1
|
Planells-Cárcel A, Kazakova J, Pérez C, Gonzalez-Ramirez M, Garcia-Parrilla MC, Guillamón JM. A consortium of different Saccharomyces species enhances the content of bioactive tryptophan-derived compounds in wine fermentations. Int J Food Microbiol 2024; 416:110681. [PMID: 38490108 DOI: 10.1016/j.ijfoodmicro.2024.110681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
In recent years, the presence of molecules derived from aromatic amino acids in wines has been increasingly demonstrated to have a significant influence on wine quality and stability. In addition, interactions between different yeast species have been observed to influence these final properties. In this study, a screening of 81 yeast strains from different environments was carried out to establish a consortium that would promote the improvement of indolic compound levels in wine. Two strains, Saccharomyces uvarum and Saccharomyces eubayanus, with robust fermentative capacity were selected to be combined with a Saccharomyces cerevisiae strain with a predisposition towards the production of indolic compounds. Fermentation dynamics were studied in pure cultures, co-inoculations and sequential inoculations, analysing strain interactions and end-of-fermentation characteristics. Fermentations showing significant interactions were further analyzed for the resulting indolic compounds and aroma profile, with the aim of observing potential interactions and synergies resulting from the combination of different strains in the final wine. Sequential inoculation of S. cerevisiae after S. uvarum or S. eubayanus was observed to increase indolic compound levels, particularly serotonin and 3-indoleacetic acid. This study is the first to demonstrate how the formation of microbial consortia can serve as a useful strategy to enhance compounds with interesting properties in wine, paving the way for future studies and combinations.
Collapse
Affiliation(s)
- Andrés Planells-Cárcel
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, 46980 Paterna, Spain
| | - Julia Kazakova
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González 2, 41012 Sevilla, Spain
| | - Cristina Pérez
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, 46980 Paterna, Spain
| | - Marina Gonzalez-Ramirez
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González 2, 41012 Sevilla, Spain
| | - M Carmen Garcia-Parrilla
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González 2, 41012 Sevilla, Spain
| | - José M Guillamón
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, 46980 Paterna, Spain.
| |
Collapse
|
2
|
Kung HC, Bui NH, Huang BW, Cheruiyot NK, Chang-Chien GP. Biosynthetic Pathways of Tryptophan Metabolites in Saccharomyces cerevisiae Strain: Insights and Implications. Int J Mol Sci 2024; 25:4747. [PMID: 38731967 PMCID: PMC11083699 DOI: 10.3390/ijms25094747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Tryptophan metabolites, such as 5-hydroxytryptophan (5-HTP), serotonin, and melatonin, hold significant promise as supplements for managing various mood-related disorders, including depression and insomnia. However, their chemical production via chemical synthesis and phytochemical extraction presents drawbacks, such as the generation of toxic byproducts and low yields. In this study, we explore an alternative approach utilizing S. cerevisiae STG S101 for biosynthesis. Through a series of eleven experiments employing different combinations of tryptophan supplementation, Tween 20, and HEPES buffer, we investigated the production of these indolamines. The tryptophan metabolites were analyzed using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Notably, setups replacing peptone in the YPD media with tryptophan (Run 3) and incorporating tryptophan along with 25 mM HEPES buffer (Run 4) demonstrated successful biosynthesis of 5-HTP and serotonin. The highest 5-HTP and serotonin concentrations were 58.9 ± 16.0 mg L-1 and 0.0650 ± 0.00211 mg L-1, respectively. Melatonin concentrations were undetected in all the setups. These findings underscore the potential of using probiotic yeast strains as a safer and conceivably more cost-effective alternative for indolamine synthesis. The utilization of probiotic strains presents a promising avenue, potentially offering scalability, sustainability, reduced environmental impact, and feasibility for large-scale production.
