahmed Taha
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Federico Casanova
- Food Production Engineering, National Food Institute, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Martynas Talaikis
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Voitech Stankevič
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Nerija Žurauskienė
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Povilas Šimonis
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Vidas Pakštas
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Marijus Jurkūnas
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Mohamed A. E. Gomaa
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Arūnas Stirkė
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
- Micro and Nanodevices Laboratory, Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, LV-1063 Riga, Latvia
| |
Collapse
|
9
|
Rathnakumar K, Balakrishnan G, Ramesh B, Sujayasree OJ, Pasupuleti SK, Pandiselvam R. Impact of emerging food processing technologies on structural and functional modification of proteins in plant-based meat alternatives: An updated review. J Texture Stud 2023; 54:599-612. [PMID: 36849713 DOI: 10.1111/jtxs.12747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
In the past decade, the plant-based meat alternative industry has grown rapidly due to consumers' demand for environmental-friendly, nutritious, sustainable and humane choices. Consumers are not only concerned about the positive relationship between food consumption and health, they are also keen on the environmental sustainability. With such increased consumers' demand for meat alternatives, there is an urgent need for identification and modification of protein sources to imitate the functionality, textural, organoleptic and nutritional characteristics of traditional meat products. However, the plant proteins are not readily digestible and require more functionalization and modification are required. Proteins has to be modified to achieve high quality attributes such as solubility, gelling, emulsifying and foaming properties to make them more palatable and digestible. The protein source from the plant source in order to achieve the claims which needs more high protein digestibility and amino acid bioavailability. In order to achieve these newer emerging non-thermal technologies which can operate under mild temperature conditions can reach a balance between feasibility and reduced environmental impact maintaining the nutritional attributes and functional attributes of the proteins. This review article has discussed the mechanism of protein modification and advancements in the application of non-thermal technologies such as high pressure processing and pulsed electric field and emerging oxidation technologies (ultrasound, cold plasma, and ozone) on the structural modification of plant-based meat alternatives to improve, the techno-functional properties and palatability for successful food product development applications.
Collapse
Affiliation(s)
- Kaavya Rathnakumar
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | - O J Sujayasree
- Division of Post-Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Ravi Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR - Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| |
Collapse
|
10
|
Dhiman A, Thakur K, Parmar V, Sharma S, Sharma R, Kaur G, Singh B, Suhag R. New insights into tailoring physicochemical and techno-functional properties of plant proteins using conventional and emerging technologies. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
11
|
Lian F, Cheng JH, Wang H, Sun DW. Effects of combined roasting and steam cooking on NaCl reduction and quality changes in marinated salmon flesh as compared with roasting and water bath cooking. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
12
|
Zare F, Ghasemi N, Bansal N, Hosano H. Advances in pulsed electric stimuli as a physical method for treating liquid foods. Phys Life Rev 2023; 44:207-266. [PMID: 36791571 DOI: 10.1016/j.plrev.2023.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
There is a need for alternative technologies that can deliver safe and nutritious foods at lower costs as compared to conventional processes. Pulsed electric field (PEF) technology has been utilised for a plethora of different applications in the life and physical sciences, such as gene/drug delivery in medicine and extraction of bioactive compounds in food science and technology. PEF technology for treating liquid foods involves engineering principles to develop the equipment, and quantitative biochemistry and microbiology techniques to validate the process. There are numerous challenges to address for its application in liquid foods such as the 5-log pathogen reduction target in food safety, maintaining the food quality, and scale up of this physical approach for industrial integration. Here, we present the engineering principles associated with pulsed electric fields, related inactivation models of microorganisms, electroporation and electropermeabilization theory, to increase the quality and safety of liquid foods; including water, milk, beer, wine, fruit juices, cider, and liquid eggs. Ultimately, we discuss the outlook of the field and emphasise research gaps.
Collapse
Affiliation(s)
- Farzan Zare
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia; School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Negareh Ghasemi
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia
| | - Nidhi Bansal
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Hamid Hosano
- Biomaterials and Bioelectrics Department, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan.
| |
Collapse
|
13
|
Cao M, Liao L, Zhang X, Chen X, Peng S, Zou L, Liang R, Liu W. Electric field-driven fabrication of anisotropic hydrogels from plant proteins: Microstructure, gel performance and formation mechanism. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Soy protein isolate (SPI)-hemin complex nanoparticles as a novel water-soluble iron-fortifier: Fabrication, formation mechanism and in vitro bioavailability. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
The structural characterization, physicochemical properties, and stability of gardenia yellow pigment microcapsules. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Shams R, Singh J, Dash KK, Dar AH, Nayik GA, Ansari MJ, Hemeg HA, Ahmed AEM, Shaikh AM, Kovács B. Effect of Maltodextrin and Soy Protein Isolate on the Physicochemical and Flow Properties of Button Mushroom Powder. Front Nutr 2022; 9:908570. [PMID: 35774545 PMCID: PMC9238412 DOI: 10.3389/fnut.2022.908570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
In this investigation, the effect of different drying techniques, such as freeze-drying and cabinet drying, with two different carrier agents, such as maltodextrin (MD) and soy protein isolate (SPI), at different levels (10, 15, and 20%) on button mushrooms has been revealed. The results showed that the button mushroom powders (BMPs) formulated with SPI as a carrier agent had significantly higher powder yield, hygroscopicity, L *, a *, and b * values, whereas BMP formulated with MD had significantly higher water activity, solubility index, tapped density, bulk density, and flowability. The highest retention of bioactive compounds was reported in freeze-dried mushroom powder compared to cabinet dried powder using SPI as a carrier agent. Fourier transform infrared (FTIR) analysis confirmed that certain additional peaks were produced in the mushroom button powder-containing SPI (1,035-3,271 cm-1) and MD (930-3,220 cm-1). Thus, the results revealed that SPI showed promising results for formulating the BMP using the freeze-drying technique.
