1
|
Zhao Z, Kantono K, Kam R, Le TT, Kitundu E, Chen T, Hamid N. Improving the Bioactivities of Apricot Kernels Through Fermentation: Investigating the Relationship Between Bioactivities, Polyphenols, and Amino Acids Through the Random Forest Regression XAI Approach. Foods 2025; 14:845. [PMID: 40077548 PMCID: PMC11898452 DOI: 10.3390/foods14050845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Apricot kernels are known for being a rich source of oil, protein, and bioactive compounds. This study focused on enhancing the bioactivities of apricot kernels through fermentation. Additionally, this study explored the correlations between polyphenols, amino acids, antioxidant activities, and total phenolic content (TPC). The findings indicated that apricot kernels fermented with Lactiplantibacillus plantarum exhibited increased antioxidant activity, as assessed by the FRAP and CUPRAC methods, and an increased TPC compared to naturally fermented samples. The CUPRAC activity increased significantly from 1.03 to 1.82 mg of ascorbic acid per gram of sample on day 7, and the FRAP activity increased from 4.9 to 12.2 mg of ascorbic acid per gram of sample on day 3 of fermentation. Moreover, the TPC significantly increased from 1.67 to 7.58 mg of gallic acid per gram of sample on day 9 of fermentation. The results further demonstrated that, during the fermentation process, the concentration of hydroxybenzoic acid increased from 0.52 µg/g on day 0 to 5.3 µg/g on day 9. The DL-3-phenyllactic acid content demonstrated a significant increase from 0.42 µg/g on day 0 to 99.62 µg/g on day 5, while the benzoic acid content exhibited a notable increase from 45.33 µg/g to 138.13 µg/g over the fermentation period, with peak levels being observed on day 5. Similarly, most amino acids demonstrated a rise in concentration as the fermentation progressed, peaking on the ninth day. This study further employed random forest regression as a form of explainable artificial intelligence (XAI) to explore the relationships between phenolic compounds, amino acids, and antioxidant activities. Amino acids like L-cystine and L-anserine were found to positively impact FRAP values, while L-histidine and 1-methyl-L-histidine contributed to the CUPRAC antioxidant activity. Notably, hydroxybenzoic acid emerged as a key contributor to both the FRAP value and TPC, highlighting its significance in improving the overall antioxidant capacity of apricot kernels. These findings indicate that, under optimised fermentation conditions, apricot kernels hold promise as functional food ingredients due to the beneficial antioxidant properties observed in this study.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nazimah Hamid
- AUT Centre for Future Foods, School of Science, Faculty of Health and Environment Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (Z.Z.); (K.K.); (R.K.); (T.T.L.); (E.K.); (T.C.)
| |
Collapse
|
2
|
Zhong Y, Zhou Z, Yin Z, Zhang L, Zhang Q, Xie Y, Chen J. Effect of different Agrobacterium rhizogenes strains on hairy root induction and analysis of metabolites in Physalis peruviana L. JOURNAL OF PLANT PHYSIOLOGY 2025; 305:154431. [PMID: 39823760 DOI: 10.1016/j.jplph.2025.154431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
Physalis peruviana L. (P. peruviana) is an edible medicinal plant rich in bioactive phenolics. This study aimed to establish a hairy root (HR) culture of P. peruviana as a potential source for the synthesis of natural compounds. HRs were induced in P. peruviana using different Agrobacterium rhizogenes strains (R1601, C58C1, A4, and K599). Notably, K599 did not induce HR formation, whereas R1601, C58C1, and A4 yielded transformation frequencies of 57.78, 65.14, and 72.31%, respectively. Secondary metabolite production and antioxidant capacity were further examined in HRs induced using C58C1, R1601, and A4. It was found that A. rhizogenes R1601 induced the greatest increase (44% compared to that observed in the non-transformed culture). The methanolic extract of HRs induced by A. rhizogenes R1601 exhibited strong antioxidant capacity, with IC50 values of 1.41 mg DE/mL and 2.33 mg DE/mL for 2,2-diphenyl-1-picrylhydrazyl and 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid), respectively. The HR culture showed higher production of phenolic compounds and higher antioxidant capacity than the non-transformed cultures. Ultra-performance liquid chromatography time-of-flight tandem mass spectrometry was used to identify eight alkaloids, phenolics, and glycoside compounds. A. rhizogenes R1601 is emerging as a possible strain for the mass production of HR and bioactive phenolic compounds in P. peruviana.
Collapse
Affiliation(s)
- Yijia Zhong
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhie Zhou
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lu Zhang
- Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qingfeng Zhang
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yihai Xie
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiguang Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
3
|
Zhong YJ, Wu SF, Zhang L, Yin ZP, Xie YH, Chen JG. In vitro strategy to enhance the production of bioactive polyphenols and caffeoylputrescine in the hairy roots of Physalis peruviana L. Sci Rep 2024; 14:27600. [PMID: 39528517 PMCID: PMC11555210 DOI: 10.1038/s41598-024-77698-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The Rhizobium rhizogene-transformed root culture from Physalis peruviana L. (P. peruviana) may be a promising and novel source of valuable phenolics, including caffeoylputrescine (CP), which is known for antioxidant, antidiabetic, insect-resistant, disease-resistant, and neuroprotective properties. In this study, to improve the production efficiency of phytochemical components in P. peruviana hairy root cultures, we optimized various culture conditions, including the inoculum size, liquid volume, culture media type, carbon source, sucrose concentration, initial pH, and application of elicitors, to enhance the total phenolic content and CP yield in these hairy root cultures. The findings indicate that the use of sucrose as carbon source resulted in the highest biomass (13.28 g DW/L), total phenolic content (6.26 mg/g), and CP yield (2.40 mg/L). The White medium excelled in enhancing the total phenolic content (9.35 mg/g), whereas the B5 medium was most effective for the biomass (13.38 g DW/L) and CP yield (6.30 mg/L). A sucrose concentration of 5% was best for the biomass (18.40 g DW/L), whereas a sucrose concentration of 4% was ideal for the CP yield. Optimal culture conditions were as follows: an inoculum size of 0.5 g/100 mL, a liquid volume of 100 mL in a 250-mL flask, B5 medium, 4% sucrose, and a pH of 5.5. Among the tested elicitors, methyl jasmonate (MeJA) at 100 µM significantly increased the biomass (21.3 g/L), total phenolic content (23.34 mg/g), and CP yield (141.10 mg/L), which represent 0.96-, 2.12-, and 13.04-fold increases, respectively, over the control after 8 days. The optimized HR culture of P. peruviana provides a promising system to enhance the production of CP for pharmaceutical applications.
