1
|
Machado F, Gómez-Domínguez I, Hurtado-Ribeira R, Martin D, Coimbra MA, Del Castillo MD, Coreta-Gomes F. In vitro human colonic fermentation of coffee arabinogalactan and melanoidin-rich fractions. Int J Biol Macromol 2024; 275:133740. [PMID: 38986986 DOI: 10.1016/j.ijbiomac.2024.133740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Coffee beverage is a source of dietary fiber composed by arabinogalactans, which can also be associated to proteins and phenolic compounds, originating melanoidins. Human colonic in vitro fermentations of coffee fractions, one rich in melanoidins (Mel) and the other in its parental polysaccharide arabinogalactans (AG), were performed in order to evaluate the metabolites produced by microbiota, namely short-chain fatty acids (SCFA), phenolic compounds, and bile acids. After 48 h of fermentation, a higher fermentability of the carbohydrate fraction of AG (62 %) than that of Mel (27 %) was observed, resulting in a SCFA content of 63 mM and 22 mM, respectively. Supplementation with AG and Mel fractions decreased the acetate:propionate ratio from 4.7 (in the absence of coffee fractions) to 2.5 and 3.5, respectively, suggesting a potential inhibition of HMG-CoA reductase, a rate-limiting enzyme for cholesterol synthesis. The fermentation of coffee fractions yielded dihydroferulic and dihydrocaffeic acids, known to have antioxidant properties. In the presence of Mel, it was observed a decrease (from 0.25 to 0.16 mg/mL) in the production of secondary bile acids, whose high content is associated to the development of several diseases, such as colorectal cancer, neurodegenerative and cardiovascular.
Collapse
Affiliation(s)
- Fernanda Machado
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Irene Gómez-Domínguez
- Institute of Food Science Research (CIAL) (CSIC-UAM), Calle Nicolás Cabrera Madrid, Spain
| | - Raul Hurtado-Ribeira
- Institute of Food Science Research (CIAL) (CSIC-UAM), Calle Nicolás Cabrera Madrid, Spain
| | - Diana Martin
- Institute of Food Science Research (CIAL) (CSIC-UAM), Calle Nicolás Cabrera Madrid, Spain
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Filipe Coreta-Gomes
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
2
|
Ferreira AS, Pereira L, Canfora F, Silva TH, Coimbra MA, Nunes C. Stabilization of Natural Pigments in Ethanolic Solutions for Food Applications: The Case Study of Chlorella vulgaris. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010408. [PMID: 36615600 PMCID: PMC9822436 DOI: 10.3390/molecules28010408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023]
Abstract
Chlorella vulgaris is a green microalga with a high chlorophyll content, representing a valuable source of green pigments for food applications. As the application of whole biomass can promote an unpleasant fish-like flavor, the use of chlorophyll extract can overcome this drawback. However, chlorophylls tend to easily degrade when out of the chloroplasts, decreasing their potential as a food ingredient. Thus, to study the suitable conditions for isolated chlorophylls preservation, in this work, the influence of temperature (4 to 60 °C), light (dark or 24 h photoperiod), alkaline conditions (with or without aqueous NaOH addition), and modified atmosphere (air or argon atmosphere) on the stability of the color in ethanolic solutions obtained from C. vulgaris were studied. The loss of green color with temperature followed the first-order kinetics, with an activation energy of 74 kJ/mol. Below 28 °C and dark conditions were suitable to preserve isolated chlorophylls. The addition of NaOH and an inert argon-rich atmosphere did not exhibit a statistically positive effect on color preservation. In the case study, cooked cold rice was colored to be used in sushi. The color remained stable for up to 3 days at 4 °C. Therefore, this work showed that C. vulgaris chlorophylls could be preserved in ethanolic solutions at room or lower temperatures when protected from light, allowing them to obtain a suitable natural food ingredient to color foodstuffs.
