1
|
Bai H, Wang S, Wang ZM, Zhu LL, Yan HB, Wang YB, Wang XY, Peng L, Liu JZ. Investigation of bioactive compounds and their correlation with the antioxidant capacity in different functional vinegars. Food Res Int 2024; 184:114262. [PMID: 38609241 DOI: 10.1016/j.foodres.2024.114262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
There are complex and diverse substances in traditional vinegars, some of which have been identified as biologically active factors, but the variety of functional compounds is currently restricted. In this study, it was aimed to determine the bioactive compounds in 10 typical functional vinegars. The findings shown that total flavonoids (0.21-7.19 mg rutin equivalent/mL), total phenolics (0.36-3.20 mg gallic acid equivalent/mL), and antioxidant activities (DPPH: 3.17-47.63 mmol trolox equivalent/L, ABTS: 6.85-178.29 mmol trolox equivalent/L) varied among different functional vinegars. In addition, the concentrations of the polysaccharides (1.17-44.87 mg glucose equivalent/mL) and total saponins (0.67-12.46 mg oleanic acid equivalent/mL) were determined, which might play key role for the function of tested vinegars. A total of 8 organic acids, 7 polyphenol compounds and 124 volatile compounds were measured and tentatively identified. The protocatechuic acid (4.81-485.72 mg/L), chlorogenic acid (2.69-7.52 mg/L), and epicatechin (1.18-97.42 mg/L) were important polyphenol compounds in the functional vinegars. Redundancy analysis indicated that tartaric acid, oxalic acid and chlorogenic acid were significantly positively correlated with antioxidant capacity. Various physiologically active ingredients including cyclo (Pro-Leu), cyclo (Phe-Pro), cyclo (Phe-Val), cyclo (Pro-Val), 1-monopalmitin and 1-eicosanol were firstly detected in functional vinegars. Principle component analysis revealed that volatiles profile of bergamot Monascus aromatic vinegar and Hengshun honey vinegar exhibited distinctive differences from other eight vinegar samples. Moreover, the partial least squares regression analysis demonstrated that 11 volatile compounds were positively correlated with the antioxidant activity of vinegars, which suggested these compounds might be important functional substances in tested vinegars. This study explored several new functionally active compounds in different functional vinegars, which could widen the knowledge of bioactive factor in vinegars and provide new ideas for further development of functional vinegar beverages.
Collapse
Affiliation(s)
- Hua Bai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Shuang Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Zong-Min Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China.
| | - Lan-Lan Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Hong-Bo Yan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Yan-Bo Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Xin-Yu Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Lin Peng
- School of Life Science, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Ji-Zhou Liu
- Shandong Xinfurui Agricultural Science and Technology Co., Ltd., Liaocheng, Shandong 252300, China
| |
Collapse
|
2
|
Demircan B, Velioglu YS, Giuffrè AM. Bergamot juice powder with high bioactive properties: Spray-drying for the preservation of antioxidant activity and ultrasound-assisted extraction for enhanced phenolic compound extraction. J Food Sci 2023; 88:3694-3713. [PMID: 37493276 DOI: 10.1111/1750-3841.16706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023]
Abstract
The spray-drying process yielded functional bergamot juice powder with high antioxidant activity, phenolic content, and vitamin C content. Optimal drying conditions were determined as 10% maltodextrin concentration, 146.02°C inlet temperature, and 39.99% pump rate, preserving powder's bioactive properties. Under these drying conditions, bergamot juice powder exhibited an antioxidant activity of 62.2% DPPH scavenging activity, a total phenolic content of 3862.1 ppm, and a vitamin C content of 1385.9 ppm. The bergamot juice powder, with a water activity of 0.2, bulk density of 0.4 g/mL, tapped density of 0.5 g/mL, porosity of 89.6%, hygroscopicity of 8.6%, and cohesiveness of 37.2%, is highly suitable for further processing. High-pressure liquid chromatography analysis revealed the presence of major phenolic compounds in both fresh bergamot juice and spray-dried powder, although their concentrations were lower in the powder form. The major phenolics identified in the fruit juice were naringin (197.5 ppm), eriocitrin (105.9 ppm), neoeriocitrin (53.4 ppm), neohesperidin (68.8 ppm), and naringenin (119.8 ppm). However, in the powder form, the bitterness-associated compounds, naringin and neohesperidin, exhibited a significant reduction of 85.0% and 90.3%, respectively. Compared to dimethyl sulfoxide (48.4%), ethanol (37.9%), and distilled water (17.3%), ultrasound-assisted extraction with acetone solvent demonstrated the highest efficiency (61.7%) in obtaining phenolic compounds from bergamot juice powder. In conclusion, spray-drying is an effective method for obtaining functional bergamot juice powder, and ultrasound-assisted extraction can further enhance phenolic compound extraction efficiency. These findings have potential applications in the food, cosmetics, and pharmaceutical industries, with opportunities for further research in functional foods or nutraceuticals. PRACTICAL APPLICATION: Spray-drying yields functional bergamot juice powder with high bioactive properties. Optimal drying conditions can be applied in industrial settings. Ultrasound-assisted extraction enhances phenolic compound extraction efficiency. Potential applications in food, cosmetics, and pharmaceutical industries.