Collapse
Affiliation(s)
- Yi-Jia Zhong
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shao-Fu Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lu Zhang
- Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhong-Ping Yin
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yi-Hai Xie
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ji-Guang Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
4
|
SAFRIDA, BUDIJANTO S, NURAIDA L, PRIOSOERYANTO BP, SAEPULOH U, MARYA SS, ARDIANSYAH, SHIRAKAWA H. Fermented black rice bran extract inhibit colon cancer proliferation in WiDr cell lines. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- SAFRIDA
- Universitas Teuku Umar, Indonesia; IPB University, Indonesia
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Tjandra L, Setiawan B, Ishartadiati K, Utami SL, Widjaja JH. The Effects Of Tempe Extract On The Oxidative Stress Marker And Lung Pathology In Tuberculosis Wistar Rat. RUSSIAN OPEN MEDICAL JOURNAL 2021. [DOI: 10.15275/rusomj.2021.0412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background and Objective — Tempe (fermented soybean) has the potential as an affordable nutritional support alternative during tuberculosis (TB) infection. The purpose of the study was to assess the efficacy of supplementation with the ethanolic extract of Tempe on the oxidative stress markers alleviation and histological changes in male Wistar rats infected with Mycobacterium tuberculosis. Material and Methods — Thirty-five male Wistar rats were divided randomly into five groups and infected by Mycobacterium tuberculosis strain H37RV intratracheally. Total antioxidant capacity (TAC) and Thiobarbituric Acid Reaction (TBARS) levels were assessed using a colorimetric method while C-reactive protein (CRP) was measured by Elisa method. The lung damage was scored using histopathological parameters. Results — There were no significant differences in the TBARS levels and CRP concentrations compared to control. Tempe extract increased the TAC level at 200 (p=0.011), 400 (p=0.027), and 800 (p=0.029) kg/body weight concentrations compared to control. Perivasculitis and alveolitis mean scores were lower (p<0.05) than control in all supplement groups. Additionally, the mean scores of peribronchiolitis among supplementation groups were decreased (p<0.05) in the 200 and 800 mg/kg body weight, while the granuloma mean score was lower in the 800 mg/kg body weight compared to control. Conclusions — Tempe extract may have a weak efficacy in improving the antioxidant capacity and lung histological condition in TB rat models.
Collapse
Affiliation(s)
| | - Budhi Setiawan
- Wijaya Kusuma University, Surabaya, East Java, Indonesia
| | | | | | | |
Collapse
|
6
|
De Villa R, Roasa J, Mine Y, Tsao R. Impact of solid-state fermentation on factors and mechanisms influencing the bioactive compounds of grains and processing by-products. Crit Rev Food Sci Nutr 2021:1-26. [PMID: 34955050 DOI: 10.1080/10408398.2021.2018989] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cereal and legume grains and their processing by-products are rich sources of bioactives such as phenolics with considerable health potential, but these bioactives suffer from low bioaccessibility and bioavailability, resulting in limited use. Several studies have demonstrated that solid-state fermentation (SSF) with food-grade microorganisms is effective in releasing bound phenolic compounds in cereal and legume products. In this review, we discuss the effect of SSF on cereal and legume grains and their by-products by examining the role of specific microorganisms, their hydrolytic enzymes, fermentability of agri-food substrates, and the potential health benefits of SSF-enhanced bioactive compounds. SSF with fungi (Aspergillus spp. and Rhizopus spp.), bacteria (Bacillus subtilis and lactic acid bacteria (LAB) spp.) and yeast (Saccharomyces cerevisiae) significantly increased the bioactive phenolics and antioxidant capacities in cereal and legume grains and by-products, mainly through carbohydrate-cleaving enzymes. Increased bioactive phenolic and peptide contents of SSF-bioprocessed cereal and legume grains have been implicated for improved antioxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic, and angiotensin-converting-enzyme (ACE) inhibitory effects in fermented agri-food products, but these remain as preliminary results. Future research should focus on the microbial mechanisms, suitability of substrates, and the physiological health benefits of SSF-treated grains and by-products.
Collapse
Affiliation(s)
- Ray De Villa
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Joy Roasa
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Rong Tsao
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| |
Collapse
|
7
|
Yang L, Gao Y, Bajpai VK, El-Kammar HA, Simal-Gandara J, Cao H, Cheng KW, Wang M, Arroo RRJ, Zou L, Farag MA, Zhao Y, Xiao J. Advance toward isolation, extraction, metabolism and health benefits of kaempferol, a major dietary flavonoid with future perspectives. Crit Rev Food Sci Nutr 2021; 63:2773-2789. [PMID: 34554029 DOI: 10.1080/10408398.2021.1980762] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As a major ubiquitous secondary metabolite, flavonoids are widely distributed in planta. Among flavonoids, kaempferol is a typical natural flavonol in diets and medicinal plants with myriad bioactivities, such as anti-inflammatory activity, anti-cancer activity, antioxidant activity, and anti-diabetic activity. However, the natural sources, absorption and metabolism as well as the bioactivities of kaempferol have not been reviewed comprehensively and systematically. This review highlights the latest research progress and the effect of kaempferol in the prevention and treatment of various chronic diseases, as well as its protective health effects, and provides a theoretical basis for future research to be used in nutraceuticals. Further, comparison of the different extraction and analytical methods are presented to highlight the most optimum for PG recovery and its detection in plasma and body fluids. Such review aims at improving the value-added applications of this unique dietary bioactive flavonoids at commercial scale and to provide a reference for its needed further development.
