1
|
Nardelli D, Gambioli F, De Bartolo MI, Mancinelli R, Biagioni F, Carotti S, Falato E, Leodori G, Puglisi-Allegra S, Vivacqua G, Fornai F. Pain in Parkinson's disease: a neuroanatomy-based approach. Brain Commun 2024; 6:fcae210. [PMID: 39130512 PMCID: PMC11311710 DOI: 10.1093/braincomms/fcae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/23/2024] [Accepted: 06/17/2024] [Indexed: 08/13/2024] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder characterized by the deposition of misfolded alpha-synuclein in different regions of the central and peripheral nervous system. Motor impairment represents the signature clinical expression of Parkinson's disease. Nevertheless, non-motor symptoms are invariably present at different stages of the disease and constitute an important therapeutic challenge with a high impact for the patients' quality of life. Among non-motor symptoms, pain is frequently experienced by patients, being present in a range of 24-85% of Parkinson's disease population. Moreover, in more than 5% of patients, pain represents the first clinical manifestation, preceding by decades the exordium of motor symptoms. Pain implies a complex biopsychosocial experience with a downstream complex anatomical network involved in pain perception, modulation, and processing. Interestingly, all the anatomical areas involved in pain network can be affected by a-synuclein pathology, suggesting that pathophysiology of pain in Parkinson's disease encompasses a 'pain spectrum', involving different anatomical and neurochemical substrates. Here the various anatomical sites recruited in pain perception, modulation and processing are discussed, highlighting the consequences of their possible degeneration in course of Parkinson's disease. Starting from peripheral small fibres neuropathy and pathological alterations at the level of the posterior laminae of the spinal cord, we then describe the multifaceted role of noradrenaline and dopamine loss in driving dysregulated pain perception. Finally, we focus on the possible role of the intertwined circuits between amygdala, nucleus accumbens and habenula in determining the psycho-emotional, autonomic and cognitive experience of pain in Parkinson's disease. This narrative review provides the first anatomically driven comprehension of pain in Parkinson's disease, aiming at fostering new insights for personalized clinical diagnosis and therapeutic interventions.
Collapse
Affiliation(s)
- Domiziana Nardelli
- Laboratory of Microscopic and Ultrastructural Anatomy, Campus Biomedico University of Roma, Rome 00128, Italy
| | - Francesco Gambioli
- Laboratory of Microscopic and Ultrastructural Anatomy, Campus Biomedico University of Roma, Rome 00128, Italy
| | | | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Roma, Rome 00161, Italy
| | | | - Simone Carotti
- Laboratory of Microscopic and Ultrastructural Anatomy, Campus Biomedico University of Roma, Rome 00128, Italy
| | - Emma Falato
- Laboratory of Microscopic and Ultrastructural Anatomy, Campus Biomedico University of Roma, Rome 00128, Italy
| | - Giorgio Leodori
- IRCCS Neuromed, Pozzilli, IS 86077, Italy
- Department of Human Neuroscience, Sapienza University of Roma, Rome 00185, Italy
| | | | - Giorgio Vivacqua
- Laboratory of Microscopic and Ultrastructural Anatomy, Campus Biomedico University of Roma, Rome 00128, Italy
| | - Francesco Fornai
- IRCCS Neuromed, Pozzilli, IS 86077, Italy
- Department of Experimental Morphology and Applied Biology, University of Pisa, Pisa 56122, Italy
| |
Collapse
|
2
|
Dong LG, An MQ, Gu HY, Zhang LG, Zhang JB, Li CJ, Mao CJ, Wang F, Liu CF. PACAP/PAC1-R activation contributes to hyperalgesia in 6-OHDA-induced Parkinson's disease model rats via promoting excitatory synaptic transmission of spinal dorsal horn neurons. Acta Pharmacol Sin 2023; 44:2418-2431. [PMID: 37563446 PMCID: PMC10692161 DOI: 10.1038/s41401-023-01141-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023]
Abstract
Pain is a common annoying non-motor symptom in Parkinson's disease (PD) that causes distress to patients. Treatment for PD pain remains a big challenge, as its underlying mechanisms are elusive. Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor PAC1-R play important roles in regulating a variety of pathophysiological processes. In this study, we investigated whether PACAP/PAC1-R signaling was involved in the mechanisms of PD pain. 6-hydroxydopamine (6-OHDA)-induced PD model was established in rats. Behavioral tests, electrophysiological and Western blotting analysis were conducted 3 weeks later. We found that 6-OHDA rats had significantly lower mechanical paw withdrawal 50% threshold in von Frey filament test and shorter tail flick latency, while mRNA levels of Pacap and Adcyap1r1 (gene encoding PAC1-R) in the spinal dorsal horn were significantly upregulated. Whole-cell recordings from coronal spinal cord slices at L4-L6 revealed that the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in dorsal horn neurons was significantly increased, which was reversed by application of a PAC1-R antagonist PACAP 6-38 (250 nM). Furthermore, we demonstrated that intrathecal microinjection of PACAP 6-38 (0.125, 0.5, 2 μg) dose-dependently ameliorated the mechanical and thermal hyperalgesia in 6-OHDA rats. Inhibition of PACAP/PAC1-R signaling significantly suppressed the activation of Ca2+/calmodulin-dependent protein kinase II and extracellular signal-regulated kinase (ERK) in spinal dorsal horn of 6-OHDA rats. Microinjection of pAAV-Adcyap1r1 into L4-L6 spinal dorsal horn alleviated hyperalgesia in 6-OHDA rats. Intrathecal microinjection of ERK antagonist PD98059 (10 μg) significantly alleviated hyperalgesia in 6-OHDA rats associated with the inhibition of sEPSCs in dorsal horn neurons. In addition, we found that serum PACAP-38 concentration was significantly increased in PD patients with pain, and positively correlated with numerical rating scale score. In conclusion, activation of PACAP/PAC1-R induces the development of PD pain and targeting PACAP/PAC1-R is an alternative strategy for treating PD pain.
Collapse
Affiliation(s)
- Li-Guo Dong
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Meng-Qi An
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Han-Ying Gu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Li-Ge Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Jin-Bao Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Cheng-Jie Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Cheng-Jie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830063, China.
| |
Collapse
|
3
|
Roberta C, Vera S, Hans A H, Michael H H. Activation patterns of dopaminergic cell populations reflect different learning scenarios in a cichlid fish, Pseudotropheus zebra. J Chem Neuroanat 2023; 133:102342. [PMID: 37722435 DOI: 10.1016/j.jchemneu.2023.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Dopamine is present in all vertebrates and the functional roles of the subsystems are assumed to be similar. Whereas the effect of dopaminergic modulation is well investigated in different target systems, less is known about the factors that are causing the modulation of dopaminergic cells. Using the zebra mbuna, Pseudotropheus zebra, a cichlid fish from Lake Malawi as a model system, we investigated the activation of specific dopaminergic cell populations detected by double-labeling with TH and pS6 antibodies while the animals were solving different learning tasks. Specifically, we compared an intense avoidance learning situation, an instrumental learning task, and a non-learning isolated group and found strong activation of different dopaminergic cell populations. Preoptic-hypothalamic cell populations respond to the stress component in the avoidance task, and the forced movement/locomotion may be responsible for activation in the posterior tubercle. The instrumental learning task had little stress component, but the activation of the raphe superior in this group may be correlated with attention or arousal during the training sessions. At the same time, the weaker activation of the nucleus of the posterior commissure may be related to positive reward acting onto tectal circuits. Finally, we examined the co-activation patterns across all dopaminergic cell populations and recovered robust differences across experimental groups, largely driven by hypothalamic, posterior tubercle, and brain stem regions possibly encoding the valence and salience associated with stressful stimuli. Taken together, our results offer some insights into the different functions of the dopaminergic cell populations in the brain of a non-mammalian vertebrate in correlation with different behavioral conditions, extending our knowledge for a more comprehensive view of the mechanisms of dopaminergic modulation in vertebrates.
Collapse
Affiliation(s)
- Calvo Roberta
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany.
| | - Schluessel Vera
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| | - Hofmann Hans A
- Department of Integrative Biology, Institute for Neuroscience, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Hofmann Michael H
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| |
Collapse
|
4
|
Zhang Z, Shao H, Liu C, Song H, Wu X, Cao D, Zhu M, Fu Y, Wang J, Gao Y. Descending dopaminergic pathway facilitates itch signal processing via activating spinal GRPR + neurons. EMBO Rep 2023; 24:e56098. [PMID: 37522391 PMCID: PMC10561366 DOI: 10.15252/embr.202256098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023] Open
Abstract
A11 dopaminergic neurons regulate somatosensory transduction by projecting from the diencephalon to the spinal cord, but the function of this descending projection in itch remained elusive. Here, we report that dopaminergic projection neurons from the A11 nucleus to the spinal dorsal horn (dopaminergicA11-SDH ) are activated by pruritogens. Inhibition of these neurons alleviates itch-induced scratching behaviors. Furthermore, chemogenetic inhibition of spinal dopamine receptor D1-expressing (DRD1+ ) neurons decreases acute or chronic itch-induced scratching. Mechanistically, spinal DRD1+ neurons are excitatory and mostly co-localize with gastrin-releasing peptide (GRP), an endogenous neuropeptide for itch. In addition, DRD1+ neurons form synapses with GRP receptor-expressing (GRPR+ ) neurons and activate these neurons via AMPA receptor (AMPAR). Finally, spontaneous itch and enhanced acute itch induced by activating spinal DRD1+ neurons are relieved by antagonists against AMPAR and GRPR. Thus, the descending dopaminergic pathway facilitates spinal itch transmission via activating DRD1+ neurons and releasing glutamate and GRP, which directly augments GRPR signaling. Interruption of this descending pathway may be used to treat chronic itch.
Collapse
Affiliation(s)
- Zhi‐Jun Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Co‐Innovation Center of NeuroregenerationNantong UniversityJiangsuChina
- Department of Human Anatomy, School of MedicineNantong UniversityJiangsuChina
| | - Han‐Yu Shao
- Department of Human Anatomy, School of MedicineNantong UniversityJiangsuChina
| | - Chuan Liu
- Department of Human Anatomy, School of MedicineNantong UniversityJiangsuChina
| | - Hao‐Lin Song
- Department of Human Anatomy, School of MedicineNantong UniversityJiangsuChina
| | - Xiao‐Bo Wu
- Institute of Pain Medicine and Special Environmental Medicine, Co‐Innovation Center of NeuroregenerationNantong UniversityJiangsuChina
| | - De‐Li Cao
- Institute of Pain Medicine and Special Environmental Medicine, Co‐Innovation Center of NeuroregenerationNantong UniversityJiangsuChina
| | - Meixuan Zhu
- University of North Carolina at Chapel HillChapel HillNCUSA
| | - Yuan‐Yuan Fu
- Institute of Pain Medicine and Special Environmental Medicine, Co‐Innovation Center of NeuroregenerationNantong UniversityJiangsuChina
| | - Juan Wang
- Department of Human Anatomy, School of MedicineNantong UniversityJiangsuChina
| | - Yong‐Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co‐Innovation Center of NeuroregenerationNantong UniversityJiangsuChina
| |
Collapse
|
5
|
Silvani A, Ghorayeb I, Manconi M, Li Y, Clemens S. Putative Animal Models of Restless Legs Syndrome: A Systematic Review and Evaluation of Their Face and Construct Validity. Neurotherapeutics 2023; 20:154-178. [PMID: 36536233 PMCID: PMC10119375 DOI: 10.1007/s13311-022-01334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Restless legs syndrome (RLS) is a sensorimotor disorder that severely affects sleep. It is characterized by an urge to move the legs, which is often accompanied by periodic limb movements during sleep. RLS has a high prevalence in the population and is usually a life-long condition. While its origins remain unclear, RLS is initially highly responsive to treatment with dopaminergic agonists that target D2-like receptors, in particular D2 and D3, but the long-term response is often unsatisfactory. Over the years, several putative animal models for RLS have been developed, mainly based on the epidemiological and neurochemical link with iron deficiency, treatment efficacy of D2-like dopaminergic agonists, or genome-wide association studies that identified risk factors in the patient population. Here, we present the first systematic review of putative animal models of RLS, provide information about their face and construct validity, and report their role in deciphering the underlying pathophysiological mechanisms that may cause or contribute to RLS. We propose that identifying the causal links between genetic risk factors, altered organ functions, and changes to molecular pathways in neural circuitry will eventually lead to more effective new treatment options that bypass the side effects of the currently used therapeutics in RLS, especially for long-term therapy.