Collapse
Affiliation(s)
- Andreia S. Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Liliana Pereira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Feliciana Canfora
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark-Parque de Ciência e Tecnologia, 4805-017 Guimarães, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Guimarães, Portugal
| | - Manuel A. Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cláudia Nunes
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
3
|
Effect of Coffee on the Bioavailability of Sterols. Foods 2022; 11:foods11192935. [PMID: 36230011 PMCID: PMC9563500 DOI: 10.3390/foods11192935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Absorption at the intestinal epithelium is a major determinant of cholesterol levels in the organism, influencing the entry of dietary cholesterol and the excretion of endogenous cholesterol. Several strategies are currently being followed to reduce cholesterol absorption, using both pharmacological agents or food ingredients with hypocholesterolemic properties. Coffee has recently been shown to affect cholesterol bioaccessibility, although it has not been shown if this translates into a decrease on cholesterol bioavailability. In this work, coffee obtained with different commercial roasting (light and dark) and grinding (finer and coarser) was evaluated regarding their effect on cholesterol absorption through Caco-2 monolayers, mimicking the intestinal epithelium. The fluorescent dehydroergosterol was used as a sterol model, which was shown to permeate Caco-2 monolayers with a low-to-moderate permeability coefficient depending on its concentration. In the presence of coffee extracts, a 50% decrease of the sterol permeability coefficient was observed, showing their potential to affect sterol bioavailability. This was attributed to an increased sterol precipitation and its deposition on the apical epithelial surface. A higher hypocholesterolemic effect was observed for the dark roasting and finer grinding, showing that the modulation of these technological processing parameters may produce coffees with optimized hypocholesterolemic activity.
Collapse
|
4
|
Effect of perforated disc height and filter basket on espresso coffee carbohydrates content and composition. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-03960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Yeager SE, Batali ME, Guinard JX, Ristenpart WD. Acids in coffee: A review of sensory measurements and meta-analysis of chemical composition. Crit Rev Food Sci Nutr 2021; 63:1010-1036. [PMID: 34553656 DOI: 10.1080/10408398.2021.1957767] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Coffee contains a variety of organic acids (OAs) and chlorogenic acids (CGAs) that contribute to overall sensory properties. Large variations in preparation and measurement methodology across the literature complicate interpretation of general trends. Here, we perform a systematic review and meta-analysis of the published literature to elucidate the concentrations of OAs and CGAs in both Coffea arabica (arabica) and Coffea canephora (robusta), for both green coffee and roasted coffee at multiple roast levels. A total of 129 publications were found to report acid concentration measurements, yielding 8,634 distinct data points. Analysis of the full data set reveals several trends. First, roasted robusta has considerably more acidic compounds than arabica with 2 to 5 times as much total OAs, and much larger amounts of formic and acetic acid. As for CGAs, in both arabica and robusta 5-CQA is the major component, and progressive roasting decreases the concentration of all CGAs. The total amount of CGA present was more dependent on roast level than the type of coffee (arabica vs. robusta). Overall, this meta-analysis suggests that the increases in certain OAs with roast level might play more of a role in the sensory profile of dark roast coffees than previously suspected.
Collapse
Affiliation(s)
- Sara E Yeager
- Department of Food Science & Technology, University of California Davis, Davis, California, USA.,UC Davis Coffee Center, University of California Davis, Davis, California, USA
| | - Mackenzie E Batali
- Department of Food Science & Technology, University of California Davis, Davis, California, USA.,UC Davis Coffee Center, University of California Davis, Davis, California, USA
| | - Jean-Xavier Guinard
- Department of Food Science & Technology, University of California Davis, Davis, California, USA.,UC Davis Coffee Center, University of California Davis, Davis, California, USA
| | - William D Ristenpart
- UC Davis Coffee Center, University of California Davis, Davis, California, USA.,Department of Chemical Engineering, University of California Davis, Davis, California, USA
| |
Collapse
|
6
|
Olechno E, Puścion-Jakubik A, Zujko ME, Socha K. Influence of Various Factors on Caffeine Content in Coffee Brews. Foods 2021; 10:1208. [PMID: 34071879 PMCID: PMC8228209 DOI: 10.3390/foods10061208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
Coffee brews are one of the most popular drinks. They are consumed for caffeine and its stimulant properties. The study aimed to summarize data on the influence of various factors on caffeine content in brews prepared with different methods. The study was carried out using a literature review from 2010-2020. PubMed and Google Scholar databases were searched. Data on caffeine content was collected by analyzing the following factors: the influence of species, brewing time, water temperature, pressure, degree of roast, grinding degree, water type, water/coffee ratio as well as other factors (such as geographical origin). To sum up, converting caffeine content to 1 L of the brew, the highest content is that of brews prepared in an espresso machine (portafilter), with the amount of 7.5 g of a coffee blend (95% Robusta + 5% Arabica), and water (the volume of coffee brew was 25 mL) at a temperature of 92 °C and a pressure of 7 bar, but the highest content in one portion was detected in a brew of 50 g of Robusta coffee poured with 500 mL of cold water (25 °C) and boiled.
