1
|
Wohl TR, Criss CR, Haggerty AL, Rush JL, Simon JE, Grooms DR. The Impact of Visual Perturbation Neuromuscular Training on Landing Mechanics and Neural Activity: A Pilot Study. Int J Sports Phys Ther 2024; 19:1333-1347. [PMID: 39502544 PMCID: PMC11534169 DOI: 10.26603/001c.123958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/28/2024] [Indexed: 11/08/2024] Open
Abstract
Background Athletes at risk for anterior cruciate ligament (ACL) injury have concurrent deficits in visuocognitive function and sensorimotor brain functional connectivity. Purpose This study aimed to determine whether visual perturbation neuromuscular training (VPNT, using stroboscopic glasses and external visual focus feedback) increases physical and cognitive training demand, improves landing mechanics, and reduces neural activity for knee motor control. Design Controlled laboratory study. Methods: Eight right leg dominant healthy female athletes (20.4±1.1yrs; 1.6±0.1m; 64.4±7.0kg) participated in four VPNT sessions. Before and after VPNT, real-time landing mechanics were assessed with the Landing Error Scoring System (LESS) and neural activity was assessed with functional magnetic resonance imaging during a unilateral right knee flexion/extension task. Physical and cognitive demand after each VPNT session was assessed with Borg's Rating of Perceived Exertion (RPE) for both physical and cognitive perceived exertion and the NASA Task Load Index. Descriptives and effect sizes were calculated. Results Following VPNT, LESS scores decreased by 1.5 ± 1.69 errors with a large effect size (0.78), indicating improved mechanics, and reductions in BOLD signal were observed in two clusters: 1) left supramarginal gyrus, inferior parietal lobule, secondary somatosensory cortex (p=.012, z=4.5); 2) right superior frontal gyrus, supplementary motor cortex (p<.01, z=5.3). There was a moderate magnitude increase of cognitive RPE between the first and last VPNT sessions. Conclusion VPNT provides a clinically feasible means to perturbate visual processing during training that improves athletes' real-time landing mechanics and promotes neural efficiency for lower extremity movement, providing the exploratory groundwork for future randomized controlled trials. Level of evidence Level 3.
Collapse
Affiliation(s)
- Timothy R Wohl
- Department of Physical TherapyThe Ohio State University
- Honors Tutorial CollegeOhio University
| | - Cody R Criss
- Translational Biomedical Sciences ProgramOhio University
- Heritage College of Osteopathic MedicineOhio University
- Ohio Musculoskeletal & Neurological InstituteOhio University
| | - Adam L Haggerty
- Ohio Musculoskeletal & Neurological InstituteOhio University
- Department of Athletic TrainingOhio University
| | - Justin L Rush
- Ohio Musculoskeletal & Neurological InstituteOhio University
- Department of Physical TherapyOhio University
| | - Janet E Simon
- Ohio Musculoskeletal & Neurological InstituteOhio University
- Department of Athletic TrainingOhio University
| | - Dustin R Grooms
- Ohio Musculoskeletal & Neurological InstituteOhio University
- Department of Athletic TrainingOhio University
- Department of Physical TherapyOhio University
| |
Collapse
|
2
|
Beier F, Löffler M, Nees F, Bekrater-Bodmann R, Silvoni S, Desch S, Löffler A, Hausner L, Frölich L, Flor H. Effects of an app-based sensorimotor training in promoting neuroplasticity and neuropsychological functioning in frailty: A randomized controlled trial. Arch Gerontol Geriatr 2023; 115:105202. [PMID: 37776754 DOI: 10.1016/j.archger.2023.105202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Loss of sensorimotor stimulation and maladaptive plastic changes of the brain may play a major role in problematic aging phenomena such as frailty. However, it is not clear if interventions specifically targeting neuroplasticity can reverse or slow the development of frailty. OBJECTIVES We compared the effect of a tablet-based neuroplasticity-oriented sensorimotor training (experimental group, EG) and a tablet-based relaxation training (control group, CG) on frailty and sensorimotor brain function. METHODS Interventions consisted of daily 30 min sessions distributed over 90 days. Assessments took place at baseline, after 60 days, and after 90 days. A total of N = 48 frail older adults (EG: n = 24; CG: n = 24) were assigned to the two groups and reassessed after 60 days. Primary outcomes included frailty phenotype (FP) and frailty index (FI). Sensorimotor brain activity was evaluated using functional magnetic resonance imaging and single-pulse transcranial magnetic stimulation. RESULTS After 60 days of training, both groups showed a reduction in the number of FP criteria (p < 0.001) with a trend towards a significant time-by-group interaction (p = 0.058) indicating a stronger reduction of frailty in the EG (p < 0.001) compared to the CG (p = 0.039). In addition, pain was significantly reduced in the EG but not the CG. No significant effects were found for measures of brain function. DISCUSSION We provided initial evidence that a neuroplasticity-oriented sensorimotor training could be beneficial in counteracting frailty as well as chronic pain. Further studies are needed to determine the potentially underlying neuroplastic mechanisms and the influence of plasticity-related biomarkers as well as their clinical significance. TRIAL REGISTRATION ClinicalTrials.gov NCT03666039 (registered 11 September 2018).