Collapse
Affiliation(s)
- Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Ravenna Campus, Ravenna, Italy
| | - Imad Ghorayeb
- Département de Neurophysiologie Clinique, Pôle Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Université de Bordeaux, Bordeaux, France
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, CNRS, Bordeaux, France
| | - Mauro Manconi
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, EOC, Ospedale Civico, Lugano, Switzerland
- Department of Neurology, University Hospital, Inselspital, Bern, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Yuqing Li
- Department of Neurology, College of Medicine, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
6
|
Noristani HN. Intrinsic regulation of axon regeneration after spinal cord injury: Recent advances and remaining challenges. Exp Neurol 2022; 357:114198. [DOI: 10.1016/j.expneurol.2022.114198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/20/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022]
|
7
|
Salminen AV, Clemens S, García-Borreguero D, Ghorayeb I, Li Y, Manconi M, Ondo W, Rye D, Siegel JM, Silvani A, Winkelman JW, Allen RP, Ferré S. Consensus guidelines on the construct validity of rodent models of restless legs syndrome. Dis Model Mech 2022; 15:dmm049615. [PMID: 35946581 PMCID: PMC9393041 DOI: 10.1242/dmm.049615] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/10/2022] [Indexed: 12/16/2022] Open
Abstract
Our understanding of the causes and natural course of restless legs syndrome (RLS) is incomplete. The lack of objective diagnostic biomarkers remains a challenge for clinical research and for the development of valid animal models. As a task force of preclinical and clinical scientists, we have previously defined face validity parameters for rodent models of RLS. In this article, we establish new guidelines for the construct validity of RLS rodent models. To do so, we first determined and agreed on the risk, and triggering factors and pathophysiological mechanisms that influence RLS expressivity. We then selected 20 items considered to have sufficient support in the literature, which we grouped by sex and genetic factors, iron-related mechanisms, electrophysiological mechanisms, dopaminergic mechanisms, exposure to medications active in the central nervous system, and others. These factors and biological mechanisms were then translated into rodent bioequivalents deemed to be most appropriate for a rodent model of RLS. We also identified parameters by which to assess and quantify these bioequivalents. Investigating these factors, both individually and in combination, will help to identify their specific roles in the expression of rodent RLS-like phenotypes, which should provide significant translational implications for the diagnosis and treatment of RLS.
Collapse
Affiliation(s)
- Aaro V. Salminen
- Institute of Neurogenomics, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | | | - Imad Ghorayeb
- Département de Neurophysiologie Clinique, Pôle Neurosciences Cliniques, CHU de Bordeaux, 33076 Bordeaux, France
- Université de Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, 33076 Bordeaux, France
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, 33076 Bordeaux, France
| | - Yuqing Li
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mauro Manconi
- Sleep Medicine Unit, Regional Hospital of Lugano, Neurocenter of Southern Switzerland, 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Department of Neurology, University Hospital Inselspital, 3010 Bern, Switzerland
| | - William Ondo
- Houston Methodist Hospital Neurological Institute, Weill Cornell Medical School, Houston, TX 77070, USA
| | - David Rye
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jerome M. Siegel
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, CA 90095, USA
- Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, North Hills, CA 91343, USA
| | - Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences Alma Mater Studiorum, Università di Bologna, 48121 Ravenna Campus, Ravenna, Italy
| | - John W. Winkelman
- Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Richard P. Allen
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | | |
Collapse
|
8
|
Noga BR, Whelan PJ. The Mesencephalic Locomotor Region: Beyond Locomotor Control. Front Neural Circuits 2022; 16:884785. [PMID: 35615623 PMCID: PMC9124768 DOI: 10.3389/fncir.2022.884785] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
The mesencephalic locomotor region (MLR) was discovered several decades ago in the cat. It was functionally defined based on the ability of low threshold electrical stimuli within a region comprising the cuneiform and pedunculopontine nucleus to evoke locomotion. Since then, similar regions have been found in diverse vertebrate species, including the lamprey, skate, rodent, pig, monkey, and human. The MLR, while often viewed under the lens of locomotion, is involved in diverse processes involving the autonomic nervous system, respiratory system, and the state-dependent activation of motor systems. This review will discuss the pedunculopontine nucleus and cuneiform nucleus that comprises the MLR and examine their respective connectomes from both an anatomical and functional angle. From a functional perspective, the MLR primes the cardiovascular and respiratory systems before the locomotor activity occurs. Inputs from a variety of higher structures, and direct outputs to the monoaminergic nuclei, allow the MLR to be able to respond appropriately to state-dependent locomotion. These state-dependent effects are roughly divided into escape and exploratory behavior, and the MLR also can reinforce the selection of these locomotor behaviors through projections to adjacent structures such as the periaqueductal gray or to limbic and cortical regions. Findings from the rat, mouse, pig, and cat will be discussed to highlight similarities and differences among diverse species.
Collapse
Affiliation(s)
- Brian R. Noga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- *Correspondence: Brian R. Noga Patrick J. Whelan
| | - Patrick J. Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
- *Correspondence: Brian R. Noga Patrick J. Whelan
| |
Collapse
|
9
|
Pernía-Andrade AJ, Wenger N, Esposito MS, Tovote P. Circuits for State-Dependent Modulation of Locomotion. Front Hum Neurosci 2021; 15:745689. [PMID: 34858153 PMCID: PMC8631332 DOI: 10.3389/fnhum.2021.745689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/12/2021] [Indexed: 01/15/2023] Open
Abstract
Brain-wide neural circuits enable bi- and quadrupeds to express adaptive locomotor behaviors in a context- and state-dependent manner, e.g., in response to threats or rewards. These behaviors include dynamic transitions between initiation, maintenance and termination of locomotion. Advances within the last decade have revealed an intricate coordination of these individual locomotion phases by complex interaction of multiple brain circuits. This review provides an overview of the neural basis of state-dependent modulation of locomotion initiation, maintenance and termination, with a focus on insights from circuit-centered studies in rodents. The reviewed evidence indicates that a brain-wide network involving excitatory circuit elements connecting cortex, midbrain and medullary areas appears to be the common substrate for the initiation of locomotion across different higher-order states. Specific network elements within motor cortex and the mesencephalic locomotor region drive the initial postural adjustment and the initiation of locomotion. Microcircuits of the basal ganglia, by implementing action-selection computations, trigger goal-directed locomotion. The initiation of locomotion is regulated by neuromodulatory circuits residing in the basal forebrain, the hypothalamus, and medullary regions such as locus coeruleus. The maintenance of locomotion requires the interaction of an even larger neuronal network involving motor, sensory and associative cortical elements, as well as defined circuits within the superior colliculus, the cerebellum, the periaqueductal gray, the mesencephalic locomotor region and the medullary reticular formation. Finally, locomotor arrest as an important component of defensive emotional states, such as acute anxiety, is mediated via a network of survival circuits involving hypothalamus, amygdala, periaqueductal gray and medullary premotor centers. By moving beyond the organizational principle of functional brain regions, this review promotes a circuit-centered perspective of locomotor regulation by higher-order states, and emphasizes the importance of individual network elements such as cell types and projection pathways. The realization that dysfunction within smaller, identifiable circuit elements can affect the larger network function supports more mechanistic and targeted therapeutic intervention in the treatment of motor network disorders.
Collapse
Affiliation(s)
| | - Nikolaus Wenger
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Maria S Esposito
- Medical Physics Department, Centro Atomico Bariloche, Comision Nacional de Energia Atomica, Consejo Nacional de Investigaciones Cientificas y Tecnicas, San Carlos de Bariloche, Argentina
| | - Philip Tovote
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany.,Center for Mental Health, University of Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Didato G, Di Giacomo R, Rosa GJ, Dominese A, de Curtis M, Lanteri P. Restless Legs Syndrome across the Lifespan: Symptoms, Pathophysiology, Management and Daily Life Impact of the Different Patterns of Disease Presentation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3658. [PMID: 32456058 PMCID: PMC7277795 DOI: 10.3390/ijerph17103658] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022]
Abstract
Restless legs syndrome is a common but still underdiagnosed neurologic disorder, characterized by peculiar symptoms typically occurring in the evening and at night, and resulting in sleep disruption and daily functioning impairment. This disease can affect subjects of all age ranges and of both sexes, manifesting itself with a broad spectrum of severity and deserving special attention in certain patient categories, in order to achieve a correct diagnosis and an effective treatment. The diagnosis of restless legs syndrome can be challenging in some patients, especially children and elderly people, and an effective treatment might be far from being easy to achieve after some years of drug therapy, notably when dopaminergic agents are used. Moreover, the pathophysiology of this disorder offers an interesting example of interaction between genetics and the environment, considering strong iron metabolism involvement and its interaction with recognized individual genetic factors. Therefore, this syndrome allows clinicians to verify how lifespan and time can modify diagnosis and treatment of a neurological disorder.
Collapse
Affiliation(s)
- Giuseppe Didato
- Clinical and Experimental Epileptology and Sleep Disorders Unit, Foundation IRCCS Carlo Besta Neurological Institute, Via Celoria 11, 20133 Milan, Italy; (R.D.G.); (G.J.R.); (A.D.); (M.d.C.)
| | - Roberta Di Giacomo
- Clinical and Experimental Epileptology and Sleep Disorders Unit, Foundation IRCCS Carlo Besta Neurological Institute, Via Celoria 11, 20133 Milan, Italy; (R.D.G.); (G.J.R.); (A.D.); (M.d.C.)
| | - Giuseppa Jolanda Rosa
- Clinical and Experimental Epileptology and Sleep Disorders Unit, Foundation IRCCS Carlo Besta Neurological Institute, Via Celoria 11, 20133 Milan, Italy; (R.D.G.); (G.J.R.); (A.D.); (M.d.C.)