Collapse
Affiliation(s)
- Rafeeya Shams
- Department of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, India
| | - Jagmohan Singh
- Department of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, India
| | - Kshirod K. Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Maligram, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, India
| | - Gulzar Ahmad Nayik
- Department of Food Science and Technology, Government Degree College Shopian, Srinagar, India
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, India
| | - Hassan A. Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Abdelhakam Esmaeil Mohamed Ahmed
- Institute of Food Science, University of Debrecen, Debrecen, Hungary
- Faculty of Forestry, University of Khartoum, Khartoum North, Sudan
| | | | - Béla Kovács
- Institute of Food Science, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
17
|
Taha A, Casanova F, Šimonis P, Stankevič V, Gomaa MAE, Stirkė A. Pulsed Electric Field: Fundamentals and Effects on the Structural and Techno-Functional Properties of Dairy and Plant Proteins. Foods 2022; 11:foods11111556. [PMID: 35681305 PMCID: PMC9180040 DOI: 10.3390/foods11111556] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Dairy and plant-based proteins are widely utilized in various food applications. Several techniques have been employed to improve the techno-functional properties of these proteins. Among them, pulsed electric field (PEF) technology has recently attracted considerable attention as a green technology to enhance the functional properties of food proteins. In this review, we briefly explain the fundamentals of PEF devices, their components, and pulse generation and discuss the impacts of PEF treatment on the structure of dairy and plant proteins. In addition, we cover the PEF-induced changes in the techno-functional properties of proteins (including solubility, gelling, emulsifying, and foaming properties). In this work, we also discuss the main challenges and the possible future trends of PEF applications in the food proteins industry. PEF treatments at high strengths could change the structure of proteins. The PEF treatment conditions markedly affect the treatment results with respect to proteins' structure and techno-functional properties. Moreover, increasing the electric field strength could enhance the emulsifying properties of proteins and protein-polysaccharide complexes. However, more research and academia-industry collaboration are recommended to build highly effective PEF devices with controlled processing conditions.
Collapse
Affiliation(s)
- Ahmed Taha
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania; (A.T.); (P.Š.); (V.S.)
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Federico Casanova
- Food Production Engineering, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Correspondence: (F.C.); (A.S.)
| | - Povilas Šimonis
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania; (A.T.); (P.Š.); (V.S.)
| | - Voitech Stankevič
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania; (A.T.); (P.Š.); (V.S.)
| | - Mohamed A. E. Gomaa
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Arūnas Stirkė
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania; (A.T.); (P.Š.); (V.S.)
- Micro and Nanodevices Laboratory, Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, LV-1063 Riga, Latvia
- Correspondence: (F.C.); (A.S.)
| |
Collapse
|
18
|
Functional modification of grain proteins by dual approaches: Current progress, challenges, and future perspectives. Colloids Surf B Biointerfaces 2022; 211:112306. [PMID: 34998177 DOI: 10.1016/j.colsurfb.2021.112306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/12/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022]
Abstract
Protein modification is a practical strategy to enhance the functional characteristics of proteins and broaden their commercial applications. Various chemical (e.g., pH-shifting, deamidation, succinylation), physical (e.g., sonication, high-speed shearing), or biological (e.g., microbial transglutaminase cross-linking, enzymatic hydrolysis) modification methods have frequently been employed to improve the functionality of native grain proteins. However, progress in intensification has led to the emergence of advanced methodologies, which involve the combination of modification techniques, generally known as "Dual Modification". This paper aims to comprehensively review the most recent researches focusing on the effects of dual modification on the functionality of grain proteins. Particular emphasis is given to elucidate the impact of this technique on physicochemical and structural properties. Furthermore, existing challenges and limitations associated with the utilization of this approach are highlighted, and prospects are proposed.