Collapse
Affiliation(s)
- Hsin-Chieh Kung
- Institute of Environmental Toxin and Emerging Contaminant, Cheng Shiu University, Kaohsiung 83347, Taiwan; (H.-C.K.); (N.-H.B.)
| | - Ngoc-Han Bui
- Institute of Environmental Toxin and Emerging Contaminant, Cheng Shiu University, Kaohsiung 83347, Taiwan; (H.-C.K.); (N.-H.B.)
| | - Bo-Wun Huang
- Department of Mechanical and Institute of Mechatronic Engineering, Cheng Shiu University, Kaohsiung 83347, Taiwan;
| | - Nicholas Kiprotich Cheruiyot
- Institute of Environmental Toxin and Emerging Contaminant, Cheng Shiu University, Kaohsiung 83347, Taiwan; (H.-C.K.); (N.-H.B.)
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 83347, Taiwan
| | - Guo-Ping Chang-Chien
- Institute of Environmental Toxin and Emerging Contaminant, Cheng Shiu University, Kaohsiung 83347, Taiwan; (H.-C.K.); (N.-H.B.)
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 83347, Taiwan
| |
Collapse
|
3
|
Yılmaz C, Ecem Berk Ş, Gökmen V. Effect of different stress conditions on the formation of amino acid derivatives by Brewer's and Baker's yeast during fermentation. Food Chem 2024; 435:137513. [PMID: 37774628 DOI: 10.1016/j.foodchem.2023.137513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
The effects of environmental stresses on the formation of amino acid derivatives by Saccharomyces cerevisiae NCYC 88 and Saccharomyces cerevisiae NCYC 79 were investigated. Fermentation was performed in model systems under different temperature, pH, alcohol, phenolic, and osmotic stress conditions, as well as in beer and dough. According to stress response molecules, yeasts were more affected by osmotic, temperature, and alcohol stresses. Both yeast strains increased the formation of kynurenic acid, tryptophan ethyl ester, tryptophol, and gamma-aminobutyric acid under osmotic stress conditions in model systems. Indole-3-acetic acid was found to be higher in the ferulic acid stress dough (262 µg/kg dry weight, d.w.) compared to the control dough (132 µg/kg d.w.) at the end of the fermentation. The results may enable the development of new strategies for designing novel foods with a desired composition of bioactive amino acid derivatives.
Collapse
Affiliation(s)
- Cemile Yılmaz
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkiye
| | - Şenel Ecem Berk
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkiye
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkiye.
| |
Collapse
|
4
|
Baenas N, García-Viguera C, Domínguez-Perles R, Medina S. Winery By-Products as Sources of Bioactive Tryptophan, Serotonin, and Melatonin: Contributions to the Antioxidant Power. Foods 2023; 12:foods12081571. [PMID: 37107366 PMCID: PMC10137535 DOI: 10.3390/foods12081571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The amino acid tryptophan and its derived molecules serotonin and melatonin are involved in a wide range of physiological functions that contribute significantly to human health, namely antioxidant, immune-active, and neurological properties. Grapes and wine are a source of these compounds, but their presence in wine by-products remains underexplored. Therefore, the aim of this work was the identification and quantification of tryptophan, serotonin, and melatonin in winery by-products (grape stems, grape pomace, and wine lees) by ultra-high performance liquid chromatography coupled to electrospray ionization and mass spectrometer with triple-quadrupole technology (UHPLC-ESI-QqQ-MS/MS), as well as the evaluation of the extracts obtained (by applying specific extraction conditions for each of them) for their antioxidant and reducing capacity (by three different and complementary methods: FRAP, ABTS•+, and ORAC). Furthermore, correlation analyses were developed to establish the contribution of the different analytes to the total antioxidant activity. The main results obtained pointed out grape stems as the by-product with the highest tryptophan content (96.28 mg/kg dw) and antioxidant capacity (142.86, 166.72, and 363.24 mmol TE/kg dw, FRAP, ABTS•+, and ORAC, respectively), while serotonin and melatonin were the predominant derivatives in grape pomace (0.086 and 0.902 µg/kg dw, respectively). The antioxidant capacity of the standards was also analysed at the concentrations found in the matrices studied. A significant correlation was found between the concentration of the pure tryptophan standard and the antioxidant capacity (ABTS•+, r2 = 0.891 at p < 0.001 (***); FRAP, r2 = 0.885 at p < 0.01 (**); and ORAC, r2 = 0.854 at p < 0.01 (**)). According to these results, winery by-products can be highlighted as valuable materials to be used as novel ingredients containing tryptophan, serotonin, and melatonin, while tryptophan was identified as the most relevant contributor (out of phenolic compounds) to the antioxidant capacity exhibited by wine by-products.
