1
|
Cavanagh JF, Ryman S, Richardson SP. Cognitive control in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:137-152. [PMID: 35248192 DOI: 10.1016/bs.pbr.2022.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cognitive control is the ability to act according to plan. Problems with cognitive control are a primary symptom and a major decrement of quality of life in Parkinson's disease (PD). Individuals with PD have problems with seemingly different controlled processes (e.g., task switching, impulsivity, gait disturbance, apathetic motivation). We review how these varied processes all rely upon disease-related alteration of common neural substrates, particularly due to dopaminergic imbalance. A comprehensive understanding of the neural systems underlying cognitive control will hopefully lead to more concise and reliable explanations of distributed deficits. However, high levels of clinical heterogeneity and medication-invariant control deficiencies suggest the need for increasingly detailed elaboration of the neural systems underlying control in PD.
Collapse
Affiliation(s)
- James F Cavanagh
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States.
| | - Sephira Ryman
- Mind Research Network, Albuquerque, NM, United States
| | - Sarah Pirio Richardson
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States; Neurology Service, New Mexico Veterans Affairs Healthcare System, Albuquerque, NM, United States
| |
Collapse
|
2
|
Klunk D, Woost TB, Fricke C, Classen J, Weise D. Differentiating neurodegenerative parkinsonian syndromes using vestibular evoked myogenic potentials and balance assessment. Clin Neurophysiol 2021; 132:2808-2819. [PMID: 34628341 DOI: 10.1016/j.clinph.2021.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 07/15/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Vestibular evoked myogenic potentials (VEMP) were investigated to differentiate between parkinsonian syndromes. We correlated balance and VEMP parameters to investigate the VEMP brainstem circuits as possible origin for postural instability. METHODS We assessed clinical status, ocular and cervical VEMP (oVEMP, cVEMP) and conducted a balance assessment (posturography, Activities-specific Balance Confidence Scale, Berg Balance Scale, modified Barthel Index) in 76 subjects: 30 with Parkinson's disease (PD), 16 with atypical parkinsonism (AP) and 30 healthy controls. VEMP were elicited by using a mini-shaker on the forehead. RESULTS Patients with PD had a prolonged oVEMP n10 in comparison to controls and prolonged p15 compared to controls and AP. Patients with AP showed reduced oVEMP amplitudes compared to PD and controls. CVEMP did not differ between groups. Postural impairment was higher in AP compared to controls and PD, particularly in the rating scales. No correlations between VEMP and posturography were found. A support vector machine classifier was able to automatically classify controls and patient subgroups with moderate to good accuracy based on oVEMP latencies and balance questionnaires. CONCLUSIONS Both oVEMP and posturography, but not cVEMP, may be differentially affected in PD and AP. We did not find evidence that impairment of the cVEMP or oVEMP pathways is directly related to postural impairment. SIGNIFICANCE OVEMP and balance assessment could be implemented in the differential diagnostic work-up of parkinsonian syndromes.
Collapse
Affiliation(s)
- Dietrich Klunk
- Department of Neurology, University of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany; Department of Neurology, Altenburger Land Hospital, Am Waldessaum 10, 04600 Altenburg, Germany
| | - Timo B Woost
- Department of Neurology, University of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany; Department of Psychiatry and Psychotherapy, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany
| | - Christopher Fricke
- Department of Neurology, University of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
| | - David Weise
- Department of Neurology, University of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany; Department of Neurology, Asklepios Fachklinikum Stadtroda, Bahnhofstraße 1A, 07646 Stadtroda, Germany.
| |
Collapse
|
3
|
Jafari Z, Kolb BE, Mohajerani MH. Prepulse inhibition of the acoustic startle reflex and P50 gating in aging and alzheimer's disease. Ageing Res Rev 2020; 59:101028. [PMID: 32092463 DOI: 10.1016/j.arr.2020.101028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/20/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
Inhibition plays a crucial role in many functional domains, such as cognition, emotion, and actions. Studies on cognitive aging demonstrate changes in inhibitory mechanisms are age- and pathology-related. Prepulse inhibition (PPI) is the suppression of an acoustic startle reflex (ASR) to an intense stimulus when a weak prepulse stimulus precedes the startle stimulus. A reduction of PPI is thought to reflect dysfunction of sensorimotor gating which normally suppresses excessive behavioral responses to disruptive stimuli. Both human and rodent studies show age-dependent alterations of PPI of the ASR that are further compromised in Alzheimer's disease (AD). The auditory P50 gating, an index of repetition suppression, also is characterized as a putative electrophysiological biomarker of prodromal AD. This review provides the latest evidence of age- and AD-associated impairment of sensorimotor gating based upon both human and rodent studies, as well as the AD-related disruption of P50 gating in humans. It begins with a concise review of neural networks underlying PPI regulation. Then, evidence of age- and AD-related dysfunction of both PPI and P50 gating is discussed. The attentional/ emotional aspects of sensorimotor gating and the neurotransmitter mechanisms underpinning PPI and P50 gating are also reviewed. The review ends with conclusions and research directions.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, T1K 3M4 AB, Canada; Department of Basic Sciences in Rehabilitation, School of Rehabilitation Sciences, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, T1K 3M4 AB, Canada.