Collapse
Affiliation(s)
- Ewa Olechno
- Department of Food Biotechnology, Faculty of Health Science, Medical University of Białystok, Szpitalna 37 Street, 15-295 Białystok, Poland; (E.O.); (M.E.Z.)
| | - Anna Puścion-Jakubik
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland;
| | - Małgorzata Elżbieta Zujko
- Department of Food Biotechnology, Faculty of Health Science, Medical University of Białystok, Szpitalna 37 Street, 15-295 Białystok, Poland; (E.O.); (M.E.Z.)
| | - Katarzyna Socha
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland;
| |
Collapse
|
7
|
Role of Coffee Caffeine and Chlorogenic Acids Adsorption to Polysaccharides with Impact on Brew Immunomodulation Effects. Foods 2021; 10:foods10020378. [PMID: 33572390 PMCID: PMC7916192 DOI: 10.3390/foods10020378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
Coffee brews have High Molecular Weight (HMW) compounds with described immunostimulatory activity, namely polysaccharides and melanoidins. Melanoidins are formed during roasting and are modified during brews technological processing. In addition, brews have Low Molecular Weight (LMW) compounds, namely free chlorogenic acids and caffeine, with well-known anti-inflammatory properties. However, this study shows that both espresso and instant coffee brews did not present immunostimulatory neither anti-inflammatory in vitro activities. It is possible that the simultaneous existence of compounds with antagonistic effects can mitigate their individual effects. To test this hypothesis, an ultrafiltration separation process was applied, studying the behavior of coffee brews’ HMW on retention of LMW compounds. Several ultrafiltration sequential cycles were required to separate retentates from LMW compounds, suggesting their retention. This effect was higher in instant coffee, attributed to its initial higher carbohydrate content when compared to espresso. Separation of HMW and LMW compounds boosted their immunostimulatory (6.2–7.8 µM nitrites) and anti-inflammatory (LPS induced nitrite production decrease by 36–31%) in vitro activities, respectively. As coffee anti-inflammatory compounds are expected to be first absorbed during digestion, a potential in vivo fractionation of LMW and HMW compounds can promote health relevant effects after coffee intake.
Collapse
|
8
|
Lopes GR, Passos CP, Petronilho S, Rodrigues C, Teixeira JA, Coimbra MA. Carbohydrates as targeting compounds to produce infusions resembling espresso coffee brews using quality by design approach. Food Chem 2020; 344:128613. [PMID: 33243561 DOI: 10.1016/j.foodchem.2020.128613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/19/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023]
Abstract
All coffee brews are prepared with roasted coffee and water, giving origin to espresso, instant, or filtered coffee, exhibiting distinct physicochemical properties, depending on the extraction conditions. The different relative content of compounds in the brews modulates coffee body, aroma, and colour. In this study it was hypothesized that a coffee infusion allows to obtain extracts that resemble espresso coffee (EC) physicochemical properties. Carbohydrates (content and composition) were the target compounds as they are organoleptically important for EC due to their association to foam stability and viscosity. The freeze-drying of the extracts allowed better dissolution properties than spray-drying. Instant coffee powders were obtained with chemical overall composition resembling espresso, although with lower lipids content. The extracts were able to produce the characteristic foam through CO2 injection or salts addition. Their redissolution at espresso concentration allowed a viscosity, foamability and volatile profile representative of an espresso coffee, opening new exploitation possibilities.