Collapse
Affiliation(s)
- Li Yang
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yongchao Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University Seoul, Seoul, Republic of Korea
| | - Heba A El-Kammar
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Hui Cao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Ka-Wing Cheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | | | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
- Department of Chemistry, School of Sciences and Engineering, American University in Cairo, New Cairo, Egypt
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
8
|
Khosravi A, Razavi SH. Therapeutic effects of polyphenols in fermented soybean and black soybean products. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104467] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
9
|
Leonard W, Zhang P, Ying D, Adhikari B, Fang Z. Fermentation transforms the phenolic profiles and bioactivities of plant-based foods. Biotechnol Adv 2021; 49:107763. [PMID: 33961978 DOI: 10.1016/j.biotechadv.2021.107763] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/21/2022]
Abstract
Phenolics are a group of compounds derived from plants that have displayed potent biological activities and health-promoting effects. Fermentation is one of the most conventional but still prevalent bioprocessing methods in the food industry, with the potential to increase phenolic content and enhance its nutritive value. This review details the biotransformation of different classes of phenolics (hydroxycinnamic and hydroxybenzoic acids, flavonoids, tannins, stilbenoids, lignans, alkylresorcinols) by various microorganisms (lactic acid bacteria, yeast, filamentous fungi) throughout the fermentation process in plant-based foods. Several researchers have commenced the use of metabolic engineering, as in recombinant Saccharomyces cerevisiae yeast and Escherichia coli, to enhance the production of this transformation. The impact of phenolics on the metabolism of microorganisms and fermentation process, although complex, is reviewed for the first time. Moreover, this paper highlights the general effect of fermentation on the food's phenolic content, and its bioaccessibility, bioavailability and bioactivities including antioxidant capacity, anti-cancer, anti-diabetic, anti-inflammation, anti-obesity properties. Phenolics of different classes are converted into compounds that are often more bioactive than the parent compounds, and fermentation generally leads to a higher phenolic content and antioxidant activity in most studies. However, biotransformation of several phenolic classes is less studied due to its low concentration and apparent insignificance to the food system. Therefore, there is potential for application of metabolic engineering to further enhance the content of different phenolic classes and bioactivities in food.
Collapse
Affiliation(s)
- William Leonard
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Danyang Ying
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, VIC 3030, Australia
| | - Benu Adhikari
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
10
|
Wu F, Shi S, Li Y, Miao J, Kang W, Zhang J, Yun A, Liu C. Physiological and biochemical response of different resistant alfalfa cultivars against thrips damage. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:649-663. [PMID: 33854290 PMCID: PMC7981350 DOI: 10.1007/s12298-021-00961-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
To investigate physiological and biochemical changes of thrips-resistant alfalfa (Medicago sativa L. cv. Gan-nong No. 9), we aimed at clarifying the response mechanisms of alfalfa against thrips. Medicago sativa L. cv. including thrips-resistant Gan-nong No.9 (G9), thrips-susceptible Gan-nong No.3 (G3) and highly thrips-susceptible WL363HQ (363) were infested with different thrips densities (3, 5, 7 and 9-thrips per branch). The quantitative change in specific nutrients, secondary metabolites, defensive and antioxidant enzymes were measured at seedling stage of the three alfalfa cultivars. The results showed that with the increase of thrips densities, the damage indices, SS, Pro, flavonoids, tannin and H2O2 in G9, G3 and 363 were significantly increased, but PPO and SOD significantly reduced, compared with CK. Furthermore, the tannin and lignin contents of G9 were significantly higher compared to 363, but SP content was significantly lower than G3 and H2O2 content which was further significantly less compared to 363. Correlation analysis observed that the damage index of the three alfalfa cultivars showed a significant positive association with SS, Pro, flavone, tannin, and H2O2 (P < 0.01), while damage index and DW, Chl (a, b, a + b), PPO and SOD showed a significant negative correlation (P < 0.01). Based on principal component comprehensive evaluation, the 5-thrips adults per branch were the critical inoculation threshold for G9 against thrips injury because the score was - 0.048. These results revealed that thrips damage significantly increased the contents of SS, Pro, flavonoids, tannins and H2O2, as well as significantly declined the activities of PPO and SOD in the three cultivars (P < 0.05), moreover, thrips-resistant G9 markedly accumulated lignin content, POD and CAT activity, inhibited Chl (a + b, b) and SP biosynthesis to resist thrips damage.