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, T1K 3M4 AB, Canada.
| |
Collapse
|
4
|
Jafari Z, Kolb BE, Mohajerani MH. Auditory Dysfunction in Parkinson's Disease. Mov Disord 2020; 35:537-550. [PMID: 32052894 DOI: 10.1002/mds.28000] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
PD is a progressive and complex neurological disorder with heterogeneous symptomatology. PD is characterized by classical motor features of parkinsonism and nonmotor symptoms and involves extensive regions of the nervous system, various neurotransmitters, and protein aggregates. Extensive evidence supports auditory dysfunction as an additional nonmotor feature of PD. Studies indicate a broad range of auditory impairments in PD, from the peripheral hearing system to the auditory brainstem and cortical areas. For instance, research demonstrates a higher occurrence of hearing loss in early-onset PD and evidence of abnormal auditory evoked potentials, event-related potentials, and habituation to novel stimuli. Electrophysiological data, such as auditory P3a, also is suggested as a sensitive measure of illness duration and severity. Improvement in auditory responses following dopaminergic therapies also indicates the presence of similar neurotransmitters (i.e., glutamate and dopamine) in the auditory system and basal ganglia. Nonetheless, hearing impairments in PD have received little attention in clinical practice so far. This review summarizes evidence of peripheral and central auditory impairments in PD and provides conclusions and directions for future empirical and clinical research. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.,Department of Basic Sciences in Rehabilitation, School of Rehabilitation Sciences, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
5
|
Song S, Wang Q, Jiang L, Oyarzabal E, Riddick NV, Wilson B, Moy SS, Shih YYI, Hong JS. Noradrenergic dysfunction accelerates LPS-elicited inflammation-related ascending sequential neurodegeneration and deficits in non-motor/motor functions. Brain Behav Immun 2019; 81:374-387. [PMID: 31247288 PMCID: PMC6754798 DOI: 10.1016/j.bbi.2019.06.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 02/06/2023] Open
Abstract
The loss of central norepinephrine (NE) released by neurons of the locus coeruleus (LC) occurs with aging, and is thought to be an important factor in producing the many of the nonmotor symptoms and exacerbating the degenerative process in animal models of Parkinson's disease (PD). We hypothesize that selectively depleting noradrenergic LC neurons prior to the induction of chronic neuroinflammation may not only accelerate the rate of progressive neurodegeneration throughout the brain, but may exacerbate nonmotor and motor behavioral phenotypes that recapitulate symptoms of PD. For this reason, we used a "two-hit" mouse model whereby brain NE were initially depleted by DSP-4 one week prior to exposing mice to LPS. We found that pretreatment with DSP-4 potentiated LPS-induced sequential neurodegeneration in SNpc, hippocampus, and motor cortex, but not in VTA and caudate/putamen. Mechanistic study revealed that DSP-4 enhanced LPS-induced microglial activation and subsequently elevated neuronal oxidative stress in affected brain regions in a time-dependent pattern. To further characterize the effects of DSP-4 on non-motor and motor symptoms in the LPS model, physiological and behavioral tests were performed at different time points following injection. Consistent with the enhanced neurodegeneration, DSP-4 accelerated the progressive deficits of non-motor symptoms including hyposmia, constipation, anxiety, sociability, exaggerated startle response and impaired learning. Furthermore, notable decreases of motor functions, including decreased rotarod activity, grip strength, and gait disturbance, were observed in treated mice. In summary, our studies provided not only an accelerated "two-hit" PD model that recapitulates the features of sequential neuron loss and the progression of motor/non-motor symptoms of PD, but also revealed the critical role of early LC noradrenergic neuron damage in the pathogenesis of PD-like symptoms.