Collapse
|
19
|
Sharafodin H, Soltanizadeh N. Potential application of DBD Plasma Technique for modifying structural and physicochemical properties of Soy Protein Isolate. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107077] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
20
|
Darie-Ion L, Jayathirtha M, Hitruc GE, Zaharia MM, Gradinaru RV, Darie CC, Pui A, Petre BA. A Proteomic Approach to Identify Zein Proteins upon Eco-Friendly Ultrasound-Based Extraction. Biomolecules 2021; 11:1838. [PMID: 34944482 PMCID: PMC8699583 DOI: 10.3390/biom11121838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 11/23/2022] Open
Abstract
Zein is a type of prolamin storage protein that has a variety of biomedical and industrial applications. Due to the considerable genetic variability and polyploidity of the starting material, as well as the extraction methods used, the characterization of the protein composition of zein requires a combination of different analytical processes. Therefore, we combined modern analytical methods such as mass spectrometry (MS), Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), atomic force microscopy (AFM), or Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) for a better characterization of the extracted zein. In this study, we present an enhanced eco-friendly extraction method, including grinding and sieving corn seeds, for prolamins proteins using an ultrasonic extraction methodology. The use of an ultrasonic homogenizer, 65% ethanol extraction buffer, and 710 µm maize granulation yielded the highest protein extraction from all experimental conditions we employed. An SDS PAGE analysis of the extracted zein protein mainly revealed two intense bands of approximatively 20 and 23 kDa, suggesting that the extracted zein was mostly α-zein monomer. Additionally, MS analysis revealed as a main component the α-zein PMS2 (Uniprot accession no. P24450) type protein in the maize flour extract. Moreover, AFM studies show that extracting zein with a 65% ethanol and a 710 µm granulation yields a homogeneous content that could allow these proteins to be employed in future medical applications. This research leads to a better understanding of zeins content critical for developing new applications of zein in food and pharmaceutical industries, such as biocompatible medical vehicles based on polyplexes complex nanoparticles of zein with antimicrobial or drug delivery properties.
Collapse
Affiliation(s)
- Laura Darie-Ion
- Faculty of Chemistry, Al. I. Cuza University of Iasi, 11, Carol I Boulevard, 700506 Iasi, Romania; (L.D.-I.); (R.V.G.); (A.P.)
| | - Madhuri Jayathirtha
- Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (C.C.D.)
| | - Gabriela Elena Hitruc
- Petru Poni Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania; (G.E.H.); (M.-M.Z.)
| | - Marius-Mihai Zaharia
- Petru Poni Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania; (G.E.H.); (M.-M.Z.)
| | - Robert Vasile Gradinaru
- Faculty of Chemistry, Al. I. Cuza University of Iasi, 11, Carol I Boulevard, 700506 Iasi, Romania; (L.D.-I.); (R.V.G.); (A.P.)
| | - Costel C. Darie
- Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (C.C.D.)
| | - Aurel Pui
- Faculty of Chemistry, Al. I. Cuza University of Iasi, 11, Carol I Boulevard, 700506 Iasi, Romania; (L.D.-I.); (R.V.G.); (A.P.)
| | - Brindusa Alina Petre
- Faculty of Chemistry, Al. I. Cuza University of Iasi, 11, Carol I Boulevard, 700506 Iasi, Romania; (L.D.-I.); (R.V.G.); (A.P.)
- Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (C.C.D.)
- Center for Fundamental Research and Experimental Development in Translation Medicine–TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| |
Collapse
|
21
|
Barbhuiya RI, Singha P, Singh SK. A comprehensive review on impact of non-thermal processing on the structural changes of food components. Food Res Int 2021; 149:110647. [PMID: 34600649 DOI: 10.1016/j.foodres.2021.110647] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Non-thermal food processing is a viable alternative to traditional thermal processing to meet customer needs for high-quality, convenient and minimally processed foods. They are designed to eliminate elevated temperatures during processing and avoid the adverse effects of heat on food products. Numerous thermal and novel non-thermal technologies influence food structure at the micro and macroscopic levels. They affect several properties such as rheology, flavour, process stability, texture, and appearance at microscopic and macroscopic levels. This review presents existing knowledge and advances on the impact of non-thermal technologies, for instance, cold plasma treatment, irradiation, high-pressure processing, ultrasonication, pulsed light technology, high voltage electric field and pulsed electric field treatment on the structural changes of food components. An extensive review of the literature indicates that different non-thermal processing technologies can affect the food components, which significantly affects the structure of food. Applications of novel non-thermal technologies have shown considerable impact on food structure by altering protein structures via free radicals or larger or smaller molecules. Lipid oxidation is another process responsible for undesirable effects in food when treated with non-thermal techniques. Non-thermal technologies may also affect starch properties, reduce molecular weight, and change the starch granule's surface. Such modification of food structure could create novel food textures, enhance sensory properties, improve digestibility, improve water-binding ability and improve mediation of gelation processes. However, it is challenging to determine these technologies' influence on food components due to differences in their primary operation and equipment design mechanisms and different operating conditions. Hence, to get the most value from non-thermal technologies, more in-depth research about their effect on various food components is required.
Collapse
Affiliation(s)
- Rahul Islam Barbhuiya
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela 769008, Odisha, India
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela 769008, Odisha, India.
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela 769008, Odisha, India.