- Neurology Unit, University Hospital of Ferrara, 44100 Ferrara, Italy
| | - Ambra Dominese
- Clinical and Experimental Epileptology and Sleep Disorders Unit, Foundation IRCCS Carlo Besta Neurological Institute, Via Celoria 11, 20133 Milan, Italy; (R.D.G.); (G.J.R.); (A.D.); (M.d.C.)
| | - Marco de Curtis
- Clinical and Experimental Epileptology and Sleep Disorders Unit, Foundation IRCCS Carlo Besta Neurological Institute, Via Celoria 11, 20133 Milan, Italy; (R.D.G.); (G.J.R.); (A.D.); (M.d.C.)
| | - Paola Lanteri
- Neurophysiopathology Unit, Foundation IRCCS Carlo Besta Neurological Institute, 20133 Milan, Italy;
| |
Collapse
|
11
|
Freudenmacher L, Schauer M, Walkowiak W, Twickel A. Refinement of the dopaminergic system of anuran amphibians based on connectivity with habenula, basal ganglia, limbic system, pallium, and spinal cord. J Comp Neurol 2019; 528:972-988. [DOI: 10.1002/cne.24793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Lars Freudenmacher
- Zoological Institute, University of Cologne Cologne Germany
- Institute II for Anatomy, University of Cologne Cologne Germany
| | - Maria Schauer
- Zoological Institute, University of Cologne Cologne Germany
| | | | - Arndt Twickel
- Zoological Institute, University of Cologne Cologne Germany
| |
Collapse
|
12
|
Abnormal Circadian Modification of A δ-Fiber Pathway Excitability in Idiopathic Restless Legs Syndrome. Pain Res Manag 2019; 2019:5408732. [PMID: 31827655 PMCID: PMC6885267 DOI: 10.1155/2019/5408732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/06/2019] [Accepted: 10/16/2019] [Indexed: 11/17/2022]
Abstract
Restless legs syndrome (RLS) is characterized by unpleasant sensations generally localized to legs, associated with an urge to move. A likely pathogenetic mechanism is a central dopaminergic dysfunction. The exact role of pain system is unclear. The purpose of the study was to investigate the nociceptive pathways in idiopathic RLS patients. We enrolled 11 patients (mean age 53.2 ± 19.7 years; 7 men) suffering from severe, primary RLS. We recorded scalp laser-evoked potentials (LEPs) to stimulation of different sites (hands and feet) and during two different time conditions (daytime and nighttime). Finally, we compared the results with a matched control group of healthy subjects. The Aδ responses obtained from patients did not differ from those recorded from control subjects. However, the N1 and the N2-P2 amplitudes' night/day ratios after foot stimulation were increased in patients, as compared to controls (N1: patients: 133.91 ± 50.42%; controls: 83.74 ± 34.45%; p = 0.016; Aδ-N2-P2: patients: 119.15 ± 15.56%; controls: 88.42 ± 23.41%; p = 0.003). These results suggest that RLS patients present circadian modifications in the pain system, which are not present in healthy controls. Both sensory-discriminative and affective-emotional components of pain experience show parallel changes. This study confirms the structural integrity of Aδ nociceptive system in idiopathic RLS, but it also suggests that RLS patients present circadian modifications in the pain system. These findings could potentially help clinicians and contribute to identify new therapeutic approaches.
Collapse
|
13
|
Hopfner F, Hobert MA, Maetzler C, Hansen C, Pham MH, Moreau C, Berg D, Devos D, Maetzler W. Mobility Deficits Assessed With Mobile Technology: What Can We Learn From Brain Iron-Altered Animal Models? Front Neurol 2019; 10:833. [PMID: 31440200 PMCID: PMC6694697 DOI: 10.3389/fneur.2019.00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/18/2019] [Indexed: 12/02/2022] Open
Abstract
Background: Recent developments in mobile technology have enabled the investigation of human movements and mobility under natural conditions, i.e., in the home environment. Iron accumulation in the basal ganglia is deleterious in Parkinson's disease (i.e., iron accumulation with lower striatal level of dopamine). The effect of iron chelation (i.e., re-deployment of iron) in Parkinson's disease patients is currently tested in a large investigator-initiated multicenter study. Conversely, restless legs syndrome (RLS) is associated with iron depletion and higher striatal level of dopamine. To determine from animal models which movement and mobility parameters might be associated with iron content modulation and the potential effect of therapeutic chelation inhuman. Methods: We recapitulated pathophysiological aspects of the association between iron, dopamine, and neuronal dysfunction and deterioration in the basal ganglia, and systematically searched PubMed to identify original articles reporting about quantitatively assessed mobility deficits in animal models of brain iron dyshomeostasis. Results: We found six original studies using murine and fly models fulfilling the inclusion criteria. Especially postural and trunk stability were altered in animal models with iron overload. Animal models with lowered basal ganglia iron suffered from alterations in physical activity, mobility, and sleep fragmentation. Conclusion: From preclinical investigations in the animal model, we can deduce that possibly also in humans with iron accumulation in the basal ganglia undergoing therapeutic chelation may primarily show changes in physical activity (such as daily “motor activity”), postural and trunk stability and sleep fragmentation. These changes can readily be monitored with currently available mobile technology.
Collapse
Affiliation(s)
- Franziska Hopfner
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus A Hobert
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Corina Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Clint Hansen
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Minh Hoang Pham
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Caroline Moreau
- Department of Movement Disorders and Neurology, Faculty of Medicine, Lille University Hospital, Lille University, INSERM U1171, Lille, France
| | - Daniela Berg
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - David Devos
- Departments of Medical Pharmacology and Movement Disorders, Lille University Hospital, Lille University, INSERM U1171, Lille, France
| | - Walter Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | | |
Collapse
|
14
|
Dopamine receptor D2, but not D1, mediates descending dopaminergic pathway-produced analgesic effect in a trigeminal neuropathic pain mouse model. Pain 2019; 160:334-344. [PMID: 30325872 DOI: 10.1097/j.pain.0000000000001414] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neuropathic pain represents a challenge to clinicians because it is resistant to commonly prescribed analgesics due to its largely unknown mechanisms. Here, we investigated a descending dopaminergic pathway-mediated modulation of trigeminal neuropathic pain. We performed chronic constriction injury of the infraorbital nerve from the maxillary branch of trigeminal nerve to induce trigeminal neuropathic pain in mice. Our retrograde tracing showed that the descending dopaminergic projection from hypothalamic A11 nucleus to spinal trigeminal nucleus caudalis is bilateral. Optogenetic/chemogenetic manipulation of dopamine receptors D1 and D2 in the spinal trigeminal nucleus caudalis produced opposite effects on the nerve injury-induced trigeminal neuropathic pain. Specific excitation of dopaminergic neurons in the A11 nucleus attenuated the trigeminal neuropathic pain through the activation of D2 receptors in the spinal trigeminal nucleus caudalis. Conversely, specific ablation of the A11 dopaminergic neurons exacerbated such pain. Our results suggest that the descending A11-spinal trigeminal nucleus caudalis dopaminergic projection is critical for the modulation of trigeminal neuropathic pain and could be manipulated to treat such pain.
Collapse
|
15
|
Chiaro G, Manconi M. Restless legs syndrome, periodic limb movements during sleep and cardiovascular risk. Auton Neurosci 2019; 220:102554. [PMID: 31331694 DOI: 10.1016/j.autneu.2019.102554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 12/16/2022]
Abstract
Multiple mechanisms may modulate an association between restless legs syndrome/Willis-Ekbom disease (RLS/WED) and cardiovascular disease (CVD), including chronic sleep deprivation, intermittent, periodic limb movements in sleep (PLMS)-related autonomic fluctuations and possible autonomic dysfunction intrinsically associated with RLS per se. The purpose of this paper is to review the existing RLS/WED literature focusing on the pathophysiologic evidence for possible associations between RLS/WED and PLMS with CVD and events (CVE). Specific intrinsic dysautonomic aspects of the disease, which may contribute to generating CVD, are separately discussed. The association between RLS/WED and both CV risk factors and CVD still remains elusive. Although several shared pathophysiological causes could explain these possible relationships, the emerging body of literature focusing on these disorders remains controversial. Not only longitudinal population-based studies and meta-analyses, but also more animal models and therapeutic interventions are needed in order to build a sufficiently robust body of evidence on this topic.
Collapse
Affiliation(s)
- Giacomo Chiaro
- Sleep and Epilepsy Center, Neurocenter of Southern Switzerland, Civic Hospital of Lugano, Lugano, Switzerland; Department of Biomedical and Neuromotor Sciences, Bellaria Hospital, University of Bologna, Bologna, Italy
| | - Mauro Manconi
- Sleep and Epilepsy Center, Neurocenter of Southern Switzerland, Civic Hospital of Lugano, Lugano, Switzerland; Department of Neurology, Bern University Hospital, Bern, Switzerland.
| |
Collapse
|
16
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JA. Neurochemical features of idiopathic restless legs syndrome. Sleep Med Rev 2019; 45:70-87. [PMID: 30965199 DOI: 10.1016/j.smrv.2019.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 11/26/2022]
|
17
|
Perrin FE, Noristani HN. Serotonergic mechanisms in spinal cord injury. Exp Neurol 2019; 318:174-191. [PMID: 31085200 DOI: 10.1016/j.expneurol.2019.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) is a tragic event causing irreversible losses of sensory, motor, and autonomic functions, that may also be associated with chronic neuropathic pain. Serotonin (5-HT) neurotransmission in the spinal cord is critical for modulating sensory, motor, and autonomic functions. Following SCI, 5-HT axons caudal to the lesion site degenerate, and the degree of axonal degeneration positively correlates with lesion severity. Rostral to the lesion, 5-HT axons sprout, irrespective of the severity of the injury. Unlike callosal fibers and cholinergic projections, 5-HT axons are more resistant to an inhibitory milieu and undergo active sprouting and regeneration after central nervous system (CNS) traumatism. Numerous studies suggest that a chronic increase in serotonergic neurotransmission promotes 5-HT axon sprouting in the intact CNS. Moreover, recent studies in invertebrates suggest that 5-HT has a pro-regenerative role in injured axons. Here we present a brief description of 5-HT discovery, 5-HT innervation of the CNS, and physiological functions of 5-HT in the spinal cord, including its role in controlling bladder function. We then present a comprehensive overview of changes in serotonergic axons after CNS damage, and discuss their plasticity upon altered 5-HT neurotransmitter levels. Subsequently, we provide an in-depth review of therapeutic approaches targeting 5-HT neurotransmission, as well as other pre-clinical strategies to promote an increase in re-growth of 5-HT axons, and their functional consequences in SCI animal models. Finally, we highlight recent findings signifying the direct role of 5-HT in axon regeneration and suggest strategies to further promote robust long-distance re-growth of 5-HT axons across the lesion site and eventually achieve functional recovery following SCI.
Collapse
Affiliation(s)
- Florence Evelyne Perrin
- University of Montpellier, Montpellier, F-34095 France; INSERM, U1198, Montpellier, F-34095 France; EPHE, Paris, F-75014 France
| | - Harun Najib Noristani
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
18
|
|
19
|
Abstract
Nociceptive signals conveyed to the dorsal horn of the spinal cord by primary nociceptors are subject to extensive modulation by local neurons and by supraspinal descending pathways to the spinal cord before being relayed to higher brain centers. Descending modulatory pathways to the spinal cord comprise, among others, noradrenergic, serotonergic, γ-aminobutyric acid (GABA)ergic, and dopaminergic fibers. The contributions of noradrenaline, serotonin, and GABA to pain modulation have been extensively investigated. In contrast, the contributions of dopamine to pain modulation remain poorly understood. The focus of this review is to summarize the current knowledge of the contributions of dopamine to pain modulation. Hypothalamic A11 dopaminergic neurons project to all levels of the spinal cord and provide the main source of spinal dopamine. Dopamine receptors are expressed in primary nociceptors as well as in spinal neurons located in different laminae in the dorsal horn of the spinal cord, suggesting that dopamine can modulate pain signals by acting at both presynaptic and postsynaptic targets. Here, I will review the literature on the effects of dopamine and dopamine receptor agonists/antagonists on the excitability of primary nociceptors, the effects of dopamine on the synaptic transmission between primary nociceptors and dorsal horn neurons, and the effects of dopamine on pain in rodents. Published data support both anti-nociceptive effects of dopamine mediated by D2-like receptors and pro-nociceptive effects mediated by D1-like receptors.