Collapse
Affiliation(s)
- Guido R Lopes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cláudia P Passos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sílvia Petronilho
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; Chemistry Research Centre-Vila Real, Department of Chemistry, School of Life Sciences and Environment, UTAD, Quinta de Prados, Vila Real 5001 801, Portugal
| | - Carla Rodrigues
- Diverge, Grupo Nabeiro Innovation Center, Alameda dos Oceanos 65 1.1, 1990-208 Lisboa, Portugal
| | - José A Teixeira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
9
|
Coreta-Gomes FM, Lopes GR, Passos CP, Vaz IM, Machado F, Geraldes CFGC, Moreno MJ, Nyström L, Coimbra MA. In Vitro Hypocholesterolemic Effect of Coffee Compounds. Nutrients 2020; 12:E437. [PMID: 32050463 PMCID: PMC7071201 DOI: 10.3390/nu12020437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/27/2020] [Accepted: 02/02/2020] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Cholesterol bioaccessibility is an indicator of cholesterol that is available for absorption and therefore can be a measure of hypocholesterolemic potential. In this work, the effect of commercial espresso coffee and coffee extracts on cholesterol solubility are studied in an in vitro model composed by glycodeoxycholic bile salt, as a measure of its bioaccessibility. (2) Methods: Polysaccharide extracts from coffees obtained with different extraction conditions were purified by selective precipitation with ethanol, and their sugars content were characterized by GC-FID. Hexane extraction allowed us to obtain the coffee lipids. Espresso coffee samples and extracts were tested regarding their concentration dependence on the solubility of labeled 13C-4 cholesterol by bile salt micelles, using quantitative 13C NMR. (3) Results and Discussion: Espresso coffee and coffee extracts were rich in polysaccharides, mainly arabinogalactans and galactomannans. These polysaccharides decrease cholesterol solubility and, simultaneously, the bile salts' concentration. Coffee lipid extracts were also found to decrease cholesterol solubility, although not affecting bile salt concentration. (4) Conclusions: Coffee soluble fiber, composed by the arabinogalactans and galactomannans, showed to sequester bile salts from the solution, leading to a decrease in cholesterol bioaccessibility. Coffee lipids also decrease cholesterol bioaccessibility, although the mechanism of action identified is the co-solubilization in the bile salt micelles. The effect of both polysaccharides and lipids showed to be additive, representing the overall effect observed in a typical espresso coffee. The effect of polysaccharides and lipids on cholesterol bioaccessibility should be accounted on the formulation of hypocholesterolemic food ingredients.
Collapse
Affiliation(s)
- Filipe Manuel Coreta-Gomes
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; (G.R.L.); (C.P.P.); (I.M.V.); (F.M.); (M.A.C.)
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535 Coimbra, Portugal; (C.F.G.C.G.); (M.J.M.)
| | - Guido R. Lopes
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; (G.R.L.); (C.P.P.); (I.M.V.); (F.M.); (M.A.C.)
| | - Cláudia P. Passos
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; (G.R.L.); (C.P.P.); (I.M.V.); (F.M.); (M.A.C.)
| | - Inês M. Vaz
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; (G.R.L.); (C.P.P.); (I.M.V.); (F.M.); (M.A.C.)
| | - Fernanda Machado
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; (G.R.L.); (C.P.P.); (I.M.V.); (F.M.); (M.A.C.)
| | - Carlos F. G. C. Geraldes
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535 Coimbra, Portugal; (C.F.G.C.G.); (M.J.M.)
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Maria João Moreno
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535 Coimbra, Portugal; (C.F.G.C.G.); (M.J.M.)
- Chemistry Department, University of Coimbra, Faculty of Science and Technology, Rua Larga Largo D. Dinis, 3004-535 Coimbra, Portugal
| | - Laura Nyström
- ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, CH-8092 Zurich, Switzerland;
| | - Manuel A. Coimbra
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; (G.R.L.); (C.P.P.); (I.M.V.); (F.M.); (M.A.C.)
| |
Collapse
|
10
|
Impact of microwave-assisted extraction on roasted coffee carbohydrates, caffeine, chlorogenic acids and coloured compounds. Food Res Int 2019; 129:108864. [PMID: 32036915 DOI: 10.1016/j.foodres.2019.108864] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/14/2019] [Accepted: 11/24/2019] [Indexed: 01/31/2023]
Abstract
Microwave-assisted extraction (MAE) allows to quickly achieve soluble compounds from solid matrices due to the promotion of temperatures higher than the solvent (atmospheric) boiling point, once a closed-vessel system is used for operating at high pressure. In this study, the feasibility of MAE for producing high yield coffee extracts with properties that allow their commercial application was tested through a quality by design approach. It was studied the influence of time of extraction (1, 5.5, 10 min), temperature (120, 150, 180 °C) and the mass-to-volume (m/V) ratio (2, 4, 6 g/60 mL) in the overall extraction yield (24-47%, w/w), carbohydrates content (18-43%, w/w), sugars composition, caffeine (4-7%, w/w), 5-caffeoylquinic acid (1-2%, w/w), colour and antioxidant activity of the extracts. FTIR analysis was used to study the resemblance of coffee extracts and commercial instant coffee. MAE allowed overall extraction yields considerably higher than the home brewing methods, mainly when performed at 180 °C, with a substantial increase in arabinogalactans (AG) extraction associated to higher temperatures. Temperature exerted a crucial role in coffee extracts differentiation, although time and m/V ratio also lead to different values in the responses. Under a circular economy concept, MAE was able to produce extracts that can be used as defined food/brew ingredients and provides a galactomannan and cellulose rich residue that can also be valued as a source of dietary fibre.
Collapse
|