Collapse
Affiliation(s)
- Sheng Song
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA,Biomedical Research Imaging Center, University of North Caroline at Chapel Hill, Chapel Hill, NC, USA
| | - Qingshan Wang
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA,Department of Toxicology, School of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Lulu Jiang
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA,Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, China
| | - Esteban Oyarzabal
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA,Biomedical Research Imaging Center, University of North Caroline at Chapel Hill, Chapel Hill, NC, USA
| | - Natallia V. Riddick
- Department of Psychiatry and Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Belinda Wilson
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Sheryl S. Moy
- Department of Psychiatry and Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Yen-Yu Ian Shih
- Biomedical Research Imaging Center, University of North Caroline at Chapel Hill, Chapel Hill, NC, USA
| | - Jau-Shyong Hong
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
6
|
Sanders O, Hsiao HY, Savin DN, Creath RA, Rogers MW. Aging changes in protective balance and startle responses to sudden drop perturbations. J Neurophysiol 2019; 122:39-50. [PMID: 31017835 PMCID: PMC6689787 DOI: 10.1152/jn.00431.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 01/25/2023] Open
Abstract
This study investigated aging changes in protective balance and startle responses to sudden drop perturbations and their effect on landing impact forces (vertical ground reaction forces, vGRF) and balance stability. Twelve healthy older (6 men; mean age = 72.5 ± 2.32 yr, mean ± SE) and 12 younger adults (7 men; mean age = 28.09 ± 1.03 yr) stood atop a moveable platform and received externally triggered drop perturbations of the support surface. Electromyographic activity was recorded bilaterally over the sternocleidomastoid (SCM), middle deltoid, biceps brachii, vastus lateralis (VL), biceps femoris (BF), medial gastrocnemius (MG), and tibialis anterior (TA). Whole body kinematics were recorded with motion analysis. Stability in the anteroposterior direction was quantified using the margin of stability (MoS). Incidence of early onset of bilateral SCM activation within 120 ms after drop onset was present during the first-trial response (FTR) for all participants. Co-contraction indexes during FTRs between VL and BF as well as TA and MG were significantly greater in the older group (VL/BF by 26%, P < 0.05; TA/MG by 37%, P < 0.05). Reduced shoulder abduction between FTR and last-trial responses, indicative of habituation, was present across both groups. Significant age-related differences in landing strategy were present between groups, because older adults had greater trunk flexion (P < 0.05) and less knee flexion (P < 0.05) that resulted in greater peak vGRFs and decreased MoS compared with younger adults. These findings suggest age-associated abnormalities of delayed, exaggerated, and poorly habituated startle/postural FTRs are linked with greater landing impact force and diminished balance stabilization. NEW & NOTEWORTHY This study investigated the role of startle as a pathophysiological mechanism contributing to balance impairment in aging. We measured neuromotor responses as younger and older adults stood on a platform that dropped unexpectedly. Group differences in landing strategies indicated age-associated abnormalities of delayed, exaggerated, and poorly habituated startle/postural responses linked with a higher magnitude of impact force and decreased balance stabilization. The findings have implications for determining mechanisms contributing to falls and related injuries.
Collapse
Affiliation(s)
- Ozell Sanders
- Division of Rehabilitation Medicine, The Children's Hospital of Philadelphia , Philadelphia, Pennsylvania
| | - Hao Yuan Hsiao
- Department of Kinesiology and Health Education, University of Texas at Austin , Austin, Texas
| | - Douglas N Savin
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, Maryland
| | - Robert A Creath
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mark W Rogers
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
7
|
Weise D, Pargac C, Pelz JO, Rumpf JJ, Fricke C, Classen J. Assessing blink reflex circuits by three different afferent routes in Parkinson’s disease. Clin Neurophysiol 2019; 130:582-587. [DOI: 10.1016/j.clinph.2018.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/04/2018] [Accepted: 12/16/2018] [Indexed: 10/27/2022]
|
8
|
Tan JL, Perera T, McGinley JL, Yohanandan SAC, Brown P, Thevathasan W. Neurophysiological analysis of the clinical pull test. J Neurophysiol 2018; 120:2325-2333. [PMID: 30110235 DOI: 10.1152/jn.00789.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Postural reflexes are impaired in conditions such as Parkinson's disease, leading to difficulty walking and falls. In clinical practice, postural responses are assessed using the "pull test," where an examiner tugs the prewarned standing patient backward at the shoulders and grades the response. However, validity of the pull test is debated, with issues including scaling and variability in administration and interpretation. It is unclear whether to assess the first trial or only subsequent repeated trials. The ecological relevance of a forewarned backward challenge is also debated. We therefore developed an instrumented version of the pull test to characterize responses and clarify how the test should be performed and interpreted. In 33 healthy participants, "pulls" were manually administered and pull force measured. Trunk and step responses were assessed with motion tracking. We probed for the StartReact phenomenon (where preprepared responses are released early by a startling stimulus) by delivering concurrent normal or "startling" auditory stimuli. We found that the first pull triggers a different response, including a larger step size suggesting more destabilization. This is consistent with "first trial effects," reported by platform translation studies, where movement execution appears confounded by startle reflex-like activity. Thus, first pull test trials have clinical relevance and should not be discarded as practice. Supportive of ecological relevance, responses to repeated pulls exhibited StartReact, as previously reported with a variety of other postural challenges, including those delivered with unexpected timing and direction. Examiner pull force significantly affected the postural response, particularly the size of stepping. NEW & NOTEWORTHY We characterized postural responses elicited by the clinical "pull test" using instrumentation. The first pull triggers a different response, including a larger step size suggesting more destabilization. Thus, first trials likely have important clinical and ecological relevance and should not be discarded as practice. Responses to repeated pulls can be accelerated with a startling stimulus, as reported with a variety of other challenges. Examiner pull force was a significant factor influencing the postural response.