| |
Collapse
|
22
|
Zhang A, Cui Q, Yu Z, Wang X, Zhao XH. Effects of transglutaminase glycosylated soy protein isolate on its structure and interfacial properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5097-5105. [PMID: 33576008 DOI: 10.1002/jsfa.11155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/22/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUNDS The structural and interfacial properties of soybean protein isolate (SPI) after glycosylation by the transglutaminase method were studied. It is hoped that preliminary explorations will find a new food ingredient and broader application of SPI in the food industry. RESULTS The contents of free amino proves that transglutaminase can insert glucosamine into SPI through its transamination, and realize the enzymatic glycosylated SPI. The results of structure properties showed that a decrease in the content of the α-helical structure indicates that the rigid structure of the protein is opened and the flexibility is increased. The blue shift of the maximum fluorescence intensity of soy protein isolate-glucosamine with transglutaminase (SPI-G) indicates the formation of a new substance; scanning electron microscopy shows that the SPI-G powder can be seen at a magnification of 2000×, and the protein structure becomes soft. The results of interfacial properties found that enzymatic protein glycosylation exposes the internal hydrophobic groups of SPI, resulting in increased surface hydrophobicity, increased emulsification and emulsification stability, and reduced surface tension. CONCLUSION It shows that SPI-G effectively improves the interfacial properties of SPI, providing a theoretical basis for the application of enzymatic glycosylation of SPI in the food industry. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anqi Zhang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Qiang Cui
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zhichao Yu
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xibo Wang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xin-Huai Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| |
Collapse
|
23
|
Zamponi M, Petrella R, Mollica PA. Picosecond Pulsed Electric Fields and Promise in Neurodegeneration Research. Bioelectricity 2021. [DOI: 10.1089/bioe.2021.0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Martina Zamponi
- School of Medical Diagnostic and Translational Sciences, Old Dominion University, Norfolk, Virginia, USA
- Biomedical Engineering Institute, Old Dominion University, Norfolk, Virginia, USA
| | - Ross Petrella
- Joint Department of Biomedical Engineering at the University of North Carolina and North Carolina State University, Raleigh, North Carolina, USA
| | - Peter A. Mollica
- School of Medical Diagnostic and Translational Sciences, Old Dominion University, Norfolk, Virginia, USA
- Molecular Diagnostics Laboratory, Sentara Norfolk General Hospital, Norfolk, Virginia, USA
| |
Collapse
|
24
|
Oxidative cross-linking of potato proteins by fungal laccases: Reaction kinetics and effects on the structural and functional properties. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
25
|
Effects of Pulsed Electric Fields and Ultrasound Processing on Proteins and Enzymes: A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9040722] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There is increasing demand among consumers for food products free of chemical preservatives, minimally processed and have fresh-like natural flavors. To meet these growing demands, the industries and researchers are finding alternative processing methods, which involve nonthermal methods to obtain a quality product that meets the consumer demands and adheres to the food safety protocols. In the past two decades’ various research groups have developed a wide range of nonthermal processing methods, of which few have shown potential in replacing the traditional thermal processing systems. Among all the methods, ultrasonication (US) and pulsed electric field (PEF) seem to be the most effective in attaining desirable food products. Several researchers have shown that these methods significantly affect various major and minor nutritional components present in food, including proteins and enzymes. In this review, we are going to discuss the effect of nonthermal methods on proteins, including enzymes. This review comprises results from the latest studies conducted from all over the world, which would help the research community and industry investigate the future pathway for nonthermal processing methods, especially in preserving the nutritional safety and integrity of the food.
Collapse
|
26
|
Exploration of structure-activity relationship between IgG1 and IgE binding ability and spatial conformation in ovomucoid with pulsed electric field treatment. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Bacterial cellulose nanofibers improved the emulsifying capacity of soy protein isolate as a stabilizer for pickering high internal-phase emulsions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106279] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
28
|
Changes in the Glutinous Rice Grain and Physicochemical Properties of Its Starch upon Moderate Treatment with Pulsed Electric Field. Foods 2021; 10:foods10020395. [PMID: 33670300 PMCID: PMC7918287 DOI: 10.3390/foods10020395] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 11/17/2022] Open
Abstract
Pulsed electric field (PEF) processing is an emerging non-thermal technology that shows potential to improve food quality and to maintain stability. Glutinous rice is composed mainly of amylopectin and has low amylose content. This study investigated the effect of PEF treatment at 3 kV/cm field strength for 50 to 300 pulses on whole, water-soaked glutinous rice grains. Micro-pores were created at the surface of PEF treated rice grains, increasing grain porosity from 7.3% to 9.8%. Peak viscosity of PEF treated rice flour decreased, and breakdown, final and setback viscosities increased as the number of PEF treating pulses increased, indicating that the swelling degree of rice starch was promoted after PEF treatment. Lower values of gelatinization enthalpy and lower crystalline degree of PEF treated glutinous rice flour were also observed. Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) studies confirmed the secondary structure changes in rice protein and partial gelatinization of rice starch after PEF treatment.
Collapse
|
29
|
Fan L, Lu Y, Ouyang XK, Ling J. Development and characterization of soybean protein isolate and fucoidan nanoparticles for curcumin encapsulation. Int J Biol Macromol 2021; 169:194-205. [PMID: 33340634 DOI: 10.1016/j.ijbiomac.2020.12.086] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/27/2020] [Accepted: 12/11/2020] [Indexed: 02/01/2023]
Abstract
Curcumin (Cur) is a natural polyphenol with beneficial biological and pharmacological activities; however, it has limited applications owing to its low solubility and light sensitivity. The protein-polysaccharide complex can effectively embed lipid-soluble drugs to increase their stability and dispensability in aqueous solutions. Soybean protein isolate (Spi) and fucoidan (Fuc) were used as a polymer matrix, and core-shell nanoparticles were prepared to encapsulate Cur via electrostatic interaction under acidic and neutral conditions. The structure of the Spi-Fuc nanoparticles was studied via Fourier-transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy. Concurrently, we evaluated the efficacy of the nanoparticles based on stability, drug loading rate, and simulated release. Our results showed that the Spi-Fuc nanoparticles (size, approximately 236.56 nm) had a spherical, core-shell structure and that they could effectively load Cur with an embedding efficiency of >95%; moreover, the system had long-term dispersion stability. Thus, we provide a simple method for Cur delivery, which can also be potentially used for delivering lipid-soluble active ingredients.