Collapse
Affiliation(s)
- Bahar Demircan
- Department of Food Engineering, Faculty of Engineering, Ankara University, Ankara, Turkey
| | - Yakup Sedat Velioglu
- Department of Food Engineering, Faculty of Engineering, Ankara University, Ankara, Turkey
| | - Angelo Maria Giuffrè
- Department of AGRARIA, Università degli Studi Mediterranea, Reggio Calabria, Italy
| |
Collapse
|
3
|
Foligni R, Pulvirenti A, De Vero L, Mannozzi C. Editorial: Functional and innovative food ingredients: assessment of analytical, microbiological and sensory aspects. Front Nutr 2023; 10:1207323. [PMID: 37234557 PMCID: PMC10206326 DOI: 10.3389/fnut.2023.1207323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Affiliation(s)
- Roberta Foligni
- Department of Agricultural, Food and Environmental Sciences (D3A), Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Pulvirenti
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Luciana De Vero
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Cinzia Mannozzi
- Department of Agricultural, Food and Environmental Sciences (D3A), Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
4
|
Brugnoli M, La China S, Lasagni F, Romeo FV, Pulvirenti A, Gullo M. Acetic acid bacteria in agro-wastes: from cheese whey and olive mill wastewater to cellulose. Appl Microbiol Biotechnol 2023; 107:3729-3744. [PMID: 37115254 DOI: 10.1007/s00253-023-12539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
In this study, cheese whey and olive mill wastewater were investigated as potential feedstocks for producing bacterial cellulose by using acetic acid bacteria strains. Organic acids and phenolic compounds composition were assayed by high-pressure liquid chromatography. Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction were used to investigate modifications in bacterial cellulose chemical and morphological structure. Cheese whey was the most efficient feedstock in terms of bacterial cellulose yield (0.300 g of bacterial cellulose/gram of carbon source consumed). Bacterial cellulose produced in olive mill wastewater presented a more well-defined network compared to pellicles produced in cheese whey, resulting in a smaller fiber diameter in most cases. The analysis of bacterial cellulose chemical structure highlighted the presence of different chemical bonds likely to be caused by the adsorption of olive mill wastewater and cheese whey components. The crystallinity ranged from 45.72 to 80.82%. The acetic acid bacteria strains used in this study were characterized by 16S rRNA gene sequencing, allowing to assign them to Komagataeibacter xylinus and Komagataeibacter rhaeticus species. This study proves the suitability to perform sustainable bioprocesses for producing bacterial cellulose, combining the valorisation of agro-wastes with microbial conversions carried out by acetic acid bacteria. The high versatility in terms of yield, morphology, and fiber diameters obtained in cheese whey and olive mill wastewater contribute to set up fundamental criteria for developing customized bioprocesses depending on the final use of the bacterial cellulose. KEY POINTS: • Cheese whey and olive mill wastewater can be used for bacterial cellulose production. • Bacterial cellulose structure is dependent on the culture medium. • Komagataeibacter strains support the agro-waste conversion in bacterial cellulose.
Collapse
Affiliation(s)
- Marcello Brugnoli
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Salvatore La China
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Federico Lasagni
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Flora Valeria Romeo
- Research Centre for Olive, Fruit and Citrus Crops (CREA), Acireale, 95024, Italy
| | - Andrea Pulvirenti
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Maria Gullo
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy.