Collapse
Affiliation(s)
- Florian Beier
- Medical Faculty Mannheim, Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Heidelberg University, Square J5, Mannheim 68159, Germany.
| | - Martin Löffler
- Medical Faculty Mannheim, Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Heidelberg University, Square J5, Mannheim 68159, Germany; Department of Experimental Psychology, Clinical Psychology, Heinrich Heine University Düsseldorf, Germany; Integrative Spinal Research Group, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Frauke Nees
- Medical Faculty Mannheim, Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Heidelberg University, Square J5, Mannheim 68159, Germany; Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Robin Bekrater-Bodmann
- Medical Faculty Mannheim, Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Heidelberg University, Square J5, Mannheim 68159, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen, Germany
| | - Stefano Silvoni
- Medical Faculty Mannheim, Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Heidelberg University, Square J5, Mannheim 68159, Germany
| | - Simon Desch
- Medical Faculty Mannheim, Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Heidelberg University, Square J5, Mannheim 68159, Germany; Department of Experimental Psychology, Clinical Psychology, Heinrich Heine University Düsseldorf, Germany
| | - Annette Löffler
- Medical Faculty Mannheim, Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Heidelberg University, Square J5, Mannheim 68159, Germany
| | - Lucrezia Hausner
- Medical Faculty Mannheim, Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Heidelberg University, Square J5, Mannheim 68159, Germany; Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lutz Frölich
- Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Herta Flor
- Medical Faculty Mannheim, Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Heidelberg University, Square J5, Mannheim 68159, Germany; Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| |
Collapse
|
3
|
Hehl M, Swinnen SP, Van Malderen S, Cuypers K. No evidence for a difference in lateralization and distinctiveness level of transcranial magnetic stimulation-derived cortical motor representations over the adult lifespan. Front Aging Neurosci 2022; 14:971858. [PMID: 36313026 PMCID: PMC9608504 DOI: 10.3389/fnagi.2022.971858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022] Open
Abstract
This study aimed to investigate the presence and patterns of age-related differences in TMS-based measures of lateralization and distinctiveness of the cortical motor representations of two different hand muscles. In a sample of seventy-three right-handed healthy participants over the adult lifespan, the first dorsal interosseus (FDI) and abductor digiti minimi (ADM) cortical motor representations of both hemispheres were acquired using transcranial magnetic stimulation (TMS). In addition, dexterity and maximum force levels were measured. Lateralization quotients were calculated for homolog behavioral and TMS measures, whereas the distinctiveness between the FDI and ADM representation within one hemisphere was quantified by the center of gravity (CoG) distance and cosine similarity. The presence and patterns of age-related changes were examined using linear, polynomial, and piecewise linear regression. No age-related differences could be identified for the lateralization quotient of behavior or cortical motor representations of both intrinsic hand muscles. Furthermore, no evidence for a change in the distinctiveness of the FDI and ADM representation with advancing age was found. In conclusion this work showed that lateralization and distinctiveness of cortical motor representations, as determined by means of TMS-based measures, remain stable over the adult lifespan.