Collapse
Affiliation(s)
- Lihong Fan
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Yuqing Lu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
30
|
Preparation of porous starch by α-amylase-catalyzed hydrolysis under a moderate electric field. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Zheng L, Wang Z, Kong Y, Ma Z, Wu C, Regenstein JM, Teng F, Li Y. Different commercial soy protein isolates and the characteristics of Chiba tofu. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106115] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
32
|
Understanding the impact of moderate-intensity pulsed electric fields (MIPEF) on structural and functional characteristics of pea, rice and gluten concentrates. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02554-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractAimThe effect of moderate-intensity pulsed electric fields (MIPEF) was evaluated on vegetable protein concentrates from pea, rice, and gluten.MethodsFive percent (w/w) suspensions of protein concentrates (pH 5 and 6) were exposed to up to 60,000 MIPEF pulses at 1.65 kV/cm. Both structural modifications (absorbance at 280 nm, free sulfhydryl groups, FT-IR-spectra) and functional properties (solubility, water and oil holding capacity, foamability) were analyzed.ResultsMIPEF was able to modify protein structure by inducing unfolding, intramolecular rearrangement, and formation of aggregates. However, these effects were strongly dependent on protein nature and pH. In the case of rice and pea samples, structural changes were associated with negligible modifications in functional properties. By contrast, noticeable changes in these properties were observed for gluten samples, especially after exposure to 20,000 pulses. In particular, at pH 6, an increase in water and oil holding capacity of gluten was detected, while at pH 5, its solubility almost doubled.ConclusionThese results suggest the potential of MIPEF to steer structure of proteins and enhance their technological functionality.
Collapse
|
33
|
Review of the application of pulsed electric fields (PEF) technology for food processing in China. Food Res Int 2020; 137:109715. [PMID: 33233287 DOI: 10.1016/j.foodres.2020.109715] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022]
Abstract
With the improvement of living standards, growing consumer demand for high-quality and natural foods has led to the development of new mild processes to enhance or replace conventional thermal and chemical methods for food processing. Pulsed electric fields (PEF) is an emerging and promising non-thermal food processing technology, which is ongoing from laboratory and pilot plant level to the industrial level. Chinese researchers have made tremendous advances in the potential applications of PEF for processing a wide range of food commodities over the last few years, which contributes to the current understanding and development of PEF technology. The objective of this paper is to conduct a systematic review on the achievements of PEF technology used for food processing in China and the corresponding processing principles. Research on the applicability of PEF in food processing suggests that PEF can be used alone or in combination with other methods, not only to inactivate microorganisms and extract active constituents, but also to modify biomacromolecules, enhance chemical reactions and accelerate the aging of fermented foods, which are mainly related to permeabilization of biomembranes, occurrence of electrochemical and electrolytic reactions, polarization and realignment of molecules, and reduction of activation energy of chemical reactions induced by PEF treatments. In addition, some of the most important challenges for the successful implementation of large-scale industrial applications of PEF technology in the food industry are discussed. The results bring out the benefits of both researchers and the industry.
Collapse
|
34
|
Barba FJ, Roohinejad S, Ishikawa K, Leong SY, El-Din A Bekhit A, Saraiva JA, Lebovka N. Electron spin resonance as a tool to monitor the influence of novel processing technologies on food properties. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Giteru SG, Cridge B, Oey I, Ali A, Altermann E. In-vitro degradation and toxicological assessment of pulsed electric fields crosslinked zein-chitosan-poly(vinyl alcohol) biopolymeric films. Food Chem Toxicol 2020; 135:111048. [DOI: 10.1016/j.fct.2019.111048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022]
|
36
|
Duque SMM, Leong SY, Agyei D, Singh J, Larsen N, Oey I. Understanding the impact of Pulsed Electric Fields treatment on the thermal and pasting properties of raw and thermally processed oat flours. Food Res Int 2019; 129:108839. [PMID: 32036916 DOI: 10.1016/j.foodres.2019.108839] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/22/2019] [Accepted: 11/18/2019] [Indexed: 01/15/2023]
Abstract
The aim of this research was to investigate the effect of Pulsed Electric Fields (PEF) treatments (electric field strengths 2 and 4.4 kV/cm combined with specific energy inputs between 48 and 484 kJ/kg) on the thermal and pasting properties of oat flours. Colour, β-glucan content, particle size distribution, morphological characteristics, starch short-range molecular order, protein secondary structure, thermal, and pasting properties of raw (dehulled and milled) and thermally processed (kilned at 115 °C for 30 min and steamed at 100-104 °C for 18 min under industrial process condition) oat flours under the influence of PEF treatment were evaluated. Results showed that PEF treatment, applied at any intensity, led to considerable changes in the structural properties especially when applied on raw oat flour. Both types of oat flour experienced an increase in particle size (up to four-fold), damage of starch granule morphology, and modifications in starch short-range molecular order and protein secondary structures as a result of PEF treatment. These physical changes observed after PEF treatment, particularly at increasing specific energy input, coincided with the thermal and pasting behaviour of PEF-treated oat flours, which include a decrease in gelatinisation enthalpy (up to 80%), increase in thermal transition temperatures (at least 3 °C), decrease in overall viscosity profile, and reduction in pasting temperature (up to 12 °C). Overall results suggested that PEF treatment improved majorly on starch-related functionality of oat, such as increased the pasting stability of raw and thermally processed oat flours and at the same time enhanced the retrogradation property (reduced syneresis and hardness) of raw oat flour, under lower temperature requirement without affecting pasting time. This research demonstrated the potential of PEF treatment in modifying the thermal and pasting properties of oat flour, thereby offering opportunities for novel products for food industry.