Collapse
Affiliation(s)
- Nieves Baenas
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare-Nostrum", Campus de Espinardo, University of Murcia, 30100 Murcia, Spain
| | - Cristina García-Viguera
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Departamento de Ciencia y Tecnología de, Alimentos, CEBAS-CSIC, Campus of the University of Murcia-25, Espinardo, 30100 Murcia, Spain
| | - Raúl Domínguez-Perles
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Departamento de Ciencia y Tecnología de, Alimentos, CEBAS-CSIC, Campus of the University of Murcia-25, Espinardo, 30100 Murcia, Spain
| | - Sonia Medina
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Departamento de Ciencia y Tecnología de, Alimentos, CEBAS-CSIC, Campus of the University of Murcia-25, Espinardo, 30100 Murcia, Spain
| |
Collapse
|
5
|
Xie X, Ding D, Bai D, Zhu Y, Sun W, Sun Y, Zhang D. Melatonin biosynthesis pathways in nature and its production in engineered microorganisms. Synth Syst Biotechnol 2022; 7:544-553. [PMID: 35087957 PMCID: PMC8761603 DOI: 10.1016/j.synbio.2021.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
Abstract
Melatonin is a biogenic amine that can be found in plants, animals and microorganism. The metabolic pathway of melatonin is different in various organisms, and biosynthetic endogenous melatonin acts as a molecular signal and antioxidant protection against external stress. Microbial synthesis pathways of melatonin are similar to those of animals but different from those of plants. At present, the method of using microorganism fermentation to produce melatonin is gradually prevailing, and exploring the biosynthetic pathway of melatonin to modify microorganism is becoming the mainstream, which has more advantages than traditional chemical synthesis. Here, we review recent advances in the synthesis, optimization of melatonin pathway. l-tryptophan is one of the two crucial precursors for the synthesis of melatonin, which can be produced through a four-step reaction. Enzymes involved in melatonin synthesis have low specificity and catalytic efficiency. Site-directed mutation, directed evolution or promotion of cofactor synthesis can enhance enzyme activity and increase the metabolic flow to promote microbial melatonin production. On the whole, the status and bottleneck of melatonin biosynthesis can be improved to a higher level, providing an effective reference for future microbial modification.
Collapse
Affiliation(s)
- Xiaotong Xie
- Dalian Polytechnic University, Dalian, 116000, PR China
| | - Dongqin Ding
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Danyang Bai
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Yaru Zhu
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Wei Sun
- Tianjin University of science and technology, Tianjin, 300308, PR China
| | - Yumei Sun
- Dalian Polytechnic University, Dalian, 116000, PR China
- Corresponding author.
| | - Dawei Zhang
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- Corresponding author. Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China.
| |
Collapse
|
6
|
Shmukler YB, Nikishin DA. Non-Neuronal Transmitter Systems in Bacteria, Non-Nervous Eukaryotes, and Invertebrate Embryos. Biomolecules 2022; 12:271. [PMID: 35204771 PMCID: PMC8961645 DOI: 10.3390/biom12020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Abstract
In 1921, Otto Loewi published his report that ushered in the era of chemical transmission of biological signals. January 2021 marked the 90th anniversary of the birth of Professor Gennady A. Buznikov, who was the first to study the functions of transmitters in embryogenesis. A year earlier it was 60 years since his first publication in this field. These data are a venerable occasion for a review of current knowledge on the mechanisms related to classical transmitters such as 5-hydroxytryptamine, acetylcholine, catecholamines, etc., in animals lacking neural elements and prenervous invertebrate embryos.