Collapse
Affiliation(s)
- Fang Wu
- Pratacultural College, Gansu Agricultural University, Lanzhou, 730070 China
- Key Laboratory of Ecosystem Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-US Center for Grazingland Ecosystem Sustainability, Lanzhou, 730070 China
| | - Shangli Shi
- Pratacultural College, Gansu Agricultural University, Lanzhou, 730070 China
- Key Laboratory of Ecosystem Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-US Center for Grazingland Ecosystem Sustainability, Lanzhou, 730070 China
| | - Yuzhu Li
- Pratacultural College, Gansu Agricultural University, Lanzhou, 730070 China
- Key Laboratory of Ecosystem Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-US Center for Grazingland Ecosystem Sustainability, Lanzhou, 730070 China
| | - Jiamin Miao
- Pratacultural College, Gansu Agricultural University, Lanzhou, 730070 China
- Key Laboratory of Ecosystem Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-US Center for Grazingland Ecosystem Sustainability, Lanzhou, 730070 China
| | - Wenjuan Kang
- Pratacultural College, Gansu Agricultural University, Lanzhou, 730070 China
- Key Laboratory of Ecosystem Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-US Center for Grazingland Ecosystem Sustainability, Lanzhou, 730070 China
| | - Jing Zhang
- Pratacultural College, Gansu Agricultural University, Lanzhou, 730070 China
- Key Laboratory of Ecosystem Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-US Center for Grazingland Ecosystem Sustainability, Lanzhou, 730070 China
| | - A. Yun
- Pratacultural College, Gansu Agricultural University, Lanzhou, 730070 China
- Key Laboratory of Ecosystem Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-US Center for Grazingland Ecosystem Sustainability, Lanzhou, 730070 China
| | - Chang Liu
- Pratacultural College, Gansu Agricultural University, Lanzhou, 730070 China
- Key Laboratory of Ecosystem Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-US Center for Grazingland Ecosystem Sustainability, Lanzhou, 730070 China
| |
Collapse
|
11
|
Lee HJ, Cho HE, Park HJ. Germinated black soybean fermented with Lactobacillus pentosus SC65 alleviates DNFB-induced delayed-type hypersensitivity in C57BL/6N mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113236. [PMID: 32750462 DOI: 10.1016/j.jep.2020.113236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhynchosia nulubilis (black soybean) has many applications in oriental medicine. It is traditionally used to treat disease related with high blood pressure, diabetes, inflammation, and osteoporosis. Furthermore, fermented soybean foods have traditionally been used for immunity enhancement in East Asia. However, the anti-inflammatory effects of germinated R. nulubilis (GR) against delayed-type hypersensitivity (DTH) are not fully understood. AIM OF STUDY This study aimed to investigate the anti-inflammatory effects of germinated Rhynchosia nulubilis (GR) fermented with the lactic acid bacterium Lactobacillus pentosus SC65 (GR-SC65) isolated from pickled burdock. MATERIALS AND METHODS We investigated the effects of GR-SC65 (300 mg/kg/day) on ear thickness and immune cell infiltration in DNFB-induced DTH in mice. We used dexamethasone (3 mg/kg) as a reference drug. Changes in infiltration of CD4+ and CD8+ T cells and NK cells were examined by immunohistochemistry. In addition, we investigated cytokine and chemokine production related to DTH using reverse transcription-polymerase chain reaction. We also investigated DTH-related cytokine production using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. RESULTS Two lactic acid bacterial strains (Lactobacillus pentosus SC65 and Pediococcus pentosaceus ON81A) were selected for fermenting GR due to their high 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity. The total polyphenol contents (TPCs) in GR-SC65 and GR-ON81A were higher than that in unfermented GR (∗∗∗P < 0.001 vs. GR). Content of daidzein, glycitein, and genistein, the deglycosylated form of isoflavonoids, was higher in GR-SC65 than in unfermented GR. The ethanol extracts of GR-SC65 exerted a stronger anti-inflammatory activity than GR by inhibiting pro-inflammatory cytokines, such as tumor necrosis factor (TNF), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in LPS-induced RAW264.7 macrophages. GR-SC65 reduced 1-fluoro-2,4-dinitrofluorobenzene (DNFB)-induced ear swelling and hyperplasia as well as vascular permeability. Fewer infiltrated CD4+ and CD8+ T cells were observed in the ear tissue of the GR-SC65-treated mice than those of the unfermented GR-treated mice. Furthermore, fewer infiltrated NK cells were observed in the GR-SC65 treated mice, than in the GR-treated mice. GR-SC65 significantly diminished the levels of CCL5 and COX-2 mRNAs and increased the level of IL-10 mRNA. CONCLUSIONS These data suggest that GR-SC65 can be used as a health supplement or a prophylactic against delayed-type hypersensitive inflammatory disease.
Collapse
Affiliation(s)
- Hye-Ji Lee
- Department of Food Science and Biotechnology, College of BioNano, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, Republic of Korea
| | - Ha-Eun Cho
- Department of Food Science and Biotechnology, College of BioNano, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, Republic of Korea
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, Republic of Korea.
| |
Collapse
|
12
|
Sangkaew O, Yompakdee C. Fermented Unpolished Black Rice ( Oryza sativa L.) Inhibits Melanogenesis via ERK, p38, and AKT Phosphorylation in B16F10 Melanoma Cells. J Microbiol Biotechnol 2020; 30:1184-1194. [PMID: 32423183 PMCID: PMC9745659 DOI: 10.4014/jmb.2003.03019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Abstract
Melanin is a major factor that darkens skin color as one of the defense systems to prevent the harmful effects of UV light. However, darkened skin from the localized or systemic accumulation of melanin is viewed in many cultures as an esthetic problem. Consequentially, searching for antimelanogenic agents from natural sources is very popular worldwide. Previous screening of fermented rice products, obtained from various rice cultivars fermented with different sources of loog-pang (Thai traditional fermentation starter), revealed that the highest ability to reduce the melanin content in B16F10 melanoma cells was from unpolished black rice fermented with a defined starter mixture of microbes isolated from loog-pang E11. The aim of this study was to investigate the mechanism of the fermented unpolished black rice (FUBR) on the inhibition of melanogenesis in B16F10 melanoma cells. The strongest reduction of cellular melanin content was found in the FUBR sap (FUBRS). The melanin reduction activity was consistent with the significant decrease in the intracellular tyrosinase activity. The FUBRS showed no cytotoxic effect to B16F10 melanoma or Hs68 human fibroblast cell lines. It also significantly reduced the transcript and protein expression levels of tyrosinase, tyrosinase-related protein 1 (TYRP-1), TYRP-2, and microphthalmia-associated transcription factor. Furthermore, it induced a significantly increased level of phosphorylated ERK, p38 and Akt signaling pathways, which likely contributed to the negative regulation of melanogenesis. From these results, a model for the mechanism of FUBRS on melanogenesis inhibition was proposed. Moreover, these results strongly suggested that FUBRS possesses antimelanogenesis activity with high potential for cosmeceutical application as a skin depigmenting agent.