Collapse
Affiliation(s)
- Melina Hehl
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Belgium
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Stephan P. Swinnen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Shanti Van Malderen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Belgium
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Koen Cuypers
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Belgium
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- *Correspondence: Koen Cuypers,
| |
Collapse
|
4
|
Rurak BK, Rodrigues JP, Power BD, Drummond PD, Vallence AM. Reduced SMA-M1 connectivity in older than younger adults measured using dual-site TMS. Eur J Neurosci 2021; 54:6533-6552. [PMID: 34470079 DOI: 10.1111/ejn.15438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 08/18/2021] [Indexed: 12/29/2022]
Abstract
With advancing age comes a decline in voluntary movement control. Growing evidence suggests that an age-related decline in effective connectivity between the supplementary motor area and primary motor cortex (SMA-M1) might play a role in an age-related decline of bilateral motor control. Dual-site transcranial magnetic stimulation (TMS) can be used to measure SMA-M1 effective connectivity. In the current study, we aimed to (1) replicate previous dual-site TMS research showing reduced SMA-M1 connectivity in older than younger adults and (2) examine whether SMA-M1 connectivity is associated with bilateral motor control in independent samples of younger (n = 30) and older adults (n = 30). SMA-M1 connectivity was measured using dual-site TMS with interstimulus intervals of 6, 7 and 8 ms, and bilateral motor control was measured using the Purdue Pegboard, Four Square Step Test and the Timed Up and Go task. Findings from this study showed that SMA-M1 connectivity was reduced in older than in younger adults, suggesting that the direct excitatory connections between SMA and M1 had reduced efficacy in older than younger adults. Furthermore, greater SMA-M1 connectivity was associated with better bimanual motor control in older adults. Thus, SMA-M1 connectivity in older adults might underpin, in part, the age-related decline in bilateral motor control. These findings contribute to our understanding of age-related declines in motor control and provide a physiological basis for the development of interventions to improve bimanual and bilateral motor control.
Collapse
Affiliation(s)
- Brittany K Rurak
- Discipline of Psychology, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia.,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | | | - Brian D Power
- Hollywood Private Hospital, Nedlands, Western Australia, Australia.,School of Medicine Fremantle, University of Notre Dame, Fremantle, Western Australia, Australia
| | - Peter D Drummond
- Discipline of Psychology, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia.,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Ann-Maree Vallence
- Discipline of Psychology, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia.,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch, Western Australia, Australia
| |
Collapse
|
5
|
Beier F, Löffler M, Nees F, Hausner L, Frölich L, Flor H. Promoting neuroplasticity and neuropsychological functioning in frailty through an app-based sensorimotor training: study protocol for a randomized trial. BMC Geriatr 2021; 21:343. [PMID: 34082710 PMCID: PMC8173957 DOI: 10.1186/s12877-021-02293-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Frailty is characterized by an age-related decline in multiple physiological systems, leading to a high vulnerability to stressors, adverse health outcomes, and low quality of life. Neuroscientific models of pathological aging emphasize the loss of sensorimotor stimulation and reduced neuromodulatory capacities as core processes in age-related cognitive and bodily decline, which may be associated with maladaptive plastic changes in the brain. We plan to increase sensorimotor stimulation in frail persons through a newly developed app-based training program and link the training trials to biological and psychological correlates of age-associated vulnerability and health indices. METHODS We will conduct a randomized trial, applying an app-based sensorimotor home training (N = 30) in people suffering from frailty. An app-based relaxation training will serve as an active control condition (N = 30). Both interventions will last for 90 days each. The sensorimotor training includes unimodal and multimodal sensory discrimination tasks in the visual, auditory, and tactile domain, as well as sensorimotor precision tasks. The tasks will be implemented using an adaptive training algorithm and enriched with motivational components embedded in a virtual training environment. We expect a pre-post reduction of frailty status and associated functional decline related to refinement of representational maps within the sensorimotor system and improved sensorimotor function such as extremity function. Secondary analyses will study the influence of BDNF genotype as moderating variable. Additional outcomes will include measures of perceptual and cognitive functioning, quality of life as well as BDNF serum levels. Measurements will take place before training (baseline), after 60 days (assessment 1), and at the end of the training after 90 days (assessment 2). DISCUSSION In our randomized trial, we aim to characterize a multidimensional concept of frailty and to target maladaptive behaviors and neuroplasticity using an app-based sensorimotor training. This type of intervention might provide further knowledge and new possibilities for preventing decline and preserving function in older adults. TRIAL REGISