1
|
Souid A, Giambastiani L, Castagna A, Santin M, Vivarelli F, Canistro D, Morosini C, Paolini M, Franchi P, Lucarini M, Raffaelli A, Giorgetti L, Ranieri A, Longo V, Pozzo L, Vornoli A. Assessment of the Antioxidant and Hypolipidemic Properties of Salicornia europaea for the Prevention of TAFLD in Rats. Antioxidants (Basel) 2024; 13:596. [PMID: 38790701 PMCID: PMC11118816 DOI: 10.3390/antiox13050596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Halophyte species represent valuable reservoirs of natural antioxidants, and, among these, Salicornia europaea stands out as a promising edible plant. In this study, young and old S. europaea leaves were compared for the content of bioactive compounds and antioxidant activity to assess changes in different growth phases; then, the potential protective effects against low-dose CCl4-induced toxicant-associated fatty liver disease (TAFLD) were investigated by administering an aqueous suspension of young leaves to rats daily for two weeks. Quantification of total and individual phenolic compounds and in vitro antioxidant activity assays (DPPH, FRAP, and ORAC) showed the highest values in young leaves compared to mature ones. Salicornia treatment mitigated CCl4-induced hepatic oxidative stress, reducing lipid peroxidation and protein carbonyl levels, and preserving the decrease in glutathione levels. Electronic paramagnetic resonance (EPR) spectroscopy confirmed these results in the liver and evidenced free radicals increase prevention in the brain. Salicornia treatment also attenuated enzymatic disruptions in the liver's drug metabolizing system and Nrf2-dependent antioxidant enzymes. Furthermore, histopathological examination revealed reduced hepatic lipid accumulation and inflammation. Overall, this study highlights Salicornia's potential as a source of bioactive compounds with effective hepatoprotective properties capable to prevent TAFLD.
Collapse
Affiliation(s)
- Aymen Souid
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.S.); (A.C.); (M.S.); (A.R.)
- Institute of Agricultural Biology and Biotechnology—National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (L.G.); (A.R.); (L.G.); (V.L.); (A.V.)
| | - Lucia Giambastiani
- Institute of Agricultural Biology and Biotechnology—National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (L.G.); (A.R.); (L.G.); (V.L.); (A.V.)
| | - Antonella Castagna
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.S.); (A.C.); (M.S.); (A.R.)
| | - Marco Santin
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.S.); (A.C.); (M.S.); (A.R.)
| | - Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (F.V.); (D.C.); (C.M.); (M.P.)
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (F.V.); (D.C.); (C.M.); (M.P.)
| | - Camilla Morosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (F.V.); (D.C.); (C.M.); (M.P.)
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (F.V.); (D.C.); (C.M.); (M.P.)
| | - Paola Franchi
- Department of Chemistry “G. Ciamician”, Alma Mater Studiorum—University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy; (P.F.); (M.L.)
| | - Marco Lucarini
- Department of Chemistry “G. Ciamician”, Alma Mater Studiorum—University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy; (P.F.); (M.L.)
| | - Andrea Raffaelli
- Institute of Agricultural Biology and Biotechnology—National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (L.G.); (A.R.); (L.G.); (V.L.); (A.V.)
- Crop Science Research Center, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Lucia Giorgetti
- Institute of Agricultural Biology and Biotechnology—National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (L.G.); (A.R.); (L.G.); (V.L.); (A.V.)
| | - Annamaria Ranieri
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.S.); (A.C.); (M.S.); (A.R.)
| | - Vincenzo Longo
- Institute of Agricultural Biology and Biotechnology—National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (L.G.); (A.R.); (L.G.); (V.L.); (A.V.)
| | - Luisa Pozzo
- Institute of Agricultural Biology and Biotechnology—National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (L.G.); (A.R.); (L.G.); (V.L.); (A.V.)
| | - Andrea Vornoli
- Institute of Agricultural Biology and Biotechnology—National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (L.G.); (A.R.); (L.G.); (V.L.); (A.V.)
| |
Collapse
|
2
|
Kraouia M, Nartea A, Maoloni A, Osimani A, Garofalo C, Fanesi B, Ismaiel L, Aquilanti L, Pacetti D. Sea Fennel ( Crithmum maritimum L.) as an Emerging Crop for the Manufacturing of Innovative Foods and Nutraceuticals. Molecules 2023; 28:4741. [PMID: 37375298 PMCID: PMC10303230 DOI: 10.3390/molecules28124741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Sea fennel (Crithmum maritimum L.) is a perennial, strongly aromatic herb that has been used since ancient times in cuisine and folk medicine due to its renowned properties. Recently described as a "cash" crop, sea fennel is an ideal candidate for the promotion of halophyte agriculture in the Mediterranean basin due to its acknowledged adaptation to the Mediterranean climate, its resilience to risks/shocks related to climate changes, and its exploitability in food and non-food applications, which generates an alternative source of employment in rural areas. The present review provides insight into the nutritional and functional traits of this new crop as well as its exploitation in innovative food and nutraceutical applications. Various previous studies have fully demonstrated the high biological and nutritional potential of sea fennel, highlighting its high content of bioactive compounds, including polyphenols, carotenoids, ω-3 and ω-6 essential fatty acids, minerals, vitamins, and essential oils. Moreover, in previous studies, this aromatic halophyte showed good potential for application in the manufacturing of high-value foods, including both fermented and unfermented preserves, sauces, powders, and spices, herbal infusions and decoctions, and even edible films, as well as nutraceuticals. Further research efforts are needed to fully disclose the potential of this halophyte in view of its full exploitation by the food and nutraceutical industries.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lucia Aquilanti
- Department of Agricultural, Food and Environmental Sciences (D3A), Università Politecnica delle Marche (UNIVPM), 60131 Ancona, Italy; (M.K.); (A.N.); (A.M.); (A.O.); (C.G.); (B.F.); (L.I.); (D.P.)
| | | |
Collapse
|
3
|
Anti-Obesity and Anti-Dyslipidemic Effects of Salicornia arabica Decocted Extract in Tunisian Psammomys obesus Fed a High-Calorie Diet. Foods 2023; 12:foods12061185. [PMID: 36981112 PMCID: PMC10048570 DOI: 10.3390/foods12061185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 03/14/2023] Open
Abstract
Salicornia is a halophyte plant that has been used in traditional medicine for the treatment of scurvy, goiter, and hypertension. It is commercialized in Europe and Asia as fresh salads, pickled vegetables, green salt, or tea powder. This work is the first to assess the potential anti-obesity and anti-dyslipidemic effects of Salicornia arabica decocted extract (SADE). SADE was characterized by its significant in vitro radical scavenging activity (using DPPH and ABTS assays). The effect of SADE on food intake, weight loss, serum biochemical parameters, liver and kidney weights, adiposity index and on liver histology was investigated in the Tunisian gerbil Psammomys obesus (P. obesus), which is recognized as a relevant animal model of human obesity and diabetes. P. obesus animals were firstly randomly divided into two groups: the first received a natural low-calorie chow diet (LCD), and the second group received a high-calorie diet (HCD) over 12 weeks. On day 90, animals were divided into four groups receiving or not receiving SADE (LCD, LCD + SADE, HCD, and HCD + SADE). If compared to the HCD group, SADE oral administration (300 mg/kg per day during 4 weeks) in HCD + SADE group showed on day 120 a significant decrease in body weight (−34%), blood glucose (−47.85%), serum levels of total cholesterol (−54.92%), LDL cholesterol (−60%), triglycerides (−48.03%), and of the levels of hepatic enzymes: ASAT (−66.28%) and ALAT (−31.87%). Oral administration of SADE restored the relative liver weight and adiposity index and significantly limited HCD-induced hepatic injury in P. obesus. SADE seems to have promising in vivo anti-obesity and anti-dyslipidemic effects.
Collapse
|
4
|
Piatti D, Angeloni S, Maggi F, Caprioli G, Ricciutelli M, Arnoldi L, Bosisio S, Mombelli G, Drenaggi E, Sagratini G. Comprehensive characterization of phytochemicals in edible sea fennel (Crithmum maritimum L., Apiaceae) grown in central Italy. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Rock Samphire, a Candidate Crop for Saline Agriculture: Cropping Practices, Chemical Composition and Health Effects. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The recent market trends for functional healthy foods have rekindled the interest in wild edible species and created a market niche for high added value products. The current supply, mainly supported by plants collected from the wild, cannot meet increasing market needs; therefore, it is of major importance to establish cropping protocols and further valorize wild plants for culinary and industrial applications. Sea fennel is a wild edible halophyte that is an important ingredient in local cuisines and is also used in folk medicine for its beneficial health effects. Its valorization has not been commercially explored on a great scale and more efforts are needed to integrate the species in farming systems. The present review compiles the most recent reports regarding the farming practices that could allow for the establishment of cultivation protocols for farmers, while the main constraints that hinder the further exploitation of the species are also presented. Moreover, this review presents the most up-to-date information regarding the chemical composition (e.g., chemical composition of the aerial parts and volatile compounds in essential oils) and the health-related effects of various plant parts (e.g., antimicrobial, insecticidal and anticholinesterase activities) aiming to reveal possible alternative uses that will increase the added value of the species and will contribute to its commercial exploitation. Finally, the future remarks and the guidelines that have to be followed are also discussed.
Collapse
|
6
|
Souid A, Della Croce CM, Frassinetti S, Gabriele M, Pozzo L, Ciardi M, Abdelly C, Hamed KB, Magné C, Longo V. Nutraceutical Potential of Leaf Hydro-Ethanolic Extract of the Edible Halophyte Crithmum maritimum L. Molecules 2021; 26:5380. [PMID: 34500813 PMCID: PMC8434227 DOI: 10.3390/molecules26175380] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/02/2022] Open
Abstract
Aromatic halophytes represent an exceptional source of natural bioactive compounds for the food industry. Crithmum maritimum L., also known as sea fennel, is a halophyte plant colonizing cliffs and coastal dunes along Mediterranean and Atlantic coasts. It is well known to produce essential oils and polyphenols endowed with antioxidant and biological effects. The present work reports the phytochemical profile, as well as antioxidant, antimicrobial and antimutagenic properties of C. maritimum leaf hydro-alcoholic extract. From LC-ESI-MS analysis, eighteen phenolic compounds were depicted in sea fennel extract and the amount of total phenolic content exceeds 3% DW. Accordingly, C. maritimum extract showed strong antioxidant activities, as evidenced by in vitro (DPPH, ORAC, FRAP) and ex vivo (CAA-RBC and hemolysis) assays. An important antimicrobial activity against pathogenic strains was found as well as a strong capacity to inhibit Staphylococcus aureus (ATCC 35556) biofilm formation. Sea fennel extracts showed a significant decrease of mutagenesis induced by hydrogen peroxide (H2O2) and menadione (ME) in Saccharomyces cerevisiae D7 strain. In conclusion, our results show that C. maritimum is an exceptional source of bioactive components and exert beneficial effects against oxidative or mutagenic mechanisms, and pathogenic bacteria, making it a potential functional food.
Collapse
Affiliation(s)
- Aymen Souid
- Institute of Biology and Agricultural Biotechnology (IBBA), CNR, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy; (A.S.); (C.M.D.C.); (S.F.); (M.G.); (M.C.); (V.L.)
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, BP 901, Hammam Lif 2050, Tunisia; (C.A.); (K.B.H.)
| | - Clara Maria Della Croce
- Institute of Biology and Agricultural Biotechnology (IBBA), CNR, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy; (A.S.); (C.M.D.C.); (S.F.); (M.G.); (M.C.); (V.L.)
| | - Stefania Frassinetti
- Institute of Biology and Agricultural Biotechnology (IBBA), CNR, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy; (A.S.); (C.M.D.C.); (S.F.); (M.G.); (M.C.); (V.L.)
| | - Morena Gabriele
- Institute of Biology and Agricultural Biotechnology (IBBA), CNR, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy; (A.S.); (C.M.D.C.); (S.F.); (M.G.); (M.C.); (V.L.)
| | - Luisa Pozzo
- Institute of Biology and Agricultural Biotechnology (IBBA), CNR, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy; (A.S.); (C.M.D.C.); (S.F.); (M.G.); (M.C.); (V.L.)
| | - Marco Ciardi
- Institute of Biology and Agricultural Biotechnology (IBBA), CNR, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy; (A.S.); (C.M.D.C.); (S.F.); (M.G.); (M.C.); (V.L.)
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, BP 901, Hammam Lif 2050, Tunisia; (C.A.); (K.B.H.)
| | - Karim Ben Hamed
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, BP 901, Hammam Lif 2050, Tunisia; (C.A.); (K.B.H.)
| | - Christian Magné
- EA7462 Géoarchitecture_Territoires, Urbanisation, Biodiversité, Environnement, Université de Brest, 6 Avenue Victor Le Gorgeu, CS 93837, CEDEX 3, 29238 Brest, France;
| | - Vincenzo Longo
- Institute of Biology and Agricultural Biotechnology (IBBA), CNR, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy; (A.S.); (C.M.D.C.); (S.F.); (M.G.); (M.C.); (V.L.)