Collapse
Affiliation(s)
- Joy Lynn Tan
- Department of Medical Bionics, The University of Melbourne , Parkville, Victoria , Australia.,Department of Neurology, The Royal Melbourne Hospital , Parkville, Victoria , Australia
| | - Thushara Perera
- Department of Medical Bionics, The University of Melbourne , Parkville, Victoria , Australia.,The Bionics Institute, East Melbourne, Victoria , Australia
| | - Jennifer L McGinley
- The Bionics Institute, East Melbourne, Victoria , Australia.,Department of Physiotherapy, The University of Melbourne , Parkville, Victoria , Australia
| | | | - Peter Brown
- Medical Research Council Brain Network Dynamics Unit and Nuffield Department of Clinical Neurosciences, University of Oxford , Oxford , United Kingdom
| | - Wesley Thevathasan
- Department of Neurology, The Royal Melbourne Hospital , Parkville, Victoria , Australia.,The Bionics Institute, East Melbourne, Victoria , Australia.,Department of Medicine, The University of Melbourne , Parkville, Victoria , Australia
| |
Collapse
|
9
|
Cavanagh JF, Kumar P, Mueller AA, Richardson SP, Mueen A. Diminished EEG habituation to novel events effectively classifies Parkinson's patients. Clin Neurophysiol 2017; 129:409-418. [PMID: 29294412 DOI: 10.1016/j.clinph.2017.11.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 11/14/2017] [Accepted: 11/20/2017] [Indexed: 01/10/2023]
Abstract
OBJECTIVES We aimed to test if EEG responses to novel events reliably dissociated individuals with Parkinson's disease and controls, and if this dissociation was sensitive and specific enough to be a candidate biomarker of cognitive dysfunction in Parkinson's disease. METHODS Participants included N = 25 individuals with Parkinson's disease and an equal number of well-matched controls. EEG was recorded during a three-stimulus auditory oddball paradigm both ON and OFF medication. RESULTS While control participants showed reliable EEG habituation to novel events over time, individuals with Parkinson's did not. In the OFF condition, individual differences in habituation correlated with years since diagnosis. Pattern classifiers achieved high sensitivity and specificity in discriminating patients from controls, with a maximum accuracy of 82%. Most importantly, the confidence of the classifier was related to years since diagnosis, and this correlation increased as the time course of differential habituation increasingly distinguished the groups. CONCLUSIONS These findings identify systemic alteration in an obligatory neural mechanism that may contribute to higher-level cognitive dysfunction in Parkinson's disease. SIGNIFICANCE These findings suggest that EEG responses to novel events in this rapid, simple, and inexpensive test have tremendous promise for tracking individual trajectories of cognitive dysfunction in Parkinson's disease.
Collapse
Affiliation(s)
| | - Praveen Kumar
- University of New Mexico, Department of Computer Science, USA
| | | | | | - Abdullah Mueen
- University of New Mexico, Department of Computer Science, USA
| |
Collapse
|
10
|
Cruz-Monteagudo M, Schürer S, Tejera E, Pérez-Castillo Y, Medina-Franco JL, Sánchez-Rodríguez A, Borges F. Systemic QSAR and phenotypic virtual screening: chasing butterflies in drug discovery. Drug Discov Today 2017; 22:994-1007. [PMID: 28274840 PMCID: PMC5487293 DOI: 10.1016/j.drudis.2017.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/02/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
Abstract
Current advances in systems biology suggest a new change of paradigm reinforcing the holistic nature of the drug discovery process. According to the principles of systems biology, a simple drug perturbing a network of targets can trigger complex reactions. Therefore, it is possible to connect initial events with final outcomes and consequently prioritize those events, leading to a desired effect. Here, we introduce a new concept, 'Systemic Chemogenomics/Quantitative Structure-Activity Relationship (QSAR)'. To elaborate on the concept, relevant information surrounding it is addressed. The concept is challenged by implementing a systemic QSAR approach for phenotypic virtual screening (VS) of candidate ligands acting as neuroprotective agents in Parkinson's disease (PD). The results support the suitability of the approach for the phenotypic prioritization of drug candidates.
Collapse
Affiliation(s)
- Maykel Cruz-Monteagudo
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto 4169-007, Portugal.
| | - Stephan Schürer
- Department of Pharmacology, Miller School of Medicine and Center for Computational Science, University of Miami, Miami, FL 33136, USA
| | - Eduardo Tejera
- Instituto de Investigaciones Biomédicas (IIB), Universidad de Las Américas, 170513 Quito, Ecuador
| | - Yunierkis Pérez-Castillo
- Sección Físico Química y Matemáticas, Departamento de Química, Universidad Técnica Particular de Loja, San Cayetano Alto S/N, EC1101608 Loja, Ecuador
| | - José L Medina-Franco
- Universidad Nacional Autónoma de México, Departamento de Farmacia, Facultad de Química, Avenida Universidad 3000, Mexico City, 04510, Mexico
| | - Aminael Sánchez-Rodríguez
- Departamento de Ciencias Naturales, Universidad Técnica Particular de Loja, Calle París S/N, EC1101608 Loja, Ecuador
| | - Fernanda Borges
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto 4169-007, Portugal.
| |
Collapse
|
11
|
Chen KH, Okerstrom KL, Kingyon JR, Anderson SW, Cavanagh JF, Narayanan NS. Startle Habituation and Midfrontal Theta Activity in Parkinson Disease. J Cogn Neurosci 2016; 28:1923-1932. [PMID: 27417205 DOI: 10.1162/jocn_a_01012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The ability to adapt to aversive stimuli is critical for mental health. Here, we investigate the relationship between habituation to startling stimuli and startle-related activity in medial frontal cortex as measured by EEG in both healthy control participants and patients with Parkinson disease (PD). We report three findings. First, patients with PD exhibited normal initial startle responses but reduced startle habituation relative to demographically matched controls. Second, control participants had midfrontal EEG theta activity in response to startling stimuli, and this activity was attenuated in patients with PD. Finally, startle-related midfrontal theta activity was correlated with the rate of startle habituation. These data indicate that impaired startle habituation in PD is a result of attenuated midfrontal cognitive control signals. Our findings could provide insight into the frontal regulation of startle habituation.