Collapse
Affiliation(s)
- Sheba Mae M Duque
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Institute of Food Science and Technology, University of the Philippines Los Baños, College, Laguna 4031, Philippines; Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | - Sze Ying Leong
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | - Dominic Agyei
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Jaspreet Singh
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | - Nigel Larsen
- The New Zealand Institute for Plant and Food Research Limited, Gerald Street, Lincoln 7608, New Zealand; Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | - Indrawati Oey
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| |
Collapse
|
37
|
Shah F, Shi A, Ashley J, Kronfel C, Wang Q, Maleki SJ, Adhikari B, Zhang J. Peanut Allergy: Characteristics and Approaches for Mitigation. Compr Rev Food Sci Food Saf 2019; 18:1361-1387. [DOI: 10.1111/1541-4337.12472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Faisal Shah
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key research Laboratory of Agro‐Products ProcessingMinistry of Agriculture Beijing 100193 P. R. China
| | - Aimin Shi
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key research Laboratory of Agro‐Products ProcessingMinistry of Agriculture Beijing 100193 P. R. China
| | - Jon Ashley
- International Iberian Nanotechnology LaboratoryFood Quality and Safety Research group Berga 4715‐330 Portugal
| | - Christina Kronfel
- Food Processing and Sensory Quality ResearchUnited States Dept. of Agriculture New Orleans LA 70124 USA
| | - Qiang Wang
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key research Laboratory of Agro‐Products ProcessingMinistry of Agriculture Beijing 100193 P. R. China
| | - Soheila J. Maleki
- Food Processing and Sensory Quality ResearchUnited States Dept. of Agriculture New Orleans LA 70124 USA
| | - Benu Adhikari
- School of ScienceRMIT Univ. Melbourne VIC 3083 Australia
| | - Jinchuang Zhang
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key research Laboratory of Agro‐Products ProcessingMinistry of Agriculture Beijing 100193 P. R. China
| |
Collapse
|
38
|
Gong K, Chen L, Xia H, Dai H, Li X, Sun L, Kong W, Liu K. Driving forces of disaggregation and reaggregation of peanut protein isolates in aqueous dispersion induced by high-pressure microfluidization. Int J Biol Macromol 2019; 130:915-921. [DOI: 10.1016/j.ijbiomac.2019.02.123] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 11/28/2022]
|
39
|
Han Z, Cai MJ, Cheng JH, Sun DW. Effects of electric fields and electromagnetic wave on food protein structure and functionality: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.02.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Parniakov O, Bals O, Barba FJ, Mykhailyk V, Lebovka N, Vorobiev E. Application of differential scanning calorimetry to estimate quality and nutritional properties of food products. Crit Rev Food Sci Nutr 2018; 58:362-385. [PMID: 27245977 DOI: 10.1080/10408398.2016.1180502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Over the past years, both food researchers and food industry have shown an increased interest in finding techniques that can estimate modifications in quality, nutritional, and thermophysical properties of food products during processing and/or storage. For instance, differential scanning calorimetry (DSC) has attracted the interest of scientific community because only a small amount of sample is needed for analysis. Moreover, it does not require any specific sample preparation, and is a repeatable and reliable method. In addition, DSC methodology needs a short time for experiments compared with other techniques used for the same purpose. At this stage of investigation, there is a need to evaluate the commonly accepted and new emerging DSC applications to establish the optimum conditions of emerging processing. This paper reviews the current and new insights of DSC technique for the estimation of quality, nutritional, and thermophysical properties of food products during conventional and emerging processing and/or subsequent storage. The estimation of different properties in several food matrices after processing and/or storage is also discussed.