Collapse
Affiliation(s)
- Michelino Puopolo
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, USA
| |
Collapse
|
20
|
Casoni F, Galbiati A, Ferini-Strambi L. D3 receptor agonist efficacy in restless legs syndrome. PHARMACOLOGY OF RESTLESS LEGS SYNDROME (RLS) 2019; 84:21-35. [DOI: 10.1016/bs.apha.2019.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG. Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cell Mol Neurobiol 2019; 39:31-59. [PMID: 30446950 PMCID: PMC11469830 DOI: 10.1007/s10571-018-0632-3] [Citation(s) in RCA: 544] [Impact Index Per Article: 90.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023]
Abstract
The dopaminergic system plays important roles in neuromodulation, such as motor control, motivation, reward, cognitive function, maternal, and reproductive behaviors. Dopamine is a neurotransmitter, synthesized in both central nervous system and the periphery, that exerts its actions upon binding to G protein-coupled receptors. Dopamine receptors are widely expressed in the body and function in both the peripheral and the central nervous systems. Dopaminergic signaling pathways are crucial to the maintenance of physiological processes and an unbalanced activity may lead to dysfunctions that are related to neurodegenerative diseases. Unveiling the neurobiology and the molecular mechanisms that underlie these illnesses may contribute to the development of new therapies that could promote a better quality of life for patients worldwide. In this review, we summarize the aspects of dopamine as a catecholaminergic neurotransmitter and discuss dopamine signaling pathways elicited through dopamine receptor activation in normal brain function. Furthermore, we describe the potential involvement of these signaling pathways in evoking the onset and progression of some diseases in the nervous system, such as Parkinson's, Schizophrenia, Huntington's, Attention Deficit and Hyperactivity Disorder, and Addiction. A brief description of new dopaminergic drugs recently approved and under development treatments for these ailments is also provided.
Collapse
Affiliation(s)
- Marianne O Klein
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, 05508-000, Brazil
| | - Daniella S Battagello
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, 05508-000, Brazil
| | - Ariel R Cardoso
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, 05508-000, Brazil
| | - David N Hauser
- Center for Translational Neuroscience, Sanford Burnham Prebys (SBP) Medical Discovery Institute, 10901 North Torrey Pines Rd., La Jolla, CA, 92037, USA
| | - Jackson C Bittencourt
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, 05508-000, Brazil.
- Center for Neuroscience and Behavior, Institute of Psychology, USP, São Paulo, Brazil.
| | - Ricardo G Correa
- Center for Translational Neuroscience, Sanford Burnham Prebys (SBP) Medical Discovery Institute, 10901 North Torrey Pines Rd., La Jolla, CA, 92037, USA.
| |
Collapse
|
22
|
Koblinger K, Jean-Xavier C, Sharma S, Füzesi T, Young L, Eaton SEA, Kwok CHT, Bains JS, Whelan PJ. Optogenetic Activation of A11 Region Increases Motor Activity. Front Neural Circuits 2018; 12:86. [PMID: 30364230 PMCID: PMC6193508 DOI: 10.3389/fncir.2018.00086] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/21/2018] [Indexed: 11/13/2022] Open
Abstract
Limbic brain regions drive goal-directed behaviors. These behaviors often require dynamic motor responses, but the functional connectome of limbic structures in the diencephalon that control locomotion is not well known. The A11 region, within the posterior diencephalon has been postulated to contribute to motor function and control of pain. Here we show that the A11 region initiates movement. Photostimulation of channelrhodopsin 2 (ChR2) transfected neurons in A11 slice preparations showed that neurons could follow stimulation at frequencies of 20 Hz. Our data show that photostimulation of ChR2 transfected neurons in the A11 region enhances motor activity often leading to locomotion. Using vGluT2-reporter and vGAT-reporter mice we show that the A11 tyrosine hydroxylase positive (TH) dopaminergic neurons are vGluT2 and vGAT negative. We find that in addition to dopaminergic neurons within the A11 region, there is another neuronal subtype which expresses the monoenzymatic aromatic L-amino acid decarboxylase (AADC), but not TH, a key enzyme involved in the synthesis of catecholamines including dopamine. This monoaminergic-based motor circuit may be involved in the control of motor behavior as part of a broader diencephalic motor region.
Collapse
Affiliation(s)
- Kathrin Koblinger
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Céline Jean-Xavier
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Sandeep Sharma
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Tamás Füzesi
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Leanne Young
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Shane E A Eaton
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Charlie Hong Ting Kwok
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Jaideep Singh Bains
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Patrick J Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
23
|
Presynaptic Inhibition of Primary Nociceptive Signals to Dorsal Horn Lamina I Neurons by Dopamine. J Neurosci 2018; 38:8809-8821. [PMID: 30143577 DOI: 10.1523/jneurosci.0323-18.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/18/2018] [Accepted: 08/09/2018] [Indexed: 01/10/2023] Open
Abstract
The dorsal horn of the spinal cord represents the first relay station in the pain pathway where primary nociceptive inputs are modulated by local circuits and by descending signals before being relayed to supraspinal nuclei. To determine whether dopamine can modulate primary nociceptive Aδ- and C-fiber signals, the effects of dopamine were tested on the excitatory postsynaptic currents (EPSCs) recorded from large lamina I neurons and from retrograde-labeled spinoparabrachial lamina I neurons upon stimulation of the L4/L5 dorsal root in horizontal spinal cord slices in vitro Dopamine inhibited the EPSCs in a dose-dependent manner, with substantial inhibition (33%) at 1 μm and maximum inhibition (∼70%) at 10-20 μm Dopamine reduced the frequency of miniature EPSCs recorded from large lamina I neurons, increased the paired pulse depression ratio of paired EPSCs, and induced similar inhibition of EPSCs after dialysis of large lamina I neurons with GDP-β-S, consistent with actions at presynaptic sites. Pharmacological experiments suggested that the inhibitory effects of dopamine were largely mediated by D4 receptors (53%). Similar inhibition (66%) by dopamine was observed on EPSCs recorded from ipsilateral large lamina I neurons 6 d after injection of complete Freund's adjuvant in the hindpaw, suggesting that dopamine downregulates primary nociceptive inputs to lamina I neurons during chronic inflammatory pain. We propose that presynaptic inhibition of primary nociceptive inputs to lamina I projection neurons is a mechanism whereby dopamine can inhibit incoming noxious stimuli to the dorsal horn of the spinal cord.SIGNIFICANCE STATEMENT Lamina I projection neurons represent the main output for the pain signals from the dorsal horn of the spinal cord to brainstem and thalamic nuclei. We found that dopamine inhibits the nociceptive Aδ- and C-fiber synaptic inputs to lamina I projection neurons via presynaptic actions. Similar inhibitory effects of dopamine on the EPSCs were observed in rats subjected to complete Freund's adjuvant to induce peripheral inflammation, suggesting that dopamine inhibits the synaptic inputs to lamina I neurons in the setting of injury. A better understanding of how primary nociceptive inputs to the dorsal horn of the spinal cord are modulated by descending monoaminergic signals may help in the development of new pharmacological strategies to selectively downregulate the output from lamina I projection neurons.
Collapse
|
24
|
Parallel descending dopaminergic connectivity of A13 cells to the brainstem locomotor centers. Sci Rep 2018; 8:7972. [PMID: 29789702 PMCID: PMC5964077 DOI: 10.1038/s41598-018-25908-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/30/2018] [Indexed: 12/20/2022] Open
Abstract
The mesencephalic locomotor region (MLR) is an important integrative area for the initiation and modulation of locomotion. Recently it has been realized that dopamine (DA) projections from the substantia nigra pars compacta project to the MLR. Here we explore DA projections from an area of the medial zona incerta (ZI) known for its role in motor control onto the MLR. We provide evidence that dopaminergic (DAergic) A13 neurons have connectivity to the cuneiform nucleus (CnF) and pedunculopontine tegmental nucleus (PPTg) of the MLR. No ascending connectivity to the dorsolateral striatum was observed. On the other hand, DAergic A13 projections to the medullary reticular formation (MRF) and the lumbar spinal cord were sparse. A small number of non-DAergic neurons within the medial ZI projected to the lumbar spinal cord. We then characterized the DA A13 cells and report that these cells differ from canonical DA neurons since they lack the Dopamine Transporter (DAT). The lack of DAT expression, and possibly the lack of a dopamine reuptake mechanism, points to a longer time of action compared to typical dopamine neurons. Collectively our data suggest a parallel descending DAergic pathway from the A13 neurons of the medial ZI to the MLR, which we expect is important for modulating movement.
Collapse
|
25
|
Zaretsky DV, Kline H, Zaretskaia MV, Brown MB, Durant PJ, Alves NJ, Rusyniak DE. Disinhibiting neurons in the dorsomedial hypothalamus delays the onset of exertional fatigue and exhaustion in rats exercising in a warm environment. Brain Res 2018; 1689:12-20. [PMID: 29577887 DOI: 10.1016/j.brainres.2018.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/31/2022]
Abstract
Stimulants cause hyperthermia, in part, by increasing heat generation through exercise. Stimulants also delay the onset of fatigue and exhaustion allowing animals to exercise longer. If used in a warm environment, this combination (increased exercise and decreased fatigue) can cause heat stroke. The dorsomedial hypothalamus (DMH) is involved in mediating locomotion from stimulants. Furthermore, inhibiting the DMH decreases locomotion and prevents hyperthermia in rats given stimulants in a warm environment. Whether the DMH is involved in mediating exercise-induced fatigue and exhaustion is not known. We hypothesized that disinhibiting neurons in the dorsomedial hypothalamus (DMH) would delay the onset of fatigue and exhaustion in animals exercising in a warm environment. To test this hypothesis, we used automated video tracking software to measure fatigue and exhaustion. In rats, using wearable mini-pumps, we demonstrated that disinhibiting the DMH, via bicuculline perfusion (5 µM), increased the duration of exercise in a warm environment as compared to control animals (25 ± 3 min vs 15 ± 2 min). Bicuculline-perfused animals also had higher temperatures at exhaustion (41.4 ± 0.2 °C vs 40.0 ± 0.4 °C). Disinhibiting neurons in the DMH also increased the time to fatigue. Our data show that the same region of the hypothalamus that is involved in mediating locomotion to stimulants, is also involved in controlling exhaustion and fatigue. These findings have implications for understanding the cause and treatment of stimulant-induced-hyperthermia.
Collapse
Affiliation(s)
- Dmitry V Zaretsky
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hannah Kline
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maria V Zaretskaia
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mary Beth Brown
- Department of Physical Therapy, Indiana University School of Health and Rehabilitation Sciences, USA
| | - Pamela J Durant
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nathan J Alves
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniel E Rusyniak
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
26
|
Wang X, Ma S, Wu H, Shen X, Xu S, Guo X, Bolick ML, Wu S, Wang F. Macrophage migration inhibitory factor mediates peripheral nerve injury-induced hypersensitivity by curbing dopaminergic descending inhibition. Exp Mol Med 2018; 50:e445. [PMID: 29504609 PMCID: PMC5903823 DOI: 10.1038/emm.2017.271] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/25/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022] Open
Abstract
Our previous works disclosed the contributing role of macrophage migration inhibitory factor (MIF) and dopaminergic inhibition by lysine dimethyltransferase G9a/Glp complex in peripheral nerve injury-induced hypersensitivity. We herein propose that the proinflammatory cytokine MIF participates in the regulation of neuropathic hypersensitivity by interacting with and suppressing the descending dopaminergic system. The lumbar spinal cord (L-SC) and ventral tegmental area (VTA) are two major locations with significant upregulation of MIF after chronic constriction injury (CCI) of the sciatic nerve, and they display time-dependent changes, along with a behavioral trajectory. Correspondingly, dopamine (DA) content shows the reverse characteristic change to MIF with a time-dependent curve in post-surgical behavior. The levels of both MIF and DA are reversed by the MIF tautomerase inhibitor ISO-1, and a negative relationship exists between MIF and DA. The reversed role of ISO-1 also affects tyrosine hydroxylase expression. Furthermore, CCI induces Th promoter CpG site methylation in the L-SC and VTA areas, and this effect could be abated by ISO-1 administration. G9a/SUV39H1 and H3K9me2/H3K9me3 enrichment within the Th promoter region following CCI in the L-SC and VTA was also decreased by ISO-1. In cultured dopaminergic neurons, rMIF enhanced the recruitment of G9a and SUV39H1, followed by an increase in H3K9me2/H3K9me3. These molecular changes correspondingly exhibited alterations in Th promoter CpG site methylation and pain behaviors. In summary, MIF functions as a braking factor in curbing dopaminergic descending inhibition in peripheral nerve injury-induced hypersensitivity by mediating Th gene methylation through G9a/SUV39H1-associated H3K9 methylation.