Collapse
|
12
|
Vilas-Boas MDC, Cunha JPS. Movement Quantification in Neurological Diseases: Methods and Applications. IEEE Rev Biomed Eng 2016; 9:15-31. [PMID: 27008673 DOI: 10.1109/rbme.2016.2543683] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Potocanac Z, Pijnappels M, Verschueren S, van Dieën J, Duysens J. Two-stage muscle activity responses in decisions about leg movement adjustments during trip recovery. J Neurophysiol 2015; 115:143-56. [PMID: 26561597 DOI: 10.1152/jn.00263.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 10/27/2015] [Indexed: 12/13/2022] Open
Abstract
Studies on neural decision making mostly investigated fast corrective adjustments of arm movements. However, fast leg movement corrections deserve attention as well, since they are often required to avoid falling after balance perturbations. The present study aimed at elucidating the mechanisms behind fast corrections of tripping responses by analyzing the concomitant leg muscle activity changes. This was investigated in seven young adults who were tripped in between normal walking trials and took a recovery step by elevating the tripped leg over the obstacle. In some trials, a forbidden landing zone (FZ) was presented behind the obstacle, at the subjects' preferred foot landing position, forcing a step correction. Muscle activity of the tripped leg gastrocnemius medialis (iGM), tibialis anterior (iTA), rectus femoris (iRF), and biceps femoris (iBF) muscles was compared between normal trips presented before any FZ appearance, trips with a FZ, and normal trips presented in between trips with a FZ ("catch" trials). When faced with a real or expected (catch trials) FZ, subjects shortened their recovery steps. The underlying changes in muscle activity consisted of two stages. The first stage involved reduced iGM activity, occurring at a latency shorter than voluntary reaction, followed by reduced iTA and increased iBF and iGM activities occurring at longer latencies. The fast response was not related to step shortening, but longer latency responses clearly were functional. We suggest that the initial response possibly acts as a "pause," allowing the nervous system to integrate the necessary information and prepare the subsequent, functional movement adjustment.
Collapse
Affiliation(s)
| | - Mirjam Pijnappels
- Department of Human Movement Sciences, MOVE Research Institute Amsterdam, Vrije Universiteit Amsterdam, the Netherlands; and
| | | | - Jaap van Dieën
- Department of Human Movement Sciences, MOVE Research Institute Amsterdam, Vrije Universiteit Amsterdam, the Netherlands; and
| | | |
Collapse
|
14
|
Chen KH, Aksan N, Anderson SW, Grafft A, Chapleau MW. Habituation of parasympathetic-mediated heart rate responses to recurring acoustic startle. Front Psychol 2014; 5:1288. [PMID: 25477830 PMCID: PMC4238409 DOI: 10.3389/fpsyg.2014.01288] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/23/2014] [Indexed: 11/13/2022] Open
Abstract
Startle habituation is a type of implicit and automatic emotion regulation. Diminished startle habituation is linked to several psychiatric or neurological disorders. Most previous studies quantified startle habituation by assessing skin conductance response (SCR; reflecting sympathetic-mediated sweating), eye-blink reflex, or motor response. The habituation of parasympathetic-mediated heart rate responses to recurrent startle stimuli is not well understood. A variety of methods and metrics have been used to quantify parasympathetic activity and its effects on the heart. We hypothesized that these different measures reflect unique psychological and physiological processes that may habituate differently during repeated startle stimuli. We measured cardiac inter-beat intervals (IBIs) to recurring acoustic startle probes in 75 eight year old children. Eight acoustic stimuli of 500 ms duration were introduced at intervals of 15-25 s. Indices of parasympathetic effect included: (1) the initial rapid decrease in IBI post-startle mediated by parasympathetic inhibition (PI); (2) the subsequent IBI recovery mediated by parasympathetic reactivation (PR); (3) rapid, beat-to-beat heart rate variability (HRV) measured from the first seven IBIs following each startle probe. SCR and motor responses to startle were also measured. Results showed that habituation of PR (IBI recovery and overshoot) and SCRs were rapid and robust. In addition, changes in PR and SCR were significantly correlated. In contrast, habituation of PI (the initial decrease in IBI) was slower and relatively modest. Measurement of rapid HRV provided an index reflecting the combination of PI and PR. We conclude that different measures of parasympathetic-mediated heart rate responses to repeated startle probes habituate in a differential manner.