Collapse
Affiliation(s)
- Yuri B. Shmukler
- Lab of the Problems of Regeneration, N. K. Koltzov Institute of Developmental Biology RAS, Moscow 119334, Russia;
| | | |
Collapse
|
7
|
Isotopic labelling-based analysis elucidates biosynthesis pathways in Saccharomyces cerevisiae for Melatonin, Serotonin and Hydroxytyrosol formation. Food Chem 2021; 374:131742. [PMID: 34891088 DOI: 10.1016/j.foodchem.2021.131742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/29/2022]
Abstract
Yeasts can synthetise bioactive compounds such as Melatonin (MEL), Serotonin (SER) and Hydroxytyrosol (HT). Deciphering the mechanisms involved in their formation can lead to exploit this fact to increase the bioactive potential of fermented beverages. Quantitative analysis using labelled compounds, 15-N2 l-tryptophan and 13-C tyrosine, allowed tracking the formation of the above-mentioned bioactive compounds during the alcoholic fermentation of synthetic must by two different Saccharomyces cerevisiae strains. Labelled and unlabelled MEL, SER and HT were undoubtedly identified and quantified by High Resolution Mass Spectrometry (HRMS). Our results prove that there are at least two pathways involved in MEL biosynthesis by yeast. One starts with tryptophan as precursor being known for the vertebrates' pathway. Additionally, MEL is produced from SER which in turn is consistent with the plants' biosynthesis pathway. Concerning HT, it can be formed both from labelled tyrosine and from intermediates of the Erlich pathway.
Collapse
|
8
|
Sunyer-Figueres M, Mas A, Beltran G, Torija MJ. Protective Effects of Melatonin on Saccharomyces cerevisiae under Ethanol Stress. Antioxidants (Basel) 2021; 10:antiox10111735. [PMID: 34829606 PMCID: PMC8615028 DOI: 10.3390/antiox10111735] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 01/15/2023] Open
Abstract
During alcoholic fermentation, Saccharomyces cerevisiae is subjected to several stresses, among which ethanol is of capital importance. Melatonin, a bioactive molecule synthesized by yeast during alcoholic fermentation, has an antioxidant role and is proposed to contribute to counteracting fermentation-associated stresses. The aim of this study was to unravel the protective effect of melatonin on yeast cells subjected to ethanol stress. For that purpose, the effect of ethanol concentrations (6 to 12%) on a wine strain and a lab strain of S. cerevisiae was evaluated, monitoring the viability, growth capacity, mortality, and several indicators of oxidative stress over time, such as reactive oxygen species (ROS) accumulation, lipid peroxidation, and the activity of catalase and superoxide dismutase enzymes. In general, ethanol exposure reduced the cell growth of S. cerevisiae and increased mortality, ROS accumulation, lipid peroxidation and antioxidant enzyme activity. Melatonin supplementation softened the effect of ethanol, enhancing cell growth and decreasing oxidative damage by lowering ROS accumulation, lipid peroxidation, and antioxidant enzyme activities. However, the effects of melatonin were dependent on strain, melatonin concentration, and growth phase. The results of this study indicate that melatonin has a protective role against mild ethanol stress, mainly by reducing the oxidative stress triggered by this alcohol.
Collapse
|
9
|
Danilovich ME, Alberto MR, Juárez Tomás MS. Microbial production of beneficial indoleamines (serotonin and melatonin) with potential application to biotechnological products for human health. J Appl Microbiol 2021; 131:1668-1682. [PMID: 33484616 DOI: 10.1111/jam.15012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/08/2021] [Accepted: 01/19/2021] [Indexed: 12/20/2022]
Abstract
Micro-organisms have showed the ability to produce biologically active compounds associated with neurotransmission in higher organisms. In particular, serotonin- and melatonin-producing microbes are valuable sources for the development of eco-friendly bioproducts. Serotonin and melatonin are indoleamines that have received special attention due to their positive effects on human health. These biomolecules exert a critical role in several physiological or pathological processes, including some mental and neurological disorders. This article includes a review of the microbial production of serotonin and melatonin, their functions in micro-organisms and their potential uses as therapeutic and/or preventive agents to improve human health. A description of the quantification methods employed to detect indoleamines and the evidence found concerning their microbial production at laboratory and industrial scale-for application in biotechnological products-is also provided. The microbial ability to synthesize beneficial indoleamines should be further studied and harnessed, to allow the development of sustainable bioprocesses to produce foods and pharmaceuticals for human health.