Collapse
Affiliation(s)
- Oleksii Parniakov
- a Laboratoire de Transformations Intégrées de la Matière Renouvelable , Université de Technologie de Compiègne, Sorbonne Universités, EA 4297, Centre de Recherches de Royallieu , BP 20529, 60205 Compiègne Cedex , France
| | - Olivier Bals
- a Laboratoire de Transformations Intégrées de la Matière Renouvelable , Université de Technologie de Compiègne, Sorbonne Universités, EA 4297, Centre de Recherches de Royallieu , BP 20529, 60205 Compiègne Cedex , France
| | - Francisco J Barba
- b Department of Food Science, Faculty of Science , University of Copenhagen , Rolighedsvej 26, 1958 Frederiksberg C , Denmark
| | - Viacheslav Mykhailyk
- c Institute of Engineering Thermal Physics, National Academy of Sciences of Ukraine , 2a, str. Zheljabova, Kyiv , Ukraine
| | - Nikolai Lebovka
- a Laboratoire de Transformations Intégrées de la Matière Renouvelable , Université de Technologie de Compiègne, Sorbonne Universités, EA 4297, Centre de Recherches de Royallieu , BP 20529, 60205 Compiègne Cedex , France.,d Institute of Biocolloidal Chemistry, named after F.D. Ovcharenko, NAS of Ukraine , 42, Blvr. Vernadskogo, Kyiv , Ukraine
| | - Eugene Vorobiev
- a Laboratoire de Transformations Intégrées de la Matière Renouvelable , Université de Technologie de Compiègne, Sorbonne Universités, EA 4297, Centre de Recherches de Royallieu , BP 20529, 60205 Compiègne Cedex , France
| |
Collapse
|
41
|
Giteru SG, Oey I, Ali MA. Feasibility of using pulsed electric fields to modify biomacromolecules: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.12.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Gabrić D, Barba F, Roohinejad S, Gharibzahedi SMT, Radojčin M, Putnik P, Bursać Kovačević D. Pulsed electric fields as an alternative to thermal processing for preservation of nutritive and physicochemical properties of beverages: A review. J FOOD PROCESS ENG 2017. [DOI: 10.1111/jfpe.12638] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Domagoj Gabrić
- Faculty of Food Technology and Biotechnology; University of Zagreb, Pierottijeva 6; Zagreb 10000 Croatia
| | - Francisco Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy; Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot; València Spain
| | - Shahin Roohinejad
- Department of Food Technology and Bioprocess Engineering; Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9; Karlsruhe 76131 Germany
- Burn and Wound Healing Research Center, Division of Food and Nutrition; Shiraz University of Medical Sciences; Shiraz Iran
| | | | - Milivoj Radojčin
- University of Novi Sad, Trg Dositeja Obradovića 8; Novi Sad 21000 Republic of Serbia
| | - Predrag Putnik
- Faculty of Food Technology and Biotechnology; University of Zagreb, Pierottijeva 6; Zagreb 10000 Croatia
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology; University of Zagreb, Pierottijeva 6; Zagreb 10000 Croatia
| |
Collapse
|
43
|
The preparation of Fe-glycine complexes by a novel method (pulsed electric fields). Food Chem 2017; 219:468-476. [DOI: 10.1016/j.foodchem.2016.09.129] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/17/2016] [Accepted: 09/19/2016] [Indexed: 11/18/2022]
|
44
|
Rajendran SRCK, Udenigwe CC, Yada RY. Nanochemistry of Protein-Based Delivery Agents. Front Chem 2016; 4:31. [PMID: 27489854 PMCID: PMC4951518 DOI: 10.3389/fchem.2016.00031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/05/2016] [Indexed: 11/13/2022] Open
Abstract
The past decade has seen an increased interest in the conversion of food proteins into functional biomaterials, including their use for loading and delivery of physiologically active compounds such as nutraceuticals and pharmaceuticals. Proteins possess a competitive advantage over other platforms for the development of nanodelivery systems since they are biocompatible, amphipathic, and widely available. Proteins also have unique molecular structures and diverse functional groups that can be selectively modified to alter encapsulation and release properties. A number of physical and chemical methods have been used for preparing protein nanoformulations, each based on different underlying protein chemistry. This review focuses on the chemistry of the reorganization and/or modification of proteins into functional nanostructures for delivery, from the perspective of their preparation, functionality, stability and physiological behavior.
Collapse
Affiliation(s)
| | - Chibuike C Udenigwe
- Department of Environmental Sciences, Dalhousie University Truro, NS, Canada
| | - Rickey Y Yada
- Faculty of Land and Food Systems, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
45
|
Chen FP, Ou SY, Tang CH. Core-Shell Soy Protein-Soy Polysaccharide Complex (Nano)particles as Carriers for Improved Stability and Sustained Release of Curcumin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5053-5059. [PMID: 27243766 DOI: 10.1021/acs.jafc.6b01176] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Using soy protein isolate (SPI) and soy-soluble polysaccharides (SSPS) as polymer matrixes, this study reported a novel process to fabricate unique core-shell complex (nano)particles to perform as carriers for curcumin (a typical poorly soluble bioactive). In the process, curcumin-SPI nanocomplexes were first formed at pH 7.0 and then coated by SSPS. At this pH, the core-shell complex was formed in a way the SPI nanoparticles might be incorporated into the interior of SSPS molecules without distinctly affecting the size and morphology of particles. The core-shell structure was distinctly changed by adjusting pH from 7.0 to 4.0. At pH 4.0, SSPS was strongly bound to the surface of highly aggregated SPI nanoparticles, and as a consequence, much larger complexes were formed. The bioaccessibility of curcumin in the SPI-curcumin complexes was unaffected by the SSPS coating. However, the core-shell complex formation greatly improved the thermal stability and controlled release properties of encapsulated curcumin. The improvement was much better at pH 4.0 than that at pH 7.0. All of the freeze-dried core-shell complex preparations exhibited good redispersion behavior. The findings provide a simple approach to fabricate food-grade delivery systems for improved water dispersion, heat stability, and even controlled release of poorly soluble bioactives.