Collapse
Affiliation(s)
- Kuan-Hua Chen
- Department of Neurology, Carver College of Medicine, University of Iowa Iowa City, IA, USA ; Neuroscience Graduate Program, University of Iowa Iowa City, IA, USA
| | - Nazan Aksan
- Department of Neurology, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| | - Steven W Anderson
- Department of Neurology, Carver College of Medicine, University of Iowa Iowa City, IA, USA ; Neuroscience Graduate Program, University of Iowa Iowa City, IA, USA
| | - Amanda Grafft
- Department of Neurology, Carver College of Medicine, University of Iowa Iowa City, IA, USA ; University of Iowa Children's Hospital Iowa City, IA, USA
| | - Mark W Chapleau
- Neuroscience Graduate Program, University of Iowa Iowa City, IA, USA ; Department of Internal Medicine, Carver College of Medicine, University of Iowa Iowa City, IA, USA ; Department of Molecular Physiology and Biophysics, University of Iowa Iowa City, IA, USA ; Veterans Affairs Medical Center Iowa City, IA, USA
| |
Collapse
|
15
|
Campbell AD, Squair JW, Chua R, Inglis JT, Carpenter MG. First trial and StartReact effects induced by balance perturbations to upright stance. J Neurophysiol 2013; 110:2236-45. [PMID: 23945786 DOI: 10.1152/jn.00766.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Postural responses (PR) to a balance perturbation differ between the first and subsequent perturbations. One explanation for this first trial effect is that perturbations act as startling stimuli that initiate a generalized startle response (GSR) as well as the PR. Startling stimuli, such as startling acoustic stimuli (SAS), are known to elicit GSRs, as well as a StartReact effect, in which prepared movements are initiated earlier by a startling stimulus. In this study, a StartReact effect paradigm was used to determine if balance perturbations can also act as startle stimuli. Subjects completed two blocks of simple reaction time trials involving wrist extension to a visual imperative stimulus (IS). Each block included 15 CONTROL trials that involved a warning cue and subsequent IS, followed by 10 repeated TEST trials, where either a SAS (TESTSAS) or a toes-up support-surface rotation (TESTPERT) was presented coincident with the IS. StartReact effects were observed during the first trial in both TESTSAS and TESTPERT conditions as evidenced by significantly earlier wrist movement and muscle onsets compared with CONTROL. Likewise, StartReact effects were observed in all repeated TESTSAS and TESTPERT trials. In contrast, GSRs in sternocleidomastoid and PRs were large in the first trial, but significantly attenuated over repeated presentation of the TESTPERT trials. Results suggest that balance perturbations can act as startling stimuli. Thus first trial effects are likely PRs which are superimposed with a GSR that is initially large, but habituates over time with repeated exposure to the startling influence of the balance perturbation.
Collapse
Affiliation(s)
- A D Campbell
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada; and
| | | | | | | | | |
Collapse
|
16
|
Nonnekes J, Scotti A, Oude Nijhuis LB, Smulders K, Queralt A, Geurts ACH, Bloem BR, Weerdesteyn V. Are postural responses to backward and forward perturbations processed by different neural circuits? Neuroscience 2013; 245:109-20. [PMID: 23624061 DOI: 10.1016/j.neuroscience.2013.04.036] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 11/17/2022]
Abstract
Startle pathways may contribute to rapid accomplishment of postural stability. Here we investigate the possible influence of a startling auditory stimulus (SAS) on postural responses. We formulated four specific questions: (1) can a concurrent SAS shorten the onset of automatic postural responses?; and if so (2) is this effect different for forward versus backward perturbations?; (3) does this effect depend on prior knowledge of the perturbation direction?; and (4) is this effect different for low- and high-magnitude perturbations? Balance was perturbed in 11 healthy participants by a movable platform that suddenly translated forward or backward. Each participant received 160 perturbations, 25% of which were combined with a SAS. We varied the direction and magnitude of the perturbations, as well as the prior knowledge of perturbation direction. Perturbation trials were interspersed with SAS-only trials. The SAS accelerated and strengthened postural responses with clear functional benefits (better balance control), but this was only true for responses that protected against falling backwards (i.e. in tibialis anterior and rectus femoris). These muscles also demonstrated the most common SAS-triggered responses without perturbation. Increasing the perturbation magnitude accelerated postural responses, but again with a larger acceleration for backward perturbations. We conclude that postural responses to backward and forward perturbations may be processed by different neural circuits, with influence of startle pathways on postural responses to backward perturbations. These findings give directions for future studies investigating whether deficits in startle pathways may explain the prominent backward instability seen in patients with Parkinson's disease and progressive supranuclear palsy.
Collapse
Affiliation(s)
- J Nonnekes
- Radboud University Medical Centre, Nijmegen Centre for Evidence Based Practice, Department of Rehabilitation, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Acoustic startle response in patients with orthostatic tremor. Neurosci Lett 2012; 525:100-4. [PMID: 22884645 DOI: 10.1016/j.neulet.2012.07.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIM Orthostatic tremor is a high frequency tremor predominantly on calf muscles during standing. Brainstem is the most probable generator in the pathogenesis since it comprises bilaterally projecting centers regulating stance or tone. We aimed to investigate the functional role of brainstem through the evaluation of acoustic startle response in primary orthostatic tremor patients. PATIENTS AND METHOD We included 7 (2 males) consecutive patients and 13 (5 males) healthy volunteers. Diagnosis was confirmed by polymyographic surface electromyography. All subjects underwent acoustic startle response and blink reflex investigations. RESULTS Presence rate (71.4% vs. 100%, p=0.042) and response rate (27.5% vs. 40.5%, p=0.047) of total acoustic startle response were lower in patient group. Similarly, probability over orbicularis oculi was lower among patients (p=0.003). However, blink reflex was observed in all patients and healthy volunteers and latencies of startle and blink reflexes were similar between groups. CONCLUSIONS In our patient group, normal response rate and latencies of R1 and R2 show structural integrity of at least blink reflex circuit at brainstem. On the other hand, suppressed response rates probably reflect decreased excitability of auditory startle reflex pathway.