Collapse
Affiliation(s)
- M E Danilovich
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL)-CONICET, Tucumán, Argentina
| | - M R Alberto
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL)-CONICET, Tucumán, Argentina
| | - M S Juárez Tomás
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)-CONICET, Tucumán, Argentina
| |
Collapse
|
10
|
Fernández-Cruz E, Carrasco-Galán F, Cerezo-López AB, Valero E, Morcillo-Parra MÁ, Beltran G, Torija MJ, Troncoso AM, García-Parrilla MC. Occurrence of melatonin and indolic compounds derived from l-tryptophan yeast metabolism in fermented wort and commercial beers. Food Chem 2020; 331:127192. [PMID: 32569963 DOI: 10.1016/j.foodchem.2020.127192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 01/11/2023]
Abstract
Melatonin and serotonin are bioactive compounds present in foods and beverages and related to neuroprotection and anti-angiogenesis, among other activities. They have been described in wines and the role of yeast in their formation is clear. Thus, this study evaluates the content of these bioactives and other related indolic compounds in beer. For this purpose, commercial beers were analyzed by a validated UHPLC-HRMS method and sample treatment optimized due to the low concentrations expected. Moreover, a wort was fermented with different commercial beer yeast (Abbaye, Diamond, SafAle, SafLager) in order to monitor the formation of these bioactives during the elaboration process. Results show that indolic compounds such as N-acetylserotonin and 3-indoleacetic acid are produced during the alcoholic fermentation of wort. Moreover, the occurrence of four indolic compounds (5-hydroxytryptophan, N-acetylserotonin, 3-indoleacetic acid, l-tryptophan ethyl ester) in commercial beers is reported for the first time.
Collapse
Affiliation(s)
- Edwin Fernández-Cruz
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012 Sevilla, Spain
| | - Fernando Carrasco-Galán
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012 Sevilla, Spain
| | - Ana B Cerezo-López
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012 Sevilla, Spain
| | - Eva Valero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Ctra. Utrera, Km 1, Sevilla 41013, Spain
| | - M Ángeles Morcillo-Parra
- Departament de Bioquimica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, Campus, Sescelades 43007, Tarragona, Spain
| | - Gemma Beltran
- Departament de Bioquimica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, Campus, Sescelades 43007, Tarragona, Spain
| | - María-Jesús Torija
- Departament de Bioquimica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, Campus, Sescelades 43007, Tarragona, Spain
| | - Ana M Troncoso
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012 Sevilla, Spain
| | - M Carmen García-Parrilla
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012 Sevilla, Spain.
| |
Collapse
|
11
|
Albu C, Radu LE, Radu GL. Assessment of Melatonin and Its Precursors Content by a HPLC-MS/MS Method from Different Romanian Wines. ACS OMEGA 2020; 5:27254-27260. [PMID: 33134687 PMCID: PMC7594137 DOI: 10.1021/acsomega.0c03463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/02/2020] [Indexed: 05/04/2023]
Abstract
Because melatonin has strong antioxidant activity and wine is an alcoholic beverage of economic relevance, in the present work, the impact of some variable parameters that may occur in the winemaking process on the concentrations of melatonin and its precursors in Romanian wines was studied. Therefore, a sensitive and selective high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for the simultaneous analysis of melatonin, serotonin, and l-tryptophan, and some method performance parameters including selectivity, detection limit, precision (by comparing with an alternative HPLC-FL method), accuracy, and robustness were validated. These determinations are significant and the final amounts of analytes are dependent on the microorganisms involved in the winemaking process, the grape variety, geographic regions of vineyards, and aging of wines. In the future, the method may be useful to increase the melatonin content and the antioxidant activity in wines by improved steps in the winemaking process, especially based on application of selected yeasts and improved fermentation conditions.