Collapse
Affiliation(s)
- Xian Wang
- Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Shaolei Ma
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haibo Wu
- Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Xiaofeng Shen
- Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Shiqin Xu
- Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Xirong Guo
- Institute of Pediatrics, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Maria L Bolick
- Group of Neuropharmacology and Neurophysiology, Division of Neuroscience, The Bonoi Academy of Science and Education, Chapel Hill, NC, USA
| | - Shizheng Wu
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, China
| | - Fuzhou Wang
- Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China.,Group of Neuropharmacology and Neurophysiology, Division of Neuroscience, The Bonoi Academy of Science and Education, Chapel Hill, NC, USA
| |
Collapse
|
27
|
Tuo HZ, Tian ZL, Cui YN, Ma XY, Xu CL, Bi HY, Zhang LY, Zhang YB, Le WD, Ondo W. Restless legs syndrome secondary to pontine infarction: Clinical analysis of five cases. Chronic Dis Transl Med 2017; 3:186-190. [PMID: 29063076 PMCID: PMC5643777 DOI: 10.1016/j.cdtm.2017.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Indexed: 01/13/2023] Open
Abstract
Objective Pontine infarction is a common type of stroke in the cerebral deep structures, resulting from occlusion of small penetrating arteries, may manifest as hemi-paralysis, hemi-sensory deficit, ataxia, vertigo, and bulbar dysfunction, but patients presenting with restless legs syndrome (RLS) are extremely rare. Herein, we reported five cases with RLS as a major manifestation of pontine infarction. Methods Five cases of pontine infarction related RLS were collected from July 2013 to February 2016. The diagnosis of RLS was made according to criteria established by the International RLS Study Group (IRLSSG) in 2003. Neurological functions were assessed according to the National Institutes of Health Stroke Scale (NIHSS) and modified Rankin Scale (mRS). Severity of RLS was based on the International RLS Rating Scale (IRLS-RS). Sleep quality was assessed by Epworth Rating Scale (ERS), and individual emotional and psychological states were assessed by Hamilton Depression Scale (HDS) and Hamilton Anxiety Scale (HAS). Results The laboratory data at the onset including hemoglobin, serum concentration of homocysteine, blood urea nitrogen (BUN), creatinine, electrolytes, and thyroid hormones were normal. The electroencephalogram (EEG), lower-extremity somatosensory evoked potential (SEP), and nerve conduction velocity (NCV) in four limbs were normal. The average period of follow-up was 34.60 ± 12.76 months. The MRI examination showed acute or subacute pontine infarction lesions, 3 cases in the rostral inner side, 1 case in the rostral lateral and inner side, and 1 case in rostral lateral side. The neurological deficits included weakness in 4 cases, contralateral sensory deficit in 1 case, and ataxia in 2 cases. All 5 patients presented with symptom of RLS at or soon after the onset of infarction and 4 patients experienced uncomfortable sensations in the paralyzed limbs contralateral to the ischemic lesion. Their neurological deficits improved significantly 2 weeks later, but the symptoms of RLS did not resolve. Among them, 3/5 patients were treated with dopaminergic drugs. At the end of the follow-up, RLS symptom eventually resolved in 3 patients but persisted in two. The IRLS-RS, NIHSS and mRS scores were significantly lower at the onset than those at the last follow-up (P = 0.035, 0.024 and 0.049, respectively). However, there was no significant difference in the ERS, HDS and HAS scores (P = 0.477, 0.226 and 0.778, respectively). Conclusion RLS can be an onset manifestation of pontine infarction, clinicians should be aware of this potential symptom. RLS usually occurs in the paralyzed limbs contralateral to the infarction lesion. The pathogenesis still needs further investigation.
Collapse
Affiliation(s)
- Hou-Zhen Tuo
- Department of Neurology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing 100050, China
| | - Ze-Long Tian
- Department of Neurology, The Fourth Central Hospital of Tianjin, Tianjin 300140, China
| | - Yi-Nong Cui
- Department of Neurology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing 100050, China
| | - Xiao-Yang Ma
- Department of Neurology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Chun-Ling Xu
- Department of Neurology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing 100050, China
| | - Hong-Yan Bi
- Department of Neurology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing 100050, China
| | - Li-Yan Zhang
- Department of Neurology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing 100050, China
| | - Yong-Bo Zhang
- Department of Neurology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing 100050, China
| | - Wei-Dong Le
- The Center for Translational Research on Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - William Ondo
- Department of Neurology, Methodist Neurological Institute, Houston, TX 77030, USA
| |
Collapse
|
28
|
Evaluation of Acupuncture in the Treatment of Restless Legs Syndrome: A Randomized Controlled Trial. J Acupunct Meridian Stud 2017; 10:346-350. [PMID: 29078970 DOI: 10.1016/j.jams.2017.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/10/2017] [Accepted: 08/16/2017] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to examine the additive effect of medical acupuncture on controlling the symptoms of restless legs syndrome (RLS). A total of 46 randomly allocated patients diagnosed with RLS were assigned to receive either 10 sessions of acupuncture plus gabapentin (300 mg/d), or gabapentin (300 mg/d) alone (23 patients in each group) over 4 weeks in a single-blind study. The symptoms of patients were assessed by the Visual Analogue Scale (VAS), the International Restless Legs Syndrome Rating Scale (IRLSRS), and the Pittsburgh Sleep Quality Index (PSQI) at baseline, just after the therapeutic course and 8 weeks later. For all outcome measures, there was a significant time-group interaction, showing that the behavior of groups differed regarding changes in VAS, IRLSRS, and PSQI in favor of the experimental group. After therapeutic course termination and in 8 weeks follow up, VAS and IRLSRS had a significant improvement in both the experimental group and the control group, but PSQI improved significantly just in the experimental group. Based on the findings of the present study, acupuncture plus a low dose of gabapentin (300 mg/d) is clinically useful in the treatment of RLS during 8 weeks follow up, and also has an additive therapeutic effect over gabapentin alone in patients with RLS.
Collapse
|
29
|
Fernández-López B, Sobrido-Cameán D, Anadón R, Rodicio MC, Barreiro-Iglesias A. Restricted co-localization of glutamate and dopamine in neurons of the adult sea lamprey brain. J Anat 2017; 231:776-784. [PMID: 28791699 DOI: 10.1111/joa.12674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2017] [Indexed: 01/04/2023] Open
Abstract
Co-localization of dopamine with other classical neurotransmitters in the same neuron is a common phenomenon in the brain of vertebrates. In mammals, some dopaminergic neurons of the ventral tegmental area and the hypothalamus have a glutamatergic co-phenotype. However, information on the presence of this type of dopaminergic neurons in other vertebrate groups is very scant. Here, we aimed to provide new insights on the evolution of this neuronal co-phenotype by studying the presence of a dual dopaminergic/glutamatergic neuron phenotype in the central nervous system of lampreys. Double immunofluorescence experiments for dopamine and glutamate in adult sea lampreys revealed co-localization of both neurotransmitters in some neurons of the preoptic nucleus, the nucleus of the postoptic commissure, the dorsal hypothalamus and in cerebrospinal fluid-contacting cells of the caudal rhombencephalon and rostral spinal cord. Moreover, co-localization of dopamine and glutamate was found in dopaminergic fibres in a few brain regions including the lateral pallium, striatum, and the preoptic and postoptic areas but not in the brainstem. Our results suggest that the presence of neurons with a dopaminergic/glutamatergic co-phenotype is a primitive character shared by jawless and jawed vertebrates. However, important differences in the distribution of these neurons and fibres were noted among the few vertebrates investigated to date. This study offers an anatomical basis for further work on the role of glutamate in dopaminergic neurons.
Collapse
Affiliation(s)
- B Fernández-López
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - D Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - R Anadón
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - M C Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - A Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
30
|
Dopamine D1-like Receptors Regulate Constitutive, μ-Opioid Receptor-Mediated Repression of Use-Dependent Synaptic Plasticity in Dorsal Horn Neurons: More Harm than Good? J Neurosci 2017; 36:5661-73. [PMID: 27194343 DOI: 10.1523/jneurosci.2469-15.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 04/11/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED The current study reports on a synaptic mechanism through which D1-like receptors (D1LRs) modulate spinal nociception and plasticity by regulating activation of the μ-opioid receptor (MOR).D1LR stimulation with agonist SKF 38393 concentration-dependently depressed C-fiber-evoked potentials in rats receiving spinal nerve ligation (SNL), but not in uninjured rats. Depression was prevented by MOR- but not GABA-receptor blockade. Neurons expressing the D1 subtype were immunopositive for met-enkephalin and vesicular glutamate transporter VGLUT2, but not for GABAergic marker vGAT.Nerve ligation was followed by increased immunoreactivity for D1 in synaptic compartment (P3) in dorsal horn homogenates and presynaptic met-enkephalin-containing boutons. SNL led to increased immunoreactivity for met-enkephalin in dorsal horn homogenates, which was dose-dependently attenuated by selective D1LR antagonist SCH 23390. During blockade of either D1R or MOR, low-frequency (0.2 or 3 Hz) stimulation (LFS) to the sciatic nerve induced long-term potentiation (LTP) of C-fiber-evoked potentials, revealing a constituent role of both receptors in repressing afferent-induced synaptic plasticity. LFS consistently induced NMDA receptor-dependent LTP in nerve-injured rats. The ability of MOR both to prevent LTP and to modulate mechanical and thermal pain thresholds in behavioral tests was preserved in nerve-ligated rats that were postoperatively treated with SCH 23390. D1LR priming for 30 min sufficed to disrupt MOR function in otherwise naive rats via a mechanism involving receptor overuse.The current data support that, whereas D1LR-modulated MOR activation is instrumental in antinociception and endogenous repression of synaptic plasticity, this mechanism deteriorates rapidly by sustained use, generating increased vulnerability to afferent input. SIGNIFICANCE STATEMENT The current study shows that dopamine D1-like receptors (D1LRs) and μ-opioid receptors (MOR) in the spinal dorsal horn constitutively repress the expression of synaptic long-term potentiation (LTP) of C-fiber-evoked potentials. Anatomical data are provided supporting that the D1 subtype regulates MOR function by modulating met-enkephalin release. Sustained neuropathic pain induced by spinal nerve ligation is accompanied by D1R and met-enkephalin upregulation, acquired D1LR-mediated antinociception, and a loss of endogenous repression of further synaptic plasticity. We show that the ability of MOR to oppose LTP is rapidly impaired by sustained D1LR activation via a mechanism involving sustained MOR activation.