Collapse
|
18
|
Rogers MW, Kennedy R, Palmer S, Pawar M, Reising M, Martinez KM, Simuni T, Zhang Y, MacKinnon CD. Postural preparation prior to stepping in patients with Parkinson's disease. J Neurophysiol 2011; 106:915-24. [DOI: 10.1152/jn.00005.2010] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
People with Parkinson's disease (PD) frequently have difficulties with generating anticipatory postural adjustments (APAs) for forward propulsion and lateral weight transfer when initiating gait. This impairment has been attributed to deficits in motor planning and preparation. This study examined the preparation of APAs prior to an imperative cue to initiate forward stepping. A startling acoustic stimulus (SAS) was used to probe the state of preparation of the APA in eight PD (off medication) and seven matched control subjects. Subjects performed visually cued trials involving a pre-cue light instructing them to prepare to step, followed 3.5 s later by a go-cue light to rapidly initiate stepping. In random trials, a SAS (124 dB) was presented at −1,500, −1,000, −500, −250, −100, or 0 ms before the go-cue. Subjects also performed self-initiated steps. Ground reaction forces (GRFs), center of pressure (CoP) changes, and electromyographic (EMG) signals were recorded. The SAS triggered APAs in 94 ± 11% (PD) and 96 ± 8% (control) of trials at latencies 89 ± 4 ms (PD) and 97 ± 3 ms (control) earlier than Control trials. The temporal profile of APA preparation was similar between groups. However, peak EMG, GRF, and mediolateral CoP amplitudes were reduced in PD. SAS-evoked APAs at 0 ms matched Control trial APAs and were enhanced compared with self-initiated stepping. These results demonstrate that people with mild to moderate PD can plan and prepare the appropriate APA sequence prior to the expected cue to initiate gait; however, the prepared APAs are underscaled in magnitude.
Collapse
Affiliation(s)
- Mark W. Rogers
- Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland, Baltimore, Maryland; and
| | - Robert Kennedy
- Department of Physical Therapy and Human Movement Sciences and
| | - Sonia Palmer
- Department of Physical Therapy and Human Movement Sciences and
| | - Monika Pawar
- Department of Physical Therapy and Human Movement Sciences and
| | - Maggie Reising
- Department of Physical Therapy and Human Movement Sciences and
| | | | - Tanya Simuni
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yunhui Zhang
- Department of Physical Therapy and Human Movement Sciences and
| | - Colum D. MacKinnon
- Department of Physical Therapy and Human Movement Sciences and
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
19
|
Dietz V. Quadrupedal coordination of bipedal gait: implications for movement disorders. J Neurol 2011; 258:1406-12. [PMID: 21553270 DOI: 10.1007/s00415-011-6063-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 04/19/2011] [Indexed: 11/24/2022]
Abstract
During recent years, evidence has come up that bipedal locomotion is based on a quadrupedal limb coordination. A task-dependent neuronal coupling of upper and lower limbs allows one to involve the arms during gait but to uncouple this connection during voluntarily guided arm/hand movements. Hence, despite the evolution of a strong cortico-spinal control of hand/arm movements in humans, a quadrupedal limb coordination persists during locomotion. This has consequences for the limb coordination in movement disorders such as in Parkinson's disease (PD) and after stroke. In patients suffering PD, the quadrupedal coordination of gait is basically preserved. The activation of upper limb muscles during locomotion is strong, similar as in age-matched healthy subjects although arm swing is reduced. This suggests a contribution of biomechanical constraints to immobility. In post-stroke subjects a close interactions between unaffected and affected sides with an impaired processing of afferent input takes place. An afferent volley applied to a leg nerve of the unaffected leg leads to a normal reflex activation of proximal arm muscles of both sides. In contrast, when the nerve of the affected leg was stimulated, neither on the affected nor in the unaffected arm muscles EMG responses appear. Muscle activation on the affected arm becomes normalized by influences of the unaffected side during locomotion. These observations have consequences for the rehabilitation of patients suffering movement disorders.