Collapse
Affiliation(s)
- Orrarat Sangkaew
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chulee Yompakdee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
13
|
Chen Y, Wang Y, Chen J, Tang H, Wang C, Li Z, Xiao Y. Bioprocessing of soybeans (Glycine max L.) by solid-state fermentation with Eurotium cristatum YL-1 improves total phenolic content, isoflavone aglycones, and antioxidant activity. RSC Adv 2020; 10:16928-16941. [PMID: 35496929 PMCID: PMC9053166 DOI: 10.1039/c9ra10344a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/22/2020] [Indexed: 12/28/2022] Open
Abstract
In this study, soybean (Glycine max L.) was bioprocessed with fungal strain Eurotium cristatum YL-1 by using the solid-state fermentation (SSF) technique. The effect of SSF on total phenolic content (TPC), isoflavone compositions, and antioxidant activity of soybean during different fermentation periods was evaluated. Results showed that TPC and isoflavone aglycones were significantly increased, whereas glucoside isoflavones were remarkably reduced during SSF. After 15 days of SSF, the TPC, daidzein, genistein, and total aglycones of soybeans were approximately 1.9-, 10.4-, 8.4-, and 9.4-fold higher, respectively, than those of non-fermented soybeans. During SSF, β-glucosidase activity was very high, whereas α-amylase and protease activities were at moderate levels, and cellulase activity was relatively low. A highly positive correlation was found between TPC and the activities of α-amylase (correlation coefficient R2 = 0.9452), β-glucosidase (R2 = 0.9559), cellulase (R2 = 0.9783), and protease (R2 = 0.6785). Linear analysis validated that the β-glucosidase produced by E. cristatum contributed to the bioconversion of soybean isoflavone glucosides into their aglycone forms. The DPPH radical and ABTS˙+ scavenging activity, reducing power, and ferric reducing antioxidant power of soybeans were considerably enhanced during SSF. Principal component analysis and Pearson's correlation analysis verified that the improvement in TPC and isoflavone aglycone content during SSF was mainly responsible for the improved antioxidant capacity of soybeans. Thus, our results demonstrated that solid-state bioprocessing with E. cristatum is an effective approach for the enhancement of the TPC, isoflavone aglycones, and antioxidant capacity of soybeans. Bioprocessed soybean products might be a healthy food supplement rich in antioxidants compared with non-fermented soybean and thus could be a source of natural antioxidants. Solid-state bioprocessing with Eurotium cristatum is an effective approach for the enhancement of total phenolic content, isoflavone aglycones, and antioxidant activity of soybeans.![]()
Collapse
Affiliation(s)
- Yulian Chen
- Hunan Yancun Ecological Farming Technology Co., Ltd
- Changsha
- China
| | - Yuanliang Wang
- College of Food Science and Technology
- Hunan Agricultural University
- Changsha 410128
- China
- Hunan Province Key Laboratory of Food Science and Biotechnology
| | - Jiaxu Chen
- College of Food Science and Technology
- Hunan Agricultural University
- Changsha 410128
- China
| | - Hao Tang
- College of Food Science and Technology
- Hunan Agricultural University
- Changsha 410128
- China
| | - Chuanhua Wang
- College of Food Science and Technology
- Hunan Agricultural University
- Changsha 410128
- China
| | - Zongjun Li
- College of Food Science and Technology
- Hunan Agricultural University
- Changsha 410128
- China
- Hunan Province Key Laboratory of Food Science and Biotechnology
| | - Yu Xiao
- College of Food Science and Technology
- Hunan Agricultural University
- Changsha 410128
- China
| |
Collapse
|
14
|
XIE C, ZENG H, LI J, QIN L. Comprehensive explorations of nutritional, functional and potential tasty components of various types of Sufu, a Chinese fermented soybean appetizer. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.37917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | | | | | - Likang QIN
- Guizhou University, China; Key Laboratory of Agricultural and Animal Products Storage and Processing, China
| |
Collapse
|
15
|
Nirmala FS, Lee H, Kim JS, Jung CH, Ha TY, Jang YJ, Ahn J. Fermentation Improves the Preventive Effect of Soybean Against Bone Loss in Senescence-Accelerated Mouse Prone 6. J Food Sci 2019; 84:349-357. [PMID: 30726579 DOI: 10.1111/1750-3841.14433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/02/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022]
Abstract
Osteopenia is a preclinical phase of osteoporosis, it occurs naturally with aging and increases the risk of bone fractures in elderly males. Previous studies have revealed the beneficial effects of soybean on preventing bone loss due to its isoflavone contents. Fermentation alters the soybean isoflavone contents, that is, isoflavone glucosides is hydrolyzed into aglycones. However, it is not clear how these alterations influences the preventive effect of soybean on bone loss. In this study, we fed senescence-accelerated mouse prone 6 (SAMP6), a model of senile osteopenia, with an equal dosage of nonfermented soybean (NS) or fermented soybean, Doenjang (DJ) for 18 weeks. Mice supplemented with DJ showed 1.13-fold higher bone densities and 1.06-fold longer relative bone lengths than those of osteopenic SAMP6 mice old control (OC), while NS-supplemented mice showed no significant improvement. Supplementation with DJ effectively prevented bone loss in the osteopenia model by the improvement of bone formation and reduction of osteoclastogenesis. In addition, we discovered that DJ increased osteogenesis in SAMP6 mice via BMP2-Smad-Runx2 signaling. These results suggest that the fermentation process could enhance bone loss prevention by soybean and dietary supplementation with fermented soybeans may be beneficial for bone health. PRACTICAL APPLICATION: Soybean fermentation improved the preventive effects of soybean on bone loss. Therefore, the consumption of fermented soybean, Doenjang, is a potential alternative for aging-related bone loss therapy.