Collapse
|
31
|
Congiu P, Fantini ML, Milioli G, Tacconi P, Figorilli M, Gioi G, Pereira B, Marrosu F, Parrino L, Puligheddu M. F-Wave Duration as a Specific and Sensitive Tool for the Diagnosis of Restless Legs Syndrome/Willis-Ekbom Disease. J Clin Sleep Med 2017; 13:369-375. [PMID: 28095964 DOI: 10.5664/jcsm.6482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 11/16/2016] [Indexed: 12/14/2022]
Abstract
STUDY OBJECTIVES Restless legs syndrome, also known as Willis-Ekbom disease (RLS/WED), is a frequent condition, though its pathophysiology is not completely understood. The diagnosis of RLS/WED relies on clinical criteria, and the only instrumental tool, the suggested immobilization test, may lead to equivocal results. Recently, neurophysiological parameters related to F-wave duration have been proposed as a diagnostic aid. The aim of this study is to assess and compare the diagnostic values of these parameters in diagnosis of RLS/WED. METHODS Fifteen women affected by primary RLS/WED and 17 age- and sex- matched healthy subjects. A complete electroneurographic evaluation, including nerve conduction studies (NCS), cutaneous silent period (CSP), and F-wave parameters, namely amplitude, F-wave duration (FWD), and the ratio between FWD and duration of the corresponding compound muscle action potential (FWD/CMAPD). RESULTS No subject showed alterations of the NCS. However, FWD and FWD/CMAPD of both upper and lower limbs were significantly longer in patients than controls. Tibial FWD/CMAPD best discriminated RLS/WED patients from controls. A cutoff of 2.06 yielded a sensitivity of 69.2%, a specificity of 94.1%, a positive predictive power of 90%, and a negative predictive power of 80% (area under the curve = 0.817; 95% confidence interval = 0.674-0.959). The combination of ulnar or tibial FWD/CMAPD increases the sensitivity (85.7%) while slightly decreasing the specificity (87.5%, positive predictive value: 85.7%, negative predictive value: 87.5%). CONCLUSIONS Lower limb FWD/CMAPD ratio may represent a supportive diagnostic tool, especially in cases of evening lower leg discomfort of unclear interpretation.
Collapse
Affiliation(s)
| | | | | | | | | | - Gioia Gioi
- Sleep Disorders Center, University of Cagliari, Italy
| | - Bruno Pereira
- Biostatistics Unit (DRCI), CHU Clermont-Ferrand, France
| | | | | | | |
Collapse
|
32
|
Lanza G, Bachmann CG, Ghorayeb I, Wang Y, Ferri R, Paulus W. Central and peripheral nervous system excitability in restless legs syndrome. Sleep Med 2017; 31:49-60. [PMID: 27745789 DOI: 10.1016/j.sleep.2016.05.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/24/2016] [Accepted: 05/30/2016] [Indexed: 02/07/2023]
Abstract
Neurophysiological techniques have been applied in restless legs syndrome (RLS) to obtain direct and indirect measures of central and peripheral nervous system excitability, as well as to probe different neurotransmission pathways. Data converge on the hypothesis that, from a pure electrophysiological perspective, RLS should be regarded as a complex sensorimotor disorder in which cortical, subcortical, spinal cord, and peripheral nerve generators are all involved in a network disorder, resulting in an enhanced excitability and/or decreased inhibition. Although the spinal component may have dominated in neurophysiological assessment, possibly because of better accessibility compared to the brainstem or cerebral components of a hypothetical dysfunction of the diencephalic A11 area, multiple mechanisms, such as reduced central inhibition and abnormal peripheral nerve function, contribute to the pathogenesis of RLS similarly to some chronic pain conditions. Dopamine transmission dysfunction, either primary or triggered by low iron and ferritin concentrations, may also bridge the gap between RLS and chronic pain entities. Further support of disturbed central and peripheral excitability in RLS is provided by the effectiveness of nonpharmacological tools, such as repetitive transcranial magnetic stimulation and transcutaneous spinal direct current stimulation, in transiently modulating neural excitability, thereby extending the therapeutic repertoire. Understanding the complex interaction of central and peripheral neuronal circuits in generating the symptoms of RLS is mandatory for a better refinement of its therapeutic support.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Sleep Research Center, I.R.C.C.S. "Oasi Maria SS.", Troina, Italy.
| | | | - Imad Ghorayeb
- Department of Clinical Neurophysiology, CHU de Bordeaux, Bordeaux, France; CNRS, INCIA, CNRS UMR 5287, Université de Bordeaux, Bordeaux, France
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Raffale Ferri
- Sleep Research Center, I.R.C.C.S. "Oasi Maria SS.", Troina, Italy
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg August University Göttingen, Göttingen, Germany
| |
Collapse
|
33
|
Mash DC. Excited Delirium and Sudden Death: A Syndromal Disorder at the Extreme End of the Neuropsychiatric Continuum. Front Physiol 2016; 7:435. [PMID: 27790150 PMCID: PMC5061757 DOI: 10.3389/fphys.2016.00435] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/13/2016] [Indexed: 01/15/2023] Open
Abstract
Over the past decade, the excited delirium syndrome (ExDS) has raised continued controversy regarding the cause and manner of death of some highly agitated persons held in police custody, restrained or incapacitated by electrical devices. At autopsy, medical examiners have difficulty in identifying an anatomic cause of death, but frequently cite psychostimulant intoxication as a contributing factor. The characteristic symptoms of ExDS include bizarre and aggressive behavior, shouting, paranoia, panic, violence toward others, unexpected physical strength, and hyperthermia. Throughout the United States and Canada, these cases are most frequently associated with cocaine, methamphetamine, and designer cathinone abuse. Acute exhaustive mania and sudden death presents with behavioral symptoms that are identical to what is described for ExDS in psychostimulant abusers. Bell's mania or acute exhaustive mania was first described in the 1850's by American psychiatrist Luther Bell in institutionalized psychiatric patients. This rare disorder of violent mania, elevated body temperature and autonomic collapse continued to be described by others in the psychiatric literature, but with different names until the first cases of ExDS were seen at the beginning of the cocaine epidemic by medical examiners. The neurochemical pathology examination of brain tissues after death revealed a loss of dopamine transporter regulation together with increases in heat shock protein 70 (hsp70) expression as a biomarker of hyperthermia. The similarity in the behavioral symptoms between extremely agitated psychostimulant abusers and unmedicated psychiatric patients suggests that a genetic disorder that leads to dysregulated central dopamine transporter function could be a precipitating cause of the acute delirium and sudden death. While the precise cause and mechanism of lethality remains controversial, the likely whys and wherefores of sudden death of ExDS victims are seen to be "biological," since excessive dopamine in the brain triggers the manic excitement and delirium, which unabated, culminates in a loss of autonomic function that progresses to cardiorespiratory collapse.
Collapse
Affiliation(s)
- Deborah C Mash
- Department of Neurology and Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine Miami, FL, USA
| |
Collapse
|
34
|
Regulation of Nociceptive Plasticity Threshold and DARPP-32 Phosphorylation in Spinal Dorsal Horn Neurons by Convergent Dopamine and Glutamate Inputs. PLoS One 2016; 11:e0162416. [PMID: 27610622 PMCID: PMC5017751 DOI: 10.1371/journal.pone.0162416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/22/2016] [Indexed: 01/19/2023] Open
Abstract
Dopamine can influence NMDA receptor function and regulate glutamate-triggered long-term changes in synaptic strength in several regions of the CNS. In spinal cord, regulation of the threshold of synaptic plasticity may determine the proneness to undergo sensitization and hyperresponsiveness to noxious input. In the current study, we increased endogenous dopamine levels in the dorsal horn by using re-uptake inhibitor GBR 12935. During the so-induced hyperdopaminergic transmission, conditioning low-frequency (1 Hz) stimulation (LFS) to the sciatic nerve induced long-term potentiation (LTP) of C-fiber-evoked potentials in dorsal horn neurons. The magnitude of LTP was attenuated by blockade of either dopamine D1-like receptors (D1LRs) by with SCH 23390 or NMDA receptor subunit NR2B with antagonist Ro25-6981. Conditioning LFS during GBR 12935 administration increased phosphorylation of dopamine- and cAMP-regulated phosphoprotein of Mr 32kDa (DARPP-32) at threonine 34 residue in synaptosomal (P3) fraction of dorsal horn homogenates, as assessed by Western blot analysis, which was partially prevented by NR2B blockade prior to conditioning stimulation. Conditioning LFS also was followed by higher co-localization of phosphorylated form of NR2B at tyrosine 1472 and pDARPP-32Thr34- with postsynaptic marker PSD-95 in transverse L5 dorsal horn sections. Such increase could be significantly attenuated by D1LR blockade with SCH 23390. The current results support that coincidental endogenous recruitment of D1LRs and NR2B in dorsal horn synapses plays a role in regulating afferent-induced nociceptive plasticity. Parallel increases in DARPP-32 phosphorylation upon LTP induction suggests a role for this phosphoprotein as intracellular detector of convergent D1L- and NMDA receptor activation.
Collapse
|
35
|
French IT, Muthusamy KA. A Review of Sleep and Its Disorders in Patients with Parkinson's Disease in Relation to Various Brain Structures. Front Aging Neurosci 2016; 8:114. [PMID: 27242523 PMCID: PMC4876118 DOI: 10.3389/fnagi.2016.00114] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/29/2016] [Indexed: 11/13/2022] Open
Abstract
Sleep is an indispensable normal physiology of the human body fundamental for healthy functioning. It has been observed that Parkinson's disease (PD) not only exhibits motor symptoms, but also non-motor symptoms such as metabolic irregularities, altered olfaction, cardiovascular dysfunction, gastrointestinal complications and especially sleep disorders which is the focus of this review. A good understanding and knowledge of the different brain structures involved and how they function in the development of sleep disorders should be well comprehended in order to treat and alleviate these symptoms and enhance quality of life for PD patients. Therefore it is vital that the normal functioning of the body in relation to sleep is well understood before proceeding on to the pathophysiology of PD correlating to its symptoms. Suitable treatment can then be administered toward enhancing the quality of life of these patients, perhaps even discovering the cause for this disease.
Collapse
Affiliation(s)
- Isobel T French
- Department of Surgery, University Malaya Kuala Lumpur, Malaysia
| | | |
Collapse
|
36
|
Can physical exercise have a protective effect in an animal model of sleep-related movement disorder? Brain Res 2016; 1639:47-57. [PMID: 26923163 DOI: 10.1016/j.brainres.2016.02.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 02/12/2016] [Accepted: 02/21/2016] [Indexed: 12/13/2022]
Abstract
The purpose of the present study was to determine whether physical exercise (PE) has a protective effect in an experimental animal model of sleep-related movement disorder (A11 dopaminergic nuclei lesions with 6-OHDA). Rats were divided into four groups (Control PE-CTRL/PE, SHAM/PE, A11 lesion/NPE, A11 lesion/PE). Two experiments were performed: (1) the rats underwent PE before (2 weeks) and after (4 weeks) the A11 lesion; and (2) the rats underwent PE only after (4 weeks) the A11 lesion. Electrode insertion surgery was performed and sleep analyses were conducted over a period of 24h (baseline and after PE) and analyzed in 6 blocks of 4h. The results demonstrated that the A11 lesion produced an increased percentage of wakefulness in the final block of the dark period (3-7am) and a significant enhancement of the number of limb movements (LM) throughout the day. Four weeks of PE was important for reducing the number of LMs in the A11 lesion group in the rats that performed PE before and after the A11 lesion. However, in the analysis of the protective effect of PE on LM, the results showed that the number of LMs was lower at baseline in the group that had performed 2 weeks of PE prior to the A11 lesion than in the group that had not previously performed PE. In conclusion, these findings consistently demonstrate that non-pharmacological manipulations had a beneficial effect on the symptoms of sleep-related movement disorder.