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy.
| |
Collapse
|
5
|
Aiello D, Barbera M, Bongiorno D, Cammarata M, Censi V, Indelicato S, Mazzotti F, Napoli A, Piazzese D, Saiano F. Edible Insects an Alternative Nutritional Source of Bioactive Compounds: A Review. Molecules 2023; 28:molecules28020699. [PMID: 36677756 PMCID: PMC9861065 DOI: 10.3390/molecules28020699] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Edible insects have the potential to become one of the major future foods. In fact, they can be considered cheap, highly nutritious, and healthy food sources. International agencies, such as the Food and Agriculture Organization (FAO), have focused their attention on the consumption of edible insects, in particular, regarding their nutritional value and possible biological, toxicological, and allergenic risks, wishing the development of analytical methods to verify the authenticity, quality, and safety of insect-based products. Edible insects are rich in proteins, fats, fiber, vitamins, and minerals but also seem to contain large amounts of polyphenols able to have a key role in specific bioactivities. Therefore, this review is an overview of the potential of edible insects as a source of bioactive compounds, such as polyphenols, that can be a function of diet but also related to insect chemical defense. Currently, insect phenolic compounds have mostly been assayed for their antioxidant bioactivity; however, they also exert other activities, such as anti-inflammatory and anticancer activity, antityrosinase, antigenotoxic, and pancreatic lipase inhibitory activities.
Collapse
Affiliation(s)
- Donatella Aiello
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Marcella Barbera
- Department of Earth and Marine Sciences, University of Palermo, 90123 Palermo, Italy
| | - David Bongiorno
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90123 Palermo, Italy
| | - Matteo Cammarata
- Department of Earth and Marine Sciences, University of Palermo, 90123 Palermo, Italy
| | - Valentina Censi
- Department of Earth and Marine Sciences, University of Palermo, 90123 Palermo, Italy
| | - Serena Indelicato
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90123 Palermo, Italy
| | - Fabio Mazzotti
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Anna Napoli
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy
- Correspondence: (A.N.); (D.P.)
| | - Daniela Piazzese
- Department of Earth and Marine Sciences, University of Palermo, 90123 Palermo, Italy
- Correspondence: (A.N.); (D.P.)
| | - Filippo Saiano
- Department Agricultural Food and Forestry Sciences, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
6
|
Tran Vo TM, Kobayashi T, Potiyaraj P. Viscoelastic Analysis of Pectin Hydrogels Regenerated from Citrus Pomelo Waste by Gelling Effects of Calcium Ion Crosslinking at Different pHs. Gels 2022; 8:814. [PMID: 36547338 PMCID: PMC9777872 DOI: 10.3390/gels8120814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Pectin was extracted from citrus pomelo waste, and the effects of calcium ions (Ca2+) on the gelation and hydrogels properties were investigated over a pH range of 3.2-8 by using viscoelastic analysis. The gelatinization of Ca2+-pectin was examined at concentrations of 0.9, 1.8, 2.4, and 3.6 M of Ca2+ in aqueous pectin solutions of 1%, 2%, 3%, and 4%. The gel transition of Ca2+-pectin solution to hydrogels was determined by measuring the storage modulus (G') and loss modulus (G") under mechanical strain from 0.01 to 100%. In a hydrogel of 3% pectin at Ca2+ = 2.4 M, as pH increased to 7, the G' at 0.01 strain % was 3 × 104 Pa, and 3 × 103 Pa at pH 5, indicating that the crosslinking weakened at acidic pH. Due to the crosslinking between the calcium ions and the ionized carboxylic acid groups of pectin, the resulting hydrogel became stiff. When the mechanical strain % was in the range of 0.01-1%, G' was unchanged and G" was an order of magnitude smaller than G', indicating that the mechanical stress was relieved by the gel. In the range of 1-100%, the gel deformation progressed and both the moduli values were dropped. Collapse from the gel state to the solution state occurred at 1-10 strain %, but the softer hydrogels with G' of 103 Pa had a larger strain % than the stiffer hydrogels with G' of 104 Pa.