Collapse
Affiliation(s)
| | - Shi-Yi Ou
- Department of Food Science and Engineering, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| | | |
Collapse
|
46
|
Zhang ZH, Wang LH, Zeng XA, Brennan CS, Brennan M, Han Z. The role of pulsed electric fields treatment in enhancing the stability of amino acid - sugar complexes:- interactions between L-Phenylalanine and β-Cyclodextrin. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zhi-Hong Zhang
- School of Food Science and Technology; South China University of Technology; Guangzhou 510641 China
| | - Lang-Hong Wang
- School of Food Science and Technology; South China University of Technology; Guangzhou 510641 China
| | - Xin-An Zeng
- School of Food Science and Technology; South China University of Technology; Guangzhou 510641 China
| | - Charles S. Brennan
- School of Food Science and Technology; South China University of Technology; Guangzhou 510641 China
- Centre for Food Research and Innovation, Department of Wine; Food and Molecular Biosciences; Lincoln University; Lincoln 85084 New Zealand
| | - Margaret Brennan
- Centre for Food Research and Innovation, Department of Wine; Food and Molecular Biosciences; Lincoln University; Lincoln 85084 New Zealand
| | - Zhong Han
- School of Food Science and Technology; South China University of Technology; Guangzhou 510641 China
| |
Collapse
|
47
|
Liu F, Zou H, Peng J, Hu J, Liu H, Chen Y, Lu F. Removal of copper(II) using deacetylated konjac glucomannan conjugated soy protein isolate. Int J Biol Macromol 2016; 86:338-44. [PMID: 26826287 DOI: 10.1016/j.ijbiomac.2016.01.092] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 01/22/2016] [Accepted: 01/23/2016] [Indexed: 11/15/2022]
Abstract
In this study, an environmentally friendly biosorbent deacetylated konjac glucomannan conjugated soy protein isolate (abbreviated as DKGM-C-SPI) was prepared for Cu(2+) ions removal from aqueous solution. Scanning electron microscopy, Fourier transform infrared spectroscopy and zeta potential analysis revealed successful conjugation of soy protein isolate (SPI) onto deacetylated konjac glucomannan (DKGM) matrix. A comparative adsorption performance of DKGM-C-SPI and DKGM was tested to remove Cu(2+) ions from aqueous solution. DKGM-C-SPI showed the desired adsorption performance for Cu(2+) ions. The adsorption equilibrium of DKGM-C-SPI was achieved within 30 min. The adsorption behavior of DKGM-C-SPI followed a pseudo-second-order reaction model. The maximum Cu(2+) ion adsorption capacities obtained from the Langmuir isotherms fit were shown to be 62.50 mg g(-1) for DKGM-C-SPI and 12.23 mg g(-1) for DKGM. This impressive increase about 5 times in Cu(2+) ion adsorption capacity is attributed to the strong Cu(2+) ion chelating ability of the soy protein isolate (SPI) on the DKGM matrix. These results confirm that the DKGM-C-SPI biosorbent has a potential for Cu(2+) ion extraction from wastewater.
Collapse
Affiliation(s)
- Feng Liu
- College of Applied Chemical Engineering, Shunde Polytechnic, Foshan 528333, PR China.
| | - Hailiang Zou
- College of Applied Chemical Engineering, Shunde Polytechnic, Foshan 528333, PR China
| | - Jianbing Peng
- College of Applied Chemical Engineering, Shunde Polytechnic, Foshan 528333, PR China
| | - Jinwen Hu
- Key Laboratory of Cellulose Lignocellulosics Chemistry, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Hongbo Liu
- College of Applied Chemical Engineering, Shunde Polytechnic, Foshan 528333, PR China
| | - Yanwu Chen
- College of Applied Chemical Engineering, Shunde Polytechnic, Foshan 528333, PR China
| | - Fenghui Lu
- College of Applied Chemical Engineering, Shunde Polytechnic, Foshan 528333, PR China
| |
Collapse
|
48
|
Effects of Pulsed Electric Fields (PEF) on Vitamin C and Its Antioxidant Properties. Int J Mol Sci 2015; 16:24159-73. [PMID: 26473846 PMCID: PMC4632744 DOI: 10.3390/ijms161024159] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/29/2015] [Accepted: 10/07/2015] [Indexed: 11/17/2022] Open
Abstract
In this study, pulsed electric fields (PEF) treatments and their effects on the structure of vitamin C (VIT-C) were estimated by fluorescence and Fourier transform infrared (FT-IR) spectroscopy, the relative content of VIT-C was measured by HPLC and the antioxidant properties of treated VIT-C by DPPH radical scavenging as well as reducing power tests. The fluorescence intensity of treated VIT-C increased slightly compared to the untreated VIT-C. Moreover, the effect of PEF on the structure of VIT-C was observed using the FT-IR spectra. These phenomena indicated that the PEF affected the conformation of VIT-C, which promoted the VIT-C isomer transformed enol-form into keto-form. In addition, the PEF treatments did not suffer the damage to VIT-C and could slow down the oxidation process in involving of experimental conditions by HPLC. The antioxidant properties of the treated VIT-C were enhanced, which was proved by radical scavenging and also the reducing power tests.
Collapse
|
49
|
Taghian Dinani S, Hamdami N, Shahedi M, Havet M, Queveau D. Influence of the electrohydrodynamic process on the properties of dried button mushroom slices: A differential scanning calorimetry (DSC) study. FOOD AND BIOPRODUCTS PROCESSING 2015. [DOI: 10.1016/j.fbp.2015.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Aadil RM, Zeng XA, Sun DW, Wang MS, Liu ZW, Zhang ZH. Combined effects of sonication and pulsed electric field on selected quality parameters of grapefruit juice. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.10.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|