Collapse
|
37
|
Aira Z, Barrenetxea T, Buesa I, Martínez E, Azkue JJ. Spinal D1-like dopamine receptors modulate NMDA receptor-induced hyperexcitability and NR1 subunit phosphorylation at serine 889. Neurosci Lett 2016; 618:152-158. [PMID: 26957228 DOI: 10.1016/j.neulet.2016.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 11/25/2022]
Abstract
Activation of the N-methyl-d-aspartate receptor (NMDAR) in dorsal horn neurons is recognized as a fundamental mechanism of central sensitization and pathologic pain. This study assessed the influence of dopaminergic, D1-like receptor-mediated input to the spinal dorsal horn on NMDAR function. Spinal superfusion with selective NMDAR agonist cis-ACPD significantly increased C-fiber-evoked field potentials in rats subjected to spinal nerve ligation (SNL), but not in sham-operated rats. Simultaneous application of D1LR antagonist SCH 23390 dramatically reduced hyperexcitability induced by cis-ACPD. Furthermore, cis-ACPD-induced hyperexcitability seen in nerve-ligated rats could be mimicked in unin-jured rats during stimulation of D1LRs by agonist SKF 38393 at subthreshold concentration. Phosphorylation of NMDAR subunit NR1 at serine 889 at postsynaptic sites was found to be increased in dorsal horn neurons 90 min after SNL, as assessed by increased co-localization with postsynaptic marker PSD-95. Increased NR1 phosphorylation was attenuated in the presence of SCH 23390 in the spinal superfusate. The present results support that D1LRs regulate most basic determinants of NMDAR function in dorsal horn neurons, suggesting a potential mechanism whereby dopaminergic input to the dorsal horn can modulate central sensitization and pathologic pain.
Collapse
Affiliation(s)
- Zigor Aira
- Department of Neurosciences, School of Medicine and Dentistry, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Teresa Barrenetxea
- Department of Neurosciences, School of Medicine and Dentistry, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Itsaso Buesa
- Department of Neurosciences, School of Medicine and Dentistry, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Endika Martínez
- Department of Neurosciences, School of Medicine and Dentistry, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Jon Jatsu Azkue
- Department of Neurosciences, School of Medicine and Dentistry, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain.
| |
Collapse
|
38
|
Chakraborty S, Rebecchi M, Kaczocha M, Puopolo M. Dopamine modulation of transient receptor potential vanilloid type 1 (TRPV1) receptor in dorsal root ganglia neurons. J Physiol 2016; 594:1627-42. [PMID: 26563747 DOI: 10.1113/jp271198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/04/2015] [Indexed: 01/11/2023] Open
Abstract
The transient receptor potential vanilloid type 1 (TRPV1) receptor plays a key role in the modulation of nociceptor excitability. To address whether dopamine can modulate the activity of TRPV1 channels in nociceptive neurons, the effects of dopamine and dopamine receptor agonists were tested on the capsaicin-activated current recorded from acutely dissociated small diameter (<27 μm) dorsal root ganglia (DRG) neurons. Dopamine or SKF 81297 (an agonist at D1/D5 receptors), caused inhibition of both inward and outward currents by ∼60% and ∼48%, respectively. The effect of SKF 81297 was reversed by SCH 23390 (an antagonist at D1/D5 receptors), confirming that it was mediated by activation of D1/D5 dopamine receptors. In contrast, quinpirole (an agonist at D2 receptors) had no significant effect on the capsaicin-activated current. Inhibition of the capsaicin-activated current by SKF 81297 was mediated by G protein coupled receptors (GPCRs), and highly dependent on external calcium. The inhibitory effect of SKF 81297 on the capsaicin-activated current was not affected when the protein kinase A (PKA) activity was blocked with H89, or when the protein kinase C (PKC) activity was blocked with bisindolylmaleimide II (BIM). In contrast, when the calcium-calmodulin-dependent protein kinase II (CaMKII) was blocked with KN-93, the inhibitory effect of SKF 81297 on the capsaicin-activated current was greatly reduced, suggesting that activation of D1/D5 dopamine receptors may be preferentially linked to CaMKII activity. We suggest that modulation of TRPV1 channels by dopamine in nociceptive neurons may represent a way for dopamine to modulate incoming noxious stimuli.
Collapse
Affiliation(s)
- Saikat Chakraborty
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, 11794, USA
| | - Mario Rebecchi
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, 11794, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, 11794, USA
| | - Michelino Puopolo
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, 11794, USA
| |
Collapse
|
39
|
Willenberg R, Steward O. Nonspecific labeling limits the utility of Cre-Lox bred CST-YFP mice for studies of corticospinal tract regeneration. J Comp Neurol 2015; 523:2665-82. [PMID: 25976033 PMCID: PMC4607560 DOI: 10.1002/cne.23809] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 05/10/2015] [Accepted: 05/12/2015] [Indexed: 12/20/2022]
Abstract
Studies of axon regeneration in the spinal cord often assess regeneration of the corticospinal tract (CST). Emx1-Cre x Thy1-STOP-YFP mice have been reported to have yellow fluorescent protein (YFP) selectively expressed in forebrain neurons leading to genetic labeling of CST axons in the spinal cord, and it was suggested that these CST-YFP mice would be useful for studies of CST regeneration. Because regeneration past a lesion may involve only a few axons, the presence of labeled non-CST axons compromises interpretation. We show here that in CST-YFP mice, some YFP-labeled axons are not from the CST. Specifically, YFP-labeled axons are present in regions beyond those with anterogradely labeled CST axons, most YFP-labeled axons beyond established CST locations do not undergo Wallerian degeneration following a large lesion of the sensorimotor cortex, some rubrospinal and reticulospinal neurons are labeled with YFP, and some YFP-labeled cells in the spinal gray matter have YFP-labeled projections into the spinal cord white matter. We further demonstrate that the density of YFP-labeled axon arbors hinders tracing of single axons to their point of origin in the main descending tracts. In light of recent advances in 3D imaging for visualizing axons in unsectioned blocks of spinal cord, we also assessed CST-YFP mice for 3D imaging and found that YFP fluorescence in CST-YFP mice is faint for clearing-based 3D imaging in comparison with fluorescence in Thy1-YFP-H mice and fluorescence of mini-ruby biotinylated dextran amine (BDA). Overall, the nonspecific and faint YFP labeling in CST-YFP mice limits their utility for assessments of CST axon regeneration.
Collapse
Affiliation(s)
- Rafer Willenberg
- Reeve-Irvine Research Center, University of California at Irvine, Irvine, California 92697
- Department of Anatomy & Neurobiology, University of California at Irvine, Irvine, California 92697
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California at Irvine, Irvine, California 92697
- Department of Anatomy & Neurobiology, University of California at Irvine, Irvine, California 92697
- Department of Neurobiology & Behavior, University of California at Irvine, Irvine, California 92697
- Department of Neurosurgery, University of California at Irvine, Irvine, California 92697
| |
Collapse
|
40
|
GABAAergic inhibition or dopamine denervation of the A11 hypothalamic nucleus induces trigeminal analgesia. Pain 2015; 156:644-655. [PMID: 25790455 DOI: 10.1097/j.pain.0000000000000091] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Descending pain-modulatory systems, either inhibitory or facilitatory, play a critical role in both acute and chronic pain. Compared with serotonin and norepinephrine, little is known about the function of dopamine (DA). We characterized the anatomical organization of descending DA pathways from hypothalamic A11 nuclei to the medullary dorsal horn (MDH) and investigated their role in trigeminal pain. Immunochemistry analysis reveals that A11 is a heterogeneous nucleus that contains at least 3 neuronal phenotypes, DA, GABA, and alpha-calcitonin gene-related peptide (α-CGRP) neurons, exhibiting different distribution patterns, with a large proportion of GABA relative to DA neurons. Using fluorogold, we show that descending pathways from A11 nuclei to MDH originate mainly from DA neurons and are bilateral. Facial nociceptive stimulation elevates Fos immunoreactivity in both ipsilateral and contralateral A11 nuclei. Fos immunoreactivity is not detected in DA or projecting neurons but, interestingly, in GABA neurons. Finally, inactivating A11, using muscimol, or partially lesioning A11 DA neurons, using the neurotoxin 6-hydroxydopamine, inhibits trigeminal pain behavior. These results show that A11 nuclei are involved in pain processing. Interestingly, however, pain seems to activate GABAergic neurons within A11 nuclei, which suggests that pain inhibits rather than activates descending DA controls. We show that such inhibition produces an antinociceptive effect. Pain-induced inhibition of descending DA controls and the resulting reduced DA concentration within the dorsal horn may inhibit the transfer of nociceptive information to higher brain centers through preferential activation of dorsal horn D2-like receptors.
Collapse
|
41
|
Acevedo J, Santana-Almansa A, Matos-Vergara N, Marrero-Cordero LR, Cabezas-Bou E, Díaz-Ríos M. Caffeine stimulates locomotor activity in the mammalian spinal cord via adenosine A1 receptor-dopamine D1 receptor interaction and PKA-dependent mechanisms. Neuropharmacology 2015; 101:490-505. [PMID: 26493631 DOI: 10.1016/j.neuropharm.2015.10.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/16/2015] [Accepted: 10/15/2015] [Indexed: 01/31/2023]
Abstract
Caffeine is a potent psychostimulant that can have significant and widely variable effects on the activity of multiple neuronal pathways. The most pronounced caffeine-induced behavioral effect seen in rodents is to increase locomotor activity which has been linked to a dose-dependent inhibition of A1 and A(2A) receptors. The effects of caffeine at the level of the lumbar spinal central pattern generator (CPG) network for hindlimb locomotion are lacking. We assessed the effects of caffeine to the locomotor function of the spinal CPG network via extracellular ventral root recordings using the isolated neonatal mouse spinal cord preparation. Addition of caffeine and of an A1 receptor antagonist significantly decreased the cycle period accelerating the ongoing locomotor rhythm, while decreasing burst duration reversibly in most preparations suggesting the role of A1 receptors as the primary target of caffeine. Caffeine and an A1 receptor antagonist failed to stimulate ongoing locomotor activity in the absence of dopamine or in the presence of a D1 receptor antagonist supporting A1/D1 receptor-dependent mechanism of action. The use of caffeine or an A1 receptor blocker failed to stimulate an ongoing locomotor rhythm in the presence of a blocker of the cAMP-dependent protein kinase (PKA) supporting the need of this intracellular pathway for the modulatory effects of caffeine to occur. These results support a stimulant effect of caffeine on the lumbar spinal network controlling hindlimb locomotion through the inhibition of A1 receptors and subsequent activation of D1 receptors via a PKA-dependent intracellular mechanism.