Collapse
Affiliation(s)
- Tu Minh Tran Vo
- Department of Energy and Environmental Science, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Niigata, Japan
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Takaomi Kobayashi
- Department of Energy and Environmental Science, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Niigata, Japan
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Niigata, Japan
| | - Pranut Potiyaraj
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
7
|
Es-sbata I, Castro R, Durán-Guerrero E, Zouhair R, Astola A. Production of prickly pear (Opuntia ficus-indica) vinegar in submerged culture using Acetobacter malorum and Gluconobacter oxydans: Study of volatile and polyphenolic composition. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Cantadori E, Brugnoli M, Centola M, Uffredi E, Colonello A, Gullo M. Date Fruits as Raw Material for Vinegar and Non-Alcoholic Fermented Beverages. Foods 2022; 11:foods11131972. [PMID: 35804787 PMCID: PMC9265875 DOI: 10.3390/foods11131972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 01/18/2023] Open
Abstract
Currently, foods and beverages with healthy and functional properties, especially those that claim to prevent chronic diseases, are receiving more and more interest. As a result, numerous foods and beverages have been launched onto the market. Among the products with enhanced properties, vinegar and fermented beverages have a high potential for growth. Date palm fruits are a versatile raw material rich in sugars, dietary fibers, minerals, vitamins, and phenolic compounds; thus, they are widely used for food production, including date juice, jelly, butter, and fermented beverages, such as wine and vinegar. Furthermore, their composition makes them suitable for the formulation of functional foods and beverages. Microbial transformations of date juice include alcoholic fermentation for producing wine as an end-product, or as a substrate for acetic fermentation. Lactic fermentation is also documented for transforming date juice and syrup. However, in terms of acetic acid bacteria, little evidence is available on the exploitation of date juice by acetic and gluconic fermentation for producing beverages. This review provides an overview of date fruit’s composition, the related health benefits for human health, vinegar and date-based fermented non-alcoholic beverages obtained by acetic acid bacteria fermentation.
Collapse
Affiliation(s)
- Elsa Cantadori
- Department of Life Sciences, University of Modena and Reggio Emilia, 42123 Reggio Emilia, Italy; (E.C.); (M.B.); (M.C.)
- Ponti SpA, 28074 Ghemme, Italy; (E.U.); (A.C.)
| | - Marcello Brugnoli
- Department of Life Sciences, University of Modena and Reggio Emilia, 42123 Reggio Emilia, Italy; (E.C.); (M.B.); (M.C.)
| | - Marina Centola
- Department of Life Sciences, University of Modena and Reggio Emilia, 42123 Reggio Emilia, Italy; (E.C.); (M.B.); (M.C.)
| | | | | | - Maria Gullo
- Department of Life Sciences, University of Modena and Reggio Emilia, 42123 Reggio Emilia, Italy; (E.C.); (M.B.); (M.C.)
- Correspondence:
| |
Collapse
|
9
|
El-Beltagi HS, Eshak NS, Mohamed HI, Bendary ESA, Danial AW. Physical Characteristics, Mineral Content, and Antioxidant and Antibacterial Activities of Punica granatum or Citrus sinensis Peel Extracts and Their Applications to Improve Cake Quality. PLANTS (BASEL, SWITZERLAND) 2022; 11:1740. [PMID: 35807697 PMCID: PMC9268770 DOI: 10.3390/plants11131740] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/03/2022]
Abstract
One-third of all food produced for human use is discarded as waste, resulting in environmental pollution and impaired food security. Fruit peels have bioactive compounds that may be used as antimicrobials and antioxidants, and the use of fruit peels is considered an alternative way to reduce environmental problems and agro-industrial waste. The aim of this study was to evaluate the phytochemical, mineral, extraction yield, total phenolic, total flavonoids, antioxidant, and antibacterial activity of several peel fruits, including Citrus sinensis (orange) and Punica granatum (pomegranate). The results revealed that pomegranate peel powder contains the highest amounts of ash, fiber, total carbohydrates, Ca, Fe, Mg, and Cu, while orange peel contains the highest amounts of moisture, protein, crude fat, P, and K. Furthermore, the aqueous and methanolic pomegranate peel extracts yielded higher total phenolic and total flavonoids than the orange peel extract. The identification and quantification of polyphenol compounds belonging to different classes, such as tannins, phenolic acids, and flavonoids in pomegranate peel and flavonoid compounds in orange peel were performed using UPLC-MS/MS. In addition, GC-MS analysis of orange peel essential oil discovered that the predominant compound is D-Limonene (95.7%). The aqueous and methanolic extracts of pomegranate peel were proven to be efficient against both gram-positive and gram-negative bacteria linked to human infections. Sponge cake substituting wheat flour with 3% pomegranate peel and 10% orange peel powder had the highest total phenolic, flavonoid compounds, and antioxidant activity as compared to the control cake. Our results concluded that pomegranate and orange peel flour can be used in cake preparation and natural food preservers.