| |
Collapse
|
7
|
Mohammed SAA, Khan RA, El-Readi MZ, Emwas AH, Sioud S, Poulson BG, Jaremko M, Eldeeb HM, Al-Omar MS, Mohammed HA. Suaeda vermiculata Aqueous-Ethanolic Extract-Based Mitigation of CCl 4-Induced Hepatotoxicity in Rats, and HepG-2 and HepG-2/ADR Cell-Lines-Based Cytotoxicity Evaluations. PLANTS 2020; 9:plants9101291. [PMID: 33003604 PMCID: PMC7601535 DOI: 10.3390/plants9101291] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
Suaeda vermiculata, an edible halophytic plant, used by desert nomads to treat jaundice, was investigated for its hepatoprotective bioactivity and safety profile on its mother liquor aqueous-ethanolic extract. Upon LC-MS (Liquid Chromatography-Mass Spectrometry) analysis, the presence of several constituents including three major flavonoids, namely quercetin, quercetin-3-O-rutinoside, and kaempferol-O-(acetyl)-hexoside-pentoside were confirmed. The aqueous-ethanolic extract, rich in antioxidants, quenched the DPPH (1,1-diphenyl-2-picrylhydrazyl) radicals, and also showed noticeable levels of radical scavenging capacity in ABTS (2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid) assay. For the hepatoprotective activity confirmation, the male rat groups were fed daily, for 7 days (n = 8/group, p.o.), either carboxyl methylcellulose (CMC) 0.5%, silymarin 200 mg/kg, the aqueous-ethanolic extract of the plant Suaeda vermiculata (100, 250, and 500 mg/kg extract), or quercetin (100 mg/kg) alone, and on day 7 of the administrations, all the animal groups, excluding a naïve (250 mg/kg aqueous-ethanolic extract-fed), and an intact animal group were induced hepatotoxicity by intraperitoneally administering carbon tetrachloride (CCl4). All the animals were sacrificed after 24 h, and aspartate transaminase and alanine transaminase serum levels were observed, which were noted to be significantly decreased for the aqueous-ethanolic extract, silymarin, and quercetin-fed groups in comparison to the CMC-fed group (p < 0.0001). No noticeable adverse effects were observed on the liver, kidney, or heart's functions of the naïve (250 mg/kg) group. The aqueous-ethanolic extract was found to be safe in the acute toxicity (5 g/kg) test and showed hepatoprotection and safety at higher doses. Further upon, the cytotoxicity testings in HepG-2 and HepG-2/ADR (Adriamycin resistant) cell-lines were also investigated, and the IC50 values were recorded at 56.19±2.55 µg/mL, and 78.40±0.32 µg/mL (p < 0.001, Relative Resistance RR 1.39), respectively, while the doxorubicin (Adriamycin) IC50 values were found to be 1.3±0.064, and 4.77±1.05 µg/mL (p < 0.001, RR 3.67), respectively. The HepG-2/ADR cell-lines when tested in a combination of the aqueous-ethanolic extract with doxorubicin, a significant reversal in the doxorubicin's IC50 value by 2.77 folds (p < 0.001, CI = 0.56) was noted as compared to the cytotoxicity test where the extract was absent. The mode of action for the reversal was determined to be synergistic in nature indicating the role of the aqueous-ethanolic extract.
Collapse
Affiliation(s)
- Salman A. A. Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
- Correspondence: (S.A.A.M.); (R.A.K.); (H.A.M.); Tel.: +966-(0)530309899 (S.A.A.M.); +966-(0)508384296 (R.A.K.); +966-(0)566176074 (H.A.M.)
| | - Riaz A. Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
- Correspondence: (S.A.A.M.); (R.A.K.); (H.A.M.); Tel.: +966-(0)530309899 (S.A.A.M.); +966-(0)508384296 (R.A.K.); +966-(0)566176074 (H.A.M.)
| | - Mahmoud Z. El-Readi
- Department of Clinical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Abdul-Hamid Emwas
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal 23955-6900, Saudi Arabia; (A.-H.E.); (S.S.)
| | - Salim Sioud
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal 23955-6900, Saudi Arabia; (A.-H.E.); (S.S.)
| | - Benjamin G. Poulson
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia; (B.G.P); (M.J.)
| | - Mariusz Jaremko
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia; (B.G.P); (M.J.)
| | - Hussein M. Eldeeb
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
- Department of Biochemistry, Faculty of Medicine, Al-Azhar University, Assiut, 71524, Egypt
| | - Mohsen S. Al-Omar
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
- Medicinal Chemistry and Pharmacognosy Department, Faculty of Pharmacy, JUST, Irbid 22110, Jordan
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371, Egypt
- Correspondence: (S.A.A.M.); (R.A.K.); (H.A.M.); Tel.: +966-(0)530309899 (S.A.A.M.); +966-(0)508384296 (R.A.K.); +966-(0)566176074 (H.A.M.)
| |
Collapse
|