Collapse
Affiliation(s)
- JeanMarie Acevedo
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA
| | - Alexandra Santana-Almansa
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA
| | - Nikol Matos-Vergara
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA
| | - Luis René Marrero-Cordero
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA
| | - Ernesto Cabezas-Bou
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA
| | - Manuel Díaz-Ríos
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA.
| |
Collapse
|
42
|
Transient expression of neuropeptide W in postnatal mouse hypothalamus--a putative regulator of energy homeostasis. Neuroscience 2015; 301:323-37. [PMID: 26073698 DOI: 10.1016/j.neuroscience.2015.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/29/2015] [Accepted: 06/06/2015] [Indexed: 11/24/2022]
Abstract
Neuropeptide B and W (NPB and NPW) are cognate peptide ligands for NPBWR1 (GPR7), a G protein-coupled receptor. In rodents, they have been implicated in the regulation of energy homeostasis, neuroendocrine/autonomic responses, and social interactions. Although localization of these peptides and their receptors in adult rodent brain has been well documented, their expression in mouse brain during development is unknown. Here we demonstrate the transient expression of NPW mRNA in the dorsomedial hypothalamus (DMH) of postnatal mouse brain and its co-localization with neuropeptide Y (NPY) mRNA. Neurons expressing both NPW and NPY mRNAs begin to emerge in the DMH at about postnatal day 0 (P-0) through P-3. Their expression is highest around P-14, declines after P-21, and by P-28 only a faint expression of NPW and NPY mRNA remains. In P-18 brains, we detected NPW neurons in the region spanning the subincertal nucleus (SubI), the lateral hypothalamic (LH) perifornical (PF) areas, and the DMH, where the highest expression of NPW mRNA was observed. The majority of these postnatal hypothalamic NPW neurons co-express NPY mRNA. A cross of NPW-iCre knock-in mice with a Cre-dependent tdTomato reporter line revealed that more than half of the reporter-positive neurons in the adult DMH, which mature from the transiently NPW-expressing neurons, are sensitive to peripherally administrated leptin. These data suggest that the DMH neurons that transiently co-express NPW and NPY in the peri-weaning period might play a role in regulating energy homeostasis during postnatal development.
Collapse
|
43
|
Fraigne JJ, Torontali ZA, Snow MB, Peever JH. REM Sleep at its Core - Circuits, Neurotransmitters, and Pathophysiology. Front Neurol 2015; 6:123. [PMID: 26074874 PMCID: PMC4448509 DOI: 10.3389/fneur.2015.00123] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/13/2015] [Indexed: 01/03/2023] Open
Abstract
Rapid eye movement (REM) sleep is generated and maintained by the interaction of a variety of neurotransmitter systems in the brainstem, forebrain, and hypothalamus. Within these circuits lies a core region that is active during REM sleep, known as the subcoeruleus nucleus (SubC) or sublaterodorsal nucleus. It is hypothesized that glutamatergic SubC neurons regulate REM sleep and its defining features such as muscle paralysis and cortical activation. REM sleep paralysis is initiated when glutamatergic SubC cells activate neurons in the ventral medial medulla, which causes release of GABA and glycine onto skeletal motoneurons. REM sleep timing is controlled by activity of GABAergic neurons in the ventrolateral periaqueductal gray and dorsal paragigantocellular reticular nucleus as well as melanin-concentrating hormone neurons in the hypothalamus and cholinergic cells in the laterodorsal and pedunculo-pontine tegmentum in the brainstem. Determining how these circuits interact with the SubC is important because breakdown in their communication is hypothesized to underlie narcolepsy/cataplexy and REM sleep behavior disorder (RBD). This review synthesizes our current understanding of mechanisms generating healthy REM sleep and how dysfunction of these circuits contributes to common REM sleep disorders such as cataplexy/narcolepsy and RBD.
Collapse
Affiliation(s)
- Jimmy J Fraigne
- Department of Cell and Systems Biology, University of Toronto , Toronto, ON , Canada
| | - Zoltan A Torontali
- Department of Cell and Systems Biology, University of Toronto , Toronto, ON , Canada
| | - Matthew B Snow
- Department of Cell and Systems Biology, University of Toronto , Toronto, ON , Canada
| | - John H Peever
- Department of Cell and Systems Biology, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
44
|
Magalhães SC, Kaelin-Lang A, Sterr A, do Prado GF, Eckeli AL, Conforto AB. Transcranial magnetic stimulation for evaluation of motor cortical excitability in restless legs syndrome/Willis-Ekbom disease. Sleep Med 2015; 16:1265-73. [PMID: 26429756 DOI: 10.1016/j.sleep.2015.03.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/27/2015] [Accepted: 03/29/2015] [Indexed: 11/30/2022]
Abstract
There is no consensus about mechanisms underlying restless legs syndrome (RLS), also known as Willis-Ekbom disease (WED). Cortical excitability may be abnormal in RLS. Transcranial magnetic stimulation (TMS) can provide insight about cortical excitability. We reviewed studies about measures of excitability to TMS in RLS. Original studies published between January 1999 and January 2015 were searched in PubMed, Scopus, and Web of Science databases. Inclusion criteria were as follows: original studies involving primary RLS in patients from both sexes and ages between 18 and 85 years; TMS protocols clearly described; and they were written in English, in peer-reviewed journals. Fifteen manuscripts were identified. TMS protocols were heterogeneous across studies. Resting motor threshold, active motor threshold, and amplitudes of motor-evoked potentials were typically reported to be normal in RLS. A reduction in short-interval intracortical inhibition (SICI) was the most consistent finding, whereas conflicting results were described in regard to short-interval intracortical facilitation and the contralateral silent period. Decreased SICI can be reversed by treatment with dopaminergic agonists. Plasticity in the motor cortex and sensorimotor integration may be disrupted. TMS may become a useful biomarker of responsiveness to drug treatment in RLS. The field can benefit from increases in homogeneity and sizes of samples, as well as from decrease in methodological variability across studies.
Collapse
Affiliation(s)
| | | | | | | | - Alan Luiz Eckeli
- Hospital das Clínicas da Faculdade de Medicina da USP, Ribeirão Preto, São Paulo, Brazil
| | | |
Collapse
|
45
|
Han Q, Cao C, Ding Y, So KF, Wu W, Qu Y, Zhou L. Plasticity of motor network and function in the absence of corticospinal projection. Exp Neurol 2015; 267:194-208. [PMID: 25792481 DOI: 10.1016/j.expneurol.2015.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 12/14/2022]
Abstract
Despite the obvious clinical interest, our understanding of how developmental mechanisms are redeployed during degeneration and regeneration after brain and spinal cord injuries remains quite rudimentary. In animal models of spinal cord injury, although spontaneous regeneration of descending axons is limited, compensation by intact corticospinal axons, descending tracts from the brainstem, and local intrinsic spinal networks all contribute to the recovery of motor function. Here, we investigated spontaneous motor compensation and plasticity that occur in the absence of corticospinal tract, using Celsr3|Emx1 mice in which the corticospinal tract is completely and specifically absent as a consequence of Celsr3 inactivation in the cortex. Mutant mice had no paresis, but displayed hyperactivity in open-field, and a reduction in skilled movements in food pellet manipulation tests. The number of spinal motoneurons was reduced and their terminal arbors at neuromuscular junctions were atrophic, which was reflected in electromyography deficits. Rubrospinal projections, calretinin-positive propriospinal projections, afferent innervation of motoneurons by calretinin-positive segmental interneurons, and terminal ramifications of monoaminergic projections were significantly increased. Contrary to control animals, mutants also developed a severe and persistent disability of forelimb use following the section of the rubrospinal tract at the C4 spinal level. These observations demonstrate for the first time that the congenital absence of the corticospinal tract induces spontaneous plasticity, both at the level of the motor spinal cord and in descending monoaminergic and rubrospinal projections. Such compensatory mechanisms could be recruited in case of brain or spinal cord lesion or degeneration.
Collapse
Affiliation(s)
- Qi Han
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China
| | - Changshu Cao
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China; Department of Human Anatomy, Medical School of Jinan University, Guangzhou 510632, PR China
| | - Yuetong Ding
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China; Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China
| | - Wutian Wu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China; Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China
| | - Yibo Qu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China.
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China; Department of Human Anatomy, Medical School of Jinan University, Guangzhou 510632, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, PR China.
| |
Collapse
|
46
|
Sharples SA, Humphreys JM, Jensen AM, Dhoopar S, Delaloye N, Clemens S, Whelan PJ. Dopaminergic modulation of locomotor network activity in the neonatal mouse spinal cord. J Neurophysiol 2015; 113:2500-10. [PMID: 25652925 DOI: 10.1152/jn.00849.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/29/2015] [Indexed: 01/08/2023] Open
Abstract
Dopamine is now well established as a modulator of locomotor rhythms in a variety of developing and adult vertebrates. However, in mice, while all five dopamine receptor subtypes are present in the spinal cord, it is unclear which receptor subtypes modulate the rhythm. Dopamine receptors can be grouped into two families-the D1/5 receptor group and the D2/3/4 group, which have excitatory and inhibitory effects, respectively. Our data suggest that dopamine exerts contrasting dose-dependent modulatory effects via the two receptor families. Our data show that administration of dopamine at concentrations >35 μM slowed and increased the regularity of a locomotor rhythm evoked by bath application of 5-hydroxytryptamine (5-HT) and N-methyl-d(l)-aspartic acid (NMA). This effect was independent of the baseline frequency of the rhythm that was manipulated by altering the NMA concentration. We next examined the contribution of the D1- and D2-like receptor families on the rhythm. Our data suggest that the D1-like receptor contributes to enhancement of the stability of the rhythm. Overall, the D2-like family had a pronounced slowing effect on the rhythm; however, quinpirole, the D2-like agonist, also enhanced rhythm stability. These data indicate a receptor-dependent delegation of the modulatory effects of dopamine on the spinal locomotor pattern generator.
Collapse
Affiliation(s)
- Simon A Sharples
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | - A Marley Jensen
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina; and
| | - Sunny Dhoopar
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Delaloye
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina; and
| | - Patrick J Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
47
|
The A11 Lesion/Iron Deprivation Animal Model of Restless Legs Syndrome. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00079-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
48
|
Kwon BS, Han SH, Lee SA. The Presence of Periodic Limb Movement Disorder in a Patient with Diabetes Mellitus and Optic Atrophy (Wolfram Syndrome). SLEEP MEDICINE RESEARCH 2014. [DOI: 10.17241/smr.2014.5.2.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
49
|
Synaptic upregulation and superadditive interaction of dopamine D2- and μ-opioid receptors after peripheral nerve injury. Pain 2014; 155:2526-2533. [DOI: 10.1016/j.pain.2014.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 11/16/2022]
|
50
|
Koblinger K, Füzesi T, Ejdrygiewicz J, Krajacic A, Bains JS, Whelan PJ. Characterization of A11 neurons projecting to the spinal cord of mice. PLoS One 2014; 9:e109636. [PMID: 25343491 PMCID: PMC4208762 DOI: 10.1371/journal.pone.0109636] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/11/2014] [Indexed: 01/03/2023] Open
Abstract
The hypothalamic A11 region has been identified in several species including rats, mice, cats, monkeys, zebrafish, and humans as the primary source of descending dopamine (DA) to the spinal cord. It has been implicated in the control of pain, modulation of the spinal locomotor network, restless leg syndrome, and cataplexy, yet the A11 cell group remains an understudied dopaminergic (DAergic) nucleus within the brain. It is unclear whether A11 neurons in the mouse contain the full complement of enzymes consistent with traditional DA neuronal phenotypes. Given the abundance of mouse genetic models and tools available to interrogate specific neural circuits and behavior, it is critical first to fully understand the phenotype of A11 cells. We provide evidence that, in addition to tyrosine hydroxylase (TH) that synthesizes L-DOPA, neurons within the A11 region of the mouse contain aromatic L-amino acid decarboxylase (AADC), the enzyme that converts L-DOPA to dopamine. Furthermore, we show that the A11 neurons contain vesicular monoamine transporter 2 (VMAT2), which is necessary for packaging DA into vesicles. On the contrary, A11 neurons in the mouse lack the dopamine transporter (DAT). In conclusion, our data suggest that A11 neurons are DAergic. The lack of DAT, and therefore the lack of a DA reuptake mechanism, points to a longer time of action compared to typical DA neurons.
Collapse
Affiliation(s)
- Kathrin Koblinger
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Tamás Füzesi
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jillian Ejdrygiewicz
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Aleksandra Krajacic
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Jaideep S. Bains
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Patrick J. Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
- * E-mail:
| |
Collapse
|