Collapse
Affiliation(s)
- Farida Sukma Nirmala
- Dep. of Food Biotechnology, Korea Univ. of Technology, Daejeon, Republic of Korea
| | - Hyunjung Lee
- Div. of Nutrition and Metabolism Research, Korea Food Research Inst., Wanju, Republic of Korea
| | - Ji-Sun Kim
- Dep. of Biotechnology, College of Life Sciences and Biotechnology, Korea Univ., Seoul, Republic of Korea
- Div. of Nutrition and Metabolism Research, Korea Food Research Inst., Wanju, Republic of Korea
| | - Chang Hwa Jung
- Dep. of Food Biotechnology, Korea Univ. of Technology, Daejeon, Republic of Korea
- Div. of Nutrition and Metabolism Research, Korea Food Research Inst., Wanju, Republic of Korea
| | - Tae-Youl Ha
- Dep. of Food Biotechnology, Korea Univ. of Technology, Daejeon, Republic of Korea
- Div. of Nutrition and Metabolism Research, Korea Food Research Inst., Wanju, Republic of Korea
| | - Young Jin Jang
- Division of Nutrition and Metabolism Research, Korea Food Research Institute, Wanju, Republic of Korea
| | - Jiyun Ahn
- Dep. of Food Biotechnology, Korea Univ. of Technology, Daejeon, Republic of Korea
- Div. of Nutrition and Metabolism Research, Korea Food Research Inst., Wanju, Republic of Korea
| |
Collapse
|
16
|
|
17
|
Cooray ST, Chen WN. Valorization of brewer’s spent grain using fungi solid-state fermentation to enhance nutritional value. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
18
|
Monteiro NE, Queirós LD, Lopes DB, Pedro AO, Macedo GA. Impact of microbiota on the use and effects of isoflavones in the relief of climacteric symptoms in menopausal women – A review. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
19
|
Impact of fermentation degree on phenolic compositions and bioactivities during the fermentation of guava leaves with Monascus anka and Bacillus sp. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
20
|
Dulf FV, Vodnar DC, Dulf EH, Diaconeasa Z, Socaciu C. Liberation and recovery of phenolic antioxidants and lipids in chokeberry (Aronia melanocarpa) pomace by solid-state bioprocessing using Aspergillus niger and Rhizopus oligosporus strains. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.08.084] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Chen YQ, Su HJ, Ouyang Y, Wang JM, Yang XQ, Hu WF. Preparation and characterisation of glyceollin-enriched soya bean protein using solid-state fermentation. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan-Qiong Chen
- Research and Development Center of Food Proteins; School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Hua-Jia Su
- Research and Development Center of Food Proteins; School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Ying Ouyang
- Research and Development Center of Food Proteins; School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Jin-Mei Wang
- Research and Development Center of Food Proteins; School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Xiao-Quan Yang
- Research and Development Center of Food Proteins; School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Wen-Feng Hu
- College of Food Science; South China University of Agricultural; Guangzhou 510642 China
| |
Collapse
|
22
|
Gan RY, Li HB, Gunaratne A, Sui ZQ, Corke H. Effects of Fermented Edible Seeds and Their Products on Human Health: Bioactive Components and Bioactivities. Compr Rev Food Sci Food Saf 2017; 16:489-531. [DOI: 10.1111/1541-4337.12257] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Ren-You Gan
- Dept. of Food Science and Engineering, School of Agriculture and Biology; Shanghai Jiao Tong Univ.; Shanghai 200240 China
- School of Biological Sciences; The Univ. of Hong Kong; Pokfulam Road Hong Kong
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health; Sun Yat-sen Univ.; Guangzhou 510080 China
| | - Anil Gunaratne
- Faculty of Agricultural Sciences; Sabaragamuwa Univ. of Sri Lanka; P.O. Box 02 Belihuloya Sri Lanka
| | - Zhong-Quan Sui
- Dept. of Food Science and Engineering, School of Agriculture and Biology; Shanghai Jiao Tong Univ.; Shanghai 200240 China
| | - Harold Corke
- Dept. of Food Science and Engineering, School of Agriculture and Biology; Shanghai Jiao Tong Univ.; Shanghai 200240 China
| |
Collapse
|
23
|
Xiao Y, Zhang B, Chen Y, Miao J, Zhang Q, Rui X, Dong M. Solid-State Bioprocessing with Cordyceps militarisEnhanced Antioxidant Activity and DNA Damage Protection of Red Beans ( Phaseolus angularis). Cereal Chem 2017. [DOI: 10.1094/cchem-03-16-0046-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yu Xiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yulian Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Junqing Miao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiuqin Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Rui
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
24
|
Huynh NT, Smagghe G, Gonzales GB, Van Camp J, Raes K. Extraction and bioconversion of kaempferol metabolites from cauliflower outer leaves through fungal fermentation. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Hydrolysis of isoflavone in black soy milk using cellulose bead as enzyme immobilizer. J Food Drug Anal 2016; 24:788-795. [PMID: 28911617 PMCID: PMC9337284 DOI: 10.1016/j.jfda.2016.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 03/17/2016] [Accepted: 03/23/2016] [Indexed: 02/03/2023] Open
Abstract
The establishment of a catalytic system to enrich isoflavone aglycones in black soybean milk was investigated in this study. Beta-glucosidase, which was covalently immobilized onto cellulose beads, exhibited a significant efficiency for the conversion of 4-nitrophenyl β-d-glucuronide to p-nitrophenol over the sol–gel method. The Michaelis constant (Km) of the cellulose bead enzymatic system was determined to be 1.50 ± 0.10 mM. Operational reusability of the cellulose bead enzymatic system was justified for more than 10 batch reactions in black soy milk. Moreover, the storage stability verification indicated that the cellulose bead catalytic system was able to sustain its highest catalytic activity for 10 days. High-performance liquid chromatography results demonstrated that this enzymatic system required only 30 minutes to achieve complete isoflavone deglycosylation, and the aglycone content in the total isoflavones in black soy milk was enriched by 67% within 30 minutes by the cellulose bead enzymatic system.