Collapse
Affiliation(s)
- Volker Dietz
- Spinal Cord Injury Centre, Balgrist University Hospital, Forchstr. 340, Ch-8008 Zürich, Switzerland.
| |
Collapse
|
20
|
Delval A, Snijders AH, Weerdesteyn V, Duysens JE, Defebvre L, Giladi N, Bloem BR. Objective detection of subtle freezing of gait episodes in Parkinson's disease. Mov Disord 2010; 25:1684-93. [DOI: 10.1002/mds.23159] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
21
|
Duysens J, Van Wezel BMH, Smits-Engelsman B. Modulation of cutaneous reflexes from the foot during gait in Parkinson's disease. J Neurophysiol 2010; 104:230-8. [PMID: 20463195 DOI: 10.1152/jn.00860.2009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Normal gait is characterized by a phase-dependent modulation of cutaneous reflexes. The role of the basal ganglia in regulating these reflexes is largely unknown. Therefore cutaneous reflex responses from the skin of the foot were studied during walking of patients with mild to moderate Parkinson's disease (PD). The reflex responses were elicited by stimulation of the sural nerve of the most affected leg. The responses were studied in the biceps femoris (BF) and tibialis anterior (TA) of both legs. The latencies, durations, and phase-dependent modulation patterns of the responses were mostly comparable with those observed in healthy subjects. However, on average the amplitude of the responses in the ipsilateral and contralateral BF was respectively 1.4- and 5-fold larger for the PD patients than that for the healthy subjects. This increase was mostly seen throughout the whole step cycle. However, in some PD patients the crossed BF responses were very large during the contralateral swing phase. In such cases the increase in crossed reflexes sometimes reflected premotoneuronal gating since it was not always due to increased background activation in that period. Fast activation of contralateral BF reflexes is known to occur in conjunction with ipsilateral perturbations when there is a threat to stability. It is concluded that cutaneous reflexes are facilitated in PD but that some of the increase in reflexes in BF may be indirectly related to unsteady gait and to perceived instability.
Collapse
Affiliation(s)
- Jacques Duysens
- Department of Medical Physics and Biophysics, Radboud University, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
22
|
Dietz V, Michel J. Locomotion in Parkinson's disease: neuronal coupling of upper and lower limbs. Brain 2008; 131:3421-31. [PMID: 18930965 DOI: 10.1093/brain/awn263] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Quadrupedal limb coordination during human walking was recently shown to be upregulated during obstacle stepping. An anticipatory activity of coupled cervico-thoraco-lumbar interneuronal circuits is followed by an appropriate executory activation of leg and arm muscles during task performance. This mechanism was studied in subjects with Parkinson's disease and age-matched controls walking on a treadmill with a randomly approaching obstacle. Spinal reflex (SR) responses, evoked by tibial nerve stimulation during mid-stance, were present in all arm and leg muscles investigated. They were larger before execution of obstacle avoidance compared with normal steps in both subject groups. The performance of obstacle stepping was slightly worse in Parkinson's disease than in control subjects. The anticipatory SR in the arm muscles prior to normal and obstacle steps was larger in Parkinson's disease compared with age-matched subjects, but smaller in the tibialis anterior. The arm and leg muscle activation was stronger during obstacle compared with normal swing but did not differ between Parkinson's disease and age-matched subjects. These observations indicate that quadrupedal limb coordination is basically preserved in Parkinson's disease subjects. Our data are consistent with the proposal that in Parkinson's disease subjects the enhanced anticipatory spinal neuronal activity (reflected in the SR) in the arm muscles is required to achieve an appropriate muscle activation for the automatic control of body equilibrium during the performance of the task. In the tibialis anterior the SR is attenuated presumably because of a stronger voluntary (i.e. cortical) control of leg movements.
Collapse
Affiliation(s)
- V Dietz
- Spinal Cord Injury Center, Balgrist University Hospital, Zürich, Switzerland.
| | | |
Collapse
|
23
|
Nieuwenhuijzen PHJA, Duysens J. Proactive and Reactive Mechanisms Play a Role in Stepping on Inverting Surfaces During Gait. J Neurophysiol 2007; 98:2266-73. [PMID: 17715190 DOI: 10.1152/jn.01226.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ankle inversions have been studied extensively during standing conditions. However, inversion traumas occur during more dynamic conditions, like walking. Therefore in this study sudden ankle inversions were elicited in 12 healthy subjects who stepped on a trap door while walking on a treadmill. First, 10 control trials (0° of rotation) were presented. Then, 20 stimulus (25° of rotation) and control trials were presented randomly. EMG recordings were made of six lower leg muscles. All muscles showed a short-latency response (SLR) of about 40 ms and a late-latency response (LLR) of about 90 ms. The peroneal muscles showed the largest amplitudes in both responses. The functionally more important, larger, and more consistent LLR response was too late to resist the induced stretch during the inversion. The functional relevance of this response must lie after the inversion. During the first trial a widespread “startle-like” coactivation of the LLR was observed. The last trials showed only a recruitment of the peroneal muscles and, to a lesser extent, the gastrocnemius lateralis, which is seen as a switch from reactive control to more proactive adaptive strategies. These proactive strategies were investigated separately by comparing trials in which inversion was expected (but did not occur) with those in which subjects knew that no inversion would occur. Anticipation of a possible inversion was expressed in decreased tibialis anterior activity before initial contact, consistent with a more cautious and stable foot placement. Furthermore, immediately after landing, the peroneal muscles were activated to counteract the upcoming stretch.
Collapse
Affiliation(s)
- P H J A Nieuwenhuijzen
- Department of Rehabilitation Medicine, Radboud University Nijmegen Medical Center, 6500 HB, Nijmegen, The Netherlands
| | | |
Collapse
|