Collapse
Affiliation(s)
- Camelia Albu
- Centre of Bioanalysis,
National Institute of Research and Development for Biological Sciences—Bucharest, 296 Splaiul Independentei, 060031 Bucharest, Romania
- . Phone/Fax: +(40)212.200.900
| | - Letitia Elena Radu
- Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Bulevard, 050474 Bucharest, Romania
| | - Gabriel-Lucian Radu
- Centre of Bioanalysis,
National Institute of Research and Development for Biological Sciences—Bucharest, 296 Splaiul Independentei, 060031 Bucharest, Romania
| |
Collapse
|
12
|
Yılmaz C, Gökmen V. Formation of amino acid derivatives in white and red wines during fermentation: Effects of non-Saccharomyces yeasts and Oenococcus oeni. Food Chem 2020; 343:128415. [PMID: 33268169 DOI: 10.1016/j.foodchem.2020.128415] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/11/2020] [Accepted: 10/14/2020] [Indexed: 01/25/2023]
Abstract
This study aimed to investigate the effect of commercial non-Saccharomyces yeasts and Oenococcus oeni on the formation of amino acid derivatives, some of which have neuroactive properties, during fermentation in laboratory-scale processing of white and red wines. Changes in the content of amino acid derivatives during fermentation of large-scale white and red wines were also evaluated. The highest kynurenic, picolinic, and quinolinic acid concentrations were observed in white wine fermented with Torulaspora delbrueckii, Kluyveromyces thermotolerans and Saccharomyces cerevisiae simultaneously. No changes in the content of picolinic and kynurenic acid were observed during large-scale white wine fermentation. Tryptophan ethyl ester concentration in all wines increased significantly during alcoholic fermentation. Natural and O. oeni malolactic fermentation did not alter the content of picolinic acid, a neuroprotective compound, in red wine. The decrease in the content of tyramine, phenylethylamine, and dopamine in laboratory-scale white wines was observed during alcoholic fermentation.
Collapse
Affiliation(s)
- Cemile Yılmaz
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey.
| |
Collapse
|
13
|
Sunyer-Figueres M, Vázquez J, Mas A, Torija MJ, Beltran G. Transcriptomic Insights into the Effect of Melatonin in Saccharomyces cerevisiae in the Presence and Absence of Oxidative Stress. Antioxidants (Basel) 2020; 9:E947. [PMID: 33019712 PMCID: PMC7650831 DOI: 10.3390/antiox9100947] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022] Open
Abstract
Melatonin is a ubiquitous indolamine that plays important roles in various aspects of biological processes in mammals. In Saccharomyces cerevisiae, melatonin has been reported to exhibit antioxidant properties and to modulate the expression of some genes involved in endogenous defense systems. The aim of this study was to elucidate the role of supplemented melatonin at the transcriptional level in S. cerevisiae in the presence and absence of oxidative stress. This was achieved by exposing yeast cells pretreated with different melatonin concentrations to hydrogen peroxide and assessing the entry of melatonin into the cell and the yeast response at the transcriptional level (by microarray and qPCR analyses) and the physiological level (by analyzing changes in the lipid composition and mitochondrial activity). We found that exogenous melatonin crossed cellular membranes at nanomolar concentrations and modulated the expression of many genes, mainly downregulating the expression of mitochondrial genes in the absence of oxidative stress, triggering a hypoxia-like response, and upregulating them under stress, mainly the cytochrome complex and electron transport chain. Other categories that were enriched by the effect of melatonin were related to transport, antioxidant activity, signaling, and carbohydrate and lipid metabolism. The overall results suggest that melatonin is able to reprogram the cellular machinery to achieve tolerance to oxidative stress.