Collapse
|
26
|
Liu CT, Erh MH, Lin SP, Lo KY, Chen KI, Cheng KC. Enrichment of two isoflavone aglycones in black soymilk by Rhizopus oligosporus NTU 5 in a plastic composite support bioreactor. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3779-3786. [PMID: 26676892 DOI: 10.1002/jsfa.7569] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND A plastic composite support (PCS) bioreactor was implemented to evaluate the effects on isoflavone deglycosylation in black soymilk fermented by Rhizopus oligosporus NTU 5. RESULTS Evaluation for the optimal PCS for mycelia immobilisation was conducted, which led to the significant results that the most mycelium weight (0.237 g per PCS, P < 0.05) is held by an S-type PCS; therefore, it was selected for black soymilk fermentation. It was found that the PCS fermentation system without pH control exhibits better efficiency of isoflavone bioconversion (daidzin to daidzein, and genistin to genistein) than the one with pH control at pH 6.5. As for the long-run fermentation, those without pH control indeed accelerate the isoflavone bioconversion by continuously releasing β-glucosidase into soymilk. Deglycosylation can be completed in 8 to 24 h and sustained for at least 34 days as 26 batches. The non-pH-control fermentation system also exhibits the highest total phenolic content (ranged from 0.147 to 0.340 mg GAE mL(-1) sample) when compared to the pH-controlled and suspended ones. Meanwhile, the black soymilk from the 22nd batch with 8 h fermentation demonstrated the highest DPPH radical scavenging effect (54.7%). CONCLUSION A repeated-batch PCS fermentation system was established to accelerate the deglycosylation rate of isoflavone in black soymilk. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chi-Te Liu
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Mei-Hui Erh
- Graduate Institute of Food Science & Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Shin-Pin Lin
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Kuan-I Chen
- Graduate Institute of Food Science & Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
- Graduate Institute of Food Science & Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| |
Collapse
|
27
|
Cai RC, Li L, Yang M, Cheung HY, Fu L. Changes in bioactive compounds and their relationship to antioxidant activity in white sufu during manufacturing. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13149] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ruo-chun Cai
- Research and Development Center of Food Proteins; College of Food Science and Engineering; South China University of Technology; Guangzhou 510641 China
| | - Li Li
- Research and Development Center of Food Proteins; College of Food Science and Engineering; South China University of Technology; Guangzhou 510641 China
| | - Mei Yang
- Research Group for Bioactive Products; Department of Biomedical Sciences; City University of Hong Kong; Tat Chee Avenue Hong Kong SAR China
| | - Hon-Yeung Cheung
- Research Group for Bioactive Products; Department of Biomedical Sciences; City University of Hong Kong; Tat Chee Avenue Hong Kong SAR China
| | - Liang Fu
- Department of Food Science and Engineering; Jinan University; Guangzhou 510632 China
| |
Collapse
|
28
|
Gan RY, Shah NP, Wang MF, Lui WY, Corke H. Fermentation alters antioxidant capacity and polyphenol distribution in selected edible legumes. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13062] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ren-You Gan
- School of Biological Sciences; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Nagendra P. Shah
- School of Biological Sciences; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Ming-Fu Wang
- School of Biological Sciences; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Wing-Yee Lui
- School of Biological Sciences; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Harold Corke
- School of Biological Sciences; The University of Hong Kong; Pokfulam Road Hong Kong China
- Glyn O. Phillips Hydrocolloid Research Centre; Hubei University of Technology; No.28 Nanli Road, Hong-shan District Wuchang Wuhan China
| |
Collapse
|
29
|
BUCUR MP, RADULESCU MC, BUCUR B, RADU GL. Low-interferences Determination of the Antioxidant Capacity in Fruits Juices Based on Xanthine Oxidase and Mediated Amperometric Measurements in the Reduction Mode. ANAL SCI 2016; 32:135-40. [DOI: 10.2116/analsci.32.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Madalina-Petruta BUCUR
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences
| | | | - Bogdan BUCUR
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences
| | - Gabriel Lucian RADU
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences
| |
Collapse
|
30
|
Xiao Y, Fan J, Chen Y, Rui X, Zhang Q, Dong M. Enhanced total phenolic and isoflavone aglycone content, antioxidant activity and DNA damage protection of soybeans processed by solid state fermentation with Rhizopus oligosporus RT-3. RSC Adv 2016. [DOI: 10.1039/c6ra00074f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study,Rhizopus oligosporusRT-3, which was first isolated in our group, was used for solid state fermentation of soybeans (R. oligosporus-fermented soybeans, RFS) in a short time (22 h).
Collapse
Affiliation(s)
- Yu Xiao
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| | - Juan Fan
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| | - Yulian Chen
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| | - Xin Rui
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| | - Qiuqin Zhang
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| | - Mingsheng Dong
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| |
Collapse
|
31
|
Rochín-Medina JJ, Gutiérrez-Dorado R, Sánchez-Magaña LM, Milán-Carrillo J, Cuevas-Rodríguez EO, Mora-Rochín S, Valdez-Ortiz A, Reyes-Moreno C. Enhancement of nutritional properties, and antioxidant and antihypertensive potential of black common bean seeds by optimizing the solid state bioconversion process. Int J Food Sci Nutr 2015; 66:498-504. [PMID: 26166006 DOI: 10.3109/09637486.2015.1052377] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this work was to obtain a functional flour with enhanced nutritional properties, and antioxidant and antihypertensive potential from black bean seeds by optimizing the solid state bioconversion (SSB) process using a Rhizopus oligoporus strain. Response surface methodology was applied as optimization technique. A central composite experimental design with two factors [fermentation temperature (FT) = 30-40 °C/fermentation time (Ft) = 6-108 h] and five levels was used (13 treatments). The bioprocessed cotyledons from each treatment were dried, milled, and blended with its previously dried-milled seed coats. The best combination FT/Ft of SSB to obtain the functional flour was 38 °C/100 h. SSB increased the calculated protein efficiency ratio (from 1.59 to 2.40), antioxidant activity (from 13 948 to 22 733 µmol ET/100 g, dw), total phenolic compounds (TPC) (from 190 to 432 mg EGA/100 g, dw) and antihypertensive potential (IC(50) from 95.57 to 0.0321 µg/mL). SSB is an effective strategy to improve the TPC of common beans for enhanced functionality.
Collapse
|
32
|
Kapravelou G, Martínez R, Andrade AM, López Chaves C, López-Jurado M, Aranda P, Arrebola F, Cañizares FJ, Galisteo M, Porres JM. Improvement of the antioxidant and hypolipidaemic effects of cowpea flours (Vigna unguiculata) by fermentation: results of in vitro and in vivo experiments. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:1207-16. [PMID: 25043425 DOI: 10.1002/jsfa.6809] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/16/2014] [Accepted: 07/02/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND The antioxidant capacity and hypolipidaemic effects of Vigna unguiculata, as well as their potential improvement by different fermentation and thermal processes were studied using in vitro and in vivo methods. RESULTS Phenolic content and reducing capacity of legume acetone extract were significantly increased by different fermentation processes, and by the thermal treatment of fermented legume flours. TBARS inhibiting capacity was increased by fermentation but not by thermal treatment. A higher ability to decrease Cu(2+)/H2O2-induced electrophoretic mobility of LDL was found in fermented when compared to raw legume extracts, and a higher protective effect on short term metabolic status of HT-29 cells was found for raw and lactobacillus-fermented Vigna followed by naturally fermented Vigna extracts. Significant improvements in plasma antioxidant capacity and hepatic activity of antioxidant enzymes were observed in rats that consumed fermented legume flours when compared to the untreated legume or a casein-methionine control diet. In addition, liver weight and plasma levels of cholesterol and triglycerides were also positively affected by untreated or naturally fermented Vigna. CONCLUSION V. unguiculata has demonstrated its potential as a functional food with interesting antioxidant and lipid lowering properties, which can be further augmented by fermentation processes associated or not to thermal processing.