Collapse
Affiliation(s)
- Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agricultural and Food Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Nareman S. Eshak
- Home Economics Department, Faculty of Specific Education, Assiut University, Assiut 71516, Egypt;
| | - Heba I. Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo 11341, Egypt
| | - Eslam S. A. Bendary
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt;
| | - Amal W. Danial
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
10
|
Laganà V, Giuffrè AM, De Bruno A, Poiana M. Formulation of Biscuits Fortified with a Flour Obtained from Bergamot By-Products (Citrus bergamia, Risso). Foods 2022; 11:foods11081137. [PMID: 35454727 PMCID: PMC9027505 DOI: 10.3390/foods11081137] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/23/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Bergamot belongs to the Rutaceae family and is a typical fruit grown principally in the province of Reggio Calabria (South Italy). Nowadays, its industrial use is mostly related to the extraction of the essential oil contained in the flavedo but also to a lesser extent the extraction of the juice (from the pulp), which is rich in antioxidants. However, the pressed pulp (known as Pastazzo) is either used for animal feed or is discarded. The aim of this research was to study the effect of bergamot Pastazzo flour in shortbread biscuits. Pastazzo flour partially replaced the 00 wheat flour in different percentages (2.5%, 5%, 10% and 15%). Simultaneously, a sample without the addition of pastazzo flour (control) was analyzed, thus obtaining five biscuit samples. Cooking was done in a ventilated oven at 180 °C. The baking time was different for the control and the enriched samples depending on when the desired color was reached. The control took 12 min, while the enriched samples reached the desired color in 8 min. All samples were subjected to physicochemical and antioxidant characterization, as well as total polyphenols and flavonoids. The use of pastazzo flour resulted in a slight increase in water activity and humidity values. pH values decreased for all the enriched samples compared to the control, but this was more relevant for the samples enriched with 10 and 15% of flour from by-products. Hardness varied from 1823 g (Control) to 2022 and 2818 g (respectively, for 2.5% and 15% bergamot Pastazzo flour in the recipe). Total phenol content varied from 0.14 mg GAE g−1 (Control) to 0.60 and 3.64 mg GAE g−1 (respectively, for 2.5% and 15% bergamot Pastazzo flour in the recipe). The obtained results demonstrated that the use of pastazzo flour had a positive influence on the antioxidant content, with values which increased as more pastazzo flour was added.
Collapse
|
11
|
Biotechnological Processes in Fruit Vinegar Production. Foods 2021; 10:foods10050945. [PMID: 33925896 PMCID: PMC8145929 DOI: 10.3390/foods10050945] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 11/16/2022] Open
Abstract
The production of fruit vinegars as a way of making use of fruit by-products is an option widely used by the food industry, since surplus or second quality fruit can be used without compromising the quality of the final product. The acetic nature of vinegars and its subsequent impact on the organoleptic properties of the final product allows almost any type of fruit to be used for its elaboration. A growing number of scientific research studies are being carried out on this matrix, and they are revealing the importance of controlling the processes involved in vinegar elaboration. Thus, in this review, we will deal with the incidence of technological and biotechnological processes on the elaboration of fruit vinegars other than grapes. The preparation and production of the juice for the elaboration of the vinegar by means of different procedures is an essential step for the final quality of the product, among which crushing or pressing are the most employed. The different conditions and processing methods of both alcoholic and acetic fermentation also affect significantly the final characteristics of the vinegar produced. For the alcoholic fermentation, the choice between spontaneous or inoculated procedure, together with the microorganisms present in the process, have special relevance. For the acetic fermentation, the type of acetification system employed (surface or submerged) is one of the most influential factors for the final physicochemical properties of fruit vinegars. Some promising research lines regarding fruit vinegar production are the use of commercial initiators to start the acetic fermentation, the use of thermotolerant bacteria that would allow acetic fermentation to be carried out at higher temperatures, or the use of innovative technologies such as high hydrostatic pressure, ultrasound, microwaves, pulsed electric fields, and so on, to obtain high-quality fruit vinegars.
Collapse
|