Collapse
Affiliation(s)
| | | | | | - María-Jesús Torija
- Departament de Bioquímica i Biotecnologia, Grup de Biotecnologia Enològica, Facultat d’Enologia, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1. 43007 Tarragona, Catalunya, Spain; (M.S.-F.); (J.V.); (A.M.); (G.B.)
| | | |
Collapse
|
14
|
Effect of Several Nutrients and Environmental Conditions on Intracellular Melatonin Synthesis in Saccharomyces cerevisiae. Microorganisms 2020; 8:microorganisms8060853. [PMID: 32517009 PMCID: PMC7355912 DOI: 10.3390/microorganisms8060853] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Melatonin is a bioactive compound that is present in fermented beverages and has been described to be synthesized by yeast during alcoholic fermentation. The aim of this study was to assess the capacity of intracellular and extracellular melatonin production by different Saccharomyces strains from diverse food origin and to study the effects of different fermentation parameters, such as sugar and nitrogen concentration, temperature or initial population, on melatonin production using a synthetic grape must medium. Melatonin from fermentation samples was analyzed by liquid chromatography mass spectrometry. Intracellular melatonin synthesis profile did not present differences between yeast strains. However, extracellular melatonin production depended on the yeast origin. Thus, we suggest that melatonin production and secretion during the different yeast growth phases follows a species-specific pattern. Other parameters that affected the fermentation process such as sugar content and low temperature had an impact on intracellular melatonin production profile, as well as the melatonin content within the cell. This study reports the effect of several conditions on the melatonin synthesis profile, highlighting its possible role as a signal molecule.
Collapse
|
15
|
Production of melatonin and other tryptophan derivatives by Oenococcus oeni under winery and laboratory scale. Food Microbiol 2020; 86:103265. [DOI: 10.1016/j.fm.2019.103265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 12/30/2022]
|
16
|
Morcillo-Parra MÁ, González B, Beltran G, Mas A, Torija MJ. Melatonin and glycolytic protein interactions are related to yeast fermentative capacity. Food Microbiol 2020; 87:103398. [PMID: 31948610 DOI: 10.1016/j.fm.2019.103398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/23/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022]
Abstract
Melatonin is an indole amine that interacts with some proteins in mammals, such as calreticulin, calmodulin or sirtuins. In yeast, melatonin is synthetized and interacts with glycolytic proteins during alcoholic fermentation in Saccharomyces cerevisiae. Due to its importance as an antioxidant molecule in both Saccharomyces and non-Saccharomyces yeasts, the aim of this study was to determine the intracellular and extracellular synthesis profiles of melatonin in four non-Saccharomyces strains (Torulaspora delbrueckii, Hanseniaspora uvarum, Starmeralla bacillaris and Metschnikowia pulcherrima) and to confirm whether glycolytic enzymes can also interact with this molecule in non-conventional yeast cells. Melatonin from fermentation samples was analyzed by liquid chromatography mass spectrometry, and proteins bound to melatonin were immunopurified by melatonin-IgG-Dynabeads. Melatonin was produced in a similar pattern in all non-Saccharomyces yeast, with M. pulcherrima and S. bacillaris being the highest producers. However, melatonin only bound to proteins in two non-conventional yeasts, S. bacillaris and T. delbrueckii, which specifically had higher fermentative capacities. Sequence analysis showed that most proteins shared high levels of homology with glycolytic enzymes, but an RNA-binding protein, the elongation alpha factor, which is related to mitochondria, was also identified. This study reports for the first time the interaction of melatonin with proteins inside non-Saccharomyces yeast cells. These results reinforce the possible role of melatonin as a signal molecule, likely related to fermentation metabolism and provide a new perspective for understanding its role in yeast.
Collapse
Affiliation(s)
- María Ángeles Morcillo-Parra
- Department de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Marcel·lí Domingo, 1, 43007, Tarragona, Spain
| | - Beatriz González
- Department de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Marcel·lí Domingo, 1, 43007, Tarragona, Spain
| | - Gemma Beltran
- Department de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Marcel·lí Domingo, 1, 43007, Tarragona, Spain
| | - Albert Mas
- Department de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Marcel·lí Domingo, 1, 43007, Tarragona, Spain
| | - María-Jesús Torija
- Department de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Marcel·lí Domingo, 1, 43007, Tarragona, Spain.
| |
Collapse
|