Collapse
Affiliation(s)
- Garyfallia Kapravelou
- Department of Physiology, Institute of Nutrition and Food Technology, University of Granada, Campus Universitario de Cartuja s/n, Granada, 18071, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Huynh NT, Van Camp J, Smagghe G, Raes K. Improved release and metabolism of flavonoids by steered fermentation processes: a review. Int J Mol Sci 2014; 15:19369-88. [PMID: 25347275 PMCID: PMC4264116 DOI: 10.3390/ijms151119369] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 01/17/2023] Open
Abstract
This paper provides an overview on steered fermentation processes to release phenolic compounds from plant-based matrices, as well as on their potential application to convert phenolic compounds into unique metabolites. The ability of fermentation to improve the yield and to change the profile of phenolic compounds is mainly due to the release of bound phenolic compounds, as a consequence of the degradation of the cell wall structure by microbial enzymes produced during fermentation. Moreover, the microbial metabolism of phenolic compounds results in a large array of new metabolites through different bioconversion pathways such as glycosylation, deglycosylation, ring cleavage, methylation, glucuronidation and sulfate conjugation, depending on the microbial strains and substrates used. A whole range of metabolites is produced, however metabolic pathways related to the formation and bioactivities, and often quantification of the metabolites are highly underinvestigated. This strategy could have potential to produce extracts with a high-added value from plant-based matrices.
Collapse
Affiliation(s)
- Nguyen Thai Huynh
- Department of Industrial Biological Sciences, Faculty of Bioscience Engineering, Ghent University-Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium.
| | - John Van Camp
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Katleen Raes
- Department of Industrial Biological Sciences, Faculty of Bioscience Engineering, Ghent University-Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium.
| |
Collapse
|
34
|
Sánchez-Magaña LM, Cuevas-Rodríguez EO, Gutiérrez-Dorado R, Ayala-Rodríguez AE, Valdez-Ortiz A, Milán-Carrillo J, Reyes-Moreno C. Solid-state bioconversion of chickpea (Cicer arietinumL.) byRhizopus oligosporusto improve total phenolic content, antioxidant activity and hypoglycemic functionality. Int J Food Sci Nutr 2014; 65:558-64. [DOI: 10.3109/09637486.2014.893284] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Maitan-Alfenas GP, de A Lage LG, de Almeida MN, Visser EM, de Rezende ST, Guimarães VM. Hydrolysis of soybean isoflavones by Debaryomyces hansenii UFV-1 immobilised cells and free β-glucosidase. Food Chem 2014; 146:429-36. [PMID: 24176363 DOI: 10.1016/j.foodchem.2013.09.099] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/02/2013] [Accepted: 09/16/2013] [Indexed: 11/24/2022]
Abstract
An intracellular β-glucosidase from Debaryomyceshansenii UFV-1 was produced in an YP medium with cellobiose as the carbon source. This enzyme was purified, characterised and presented a Mr of 65.15kDa. Yeast cells containing the intracellular β-glucosidase were immobilised in calcium alginate. The free β-glucosidase and immobilised cells containing the enzyme presented optima values of pH and temperature of 6.0 and 45°C and 5.5 and 50°C, respectively. The free enzyme maintained 62% and 47% of its original activity after 90days at 4°C and after 15days at room temperature, respectively. The immobilisation process resulted in higher enzyme thermostability at 45 and 50°C. Soy molasses treatment with the free enzyme and the immobilised cells containing β-glucosidase, for 2h at 40°C, promoted efficient hydrolysis of isoflavone glicosides to their aglycon forms. The results suggest that this enzyme could be used in the food industry, in the free or immobilised forms, for a safe and efficient process to hydrolyse isoflavone glycosides in soy molasses.
Collapse
Affiliation(s)
- Gabriela P Maitan-Alfenas
- Dep. Bioquímica e Biologia Molecular, BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36.570-000, Brazil
| | | | | | | | | | | |
Collapse
|
36
|
Lee SH, Seo MH, Oh DK. Deglycosylation of isoflavones in isoflavone-rich soy germ flour by Aspergillus oryzae KACC 40247. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:12101-10. [PMID: 24266868 DOI: 10.1021/jf403130n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Aspergillus oryzae KACC 40247 was selected as an efficient daidzein-producing fungus from strains of the genus Aspergillus by using 5% (w/v) soy germ flour (SGF) as an isoflavone-glycoside-rich medium. The culture conditions, including SGF concentration, agitation speed, initial pH, temperature, and time, were optimized as follows: 7% (w/v) SGF, initial pH 6.0, 33 °C, 300 rpm, and 24 h in a 100 mL baffled flask. The determined amount of isoflavone aglycons in SGF using 50% ethyl acetate was the highest among the solvent systems tested and it was 3.7-fold higher than that using 70% methanol. Under the optimized conditions, the content and concentration of daidzein were 134 mg/g of SGF and 9.4 g/L, respectively, with a productivity of 391 ± 2.8 mg/L/h, and those of isoflavone aglycons were 165 mg/g of SGF and 11.5 g/L, respectively, with a productivity of 479 mg/L/h. Optimization of culture conditions increased the content, concentration, and productivity of isoflavone aglycons by 3.1-, 3.0-, and 3.7-fold, respectively. To our knowledge, this is the highest production of isoflavone aglycons reported to date.
Collapse
Affiliation(s)
- Seon-Hwa Lee
- Department of Bioscience and Biotechnology, Konkuk University , Seoul 143-701, Republic of Korea
| | | | | |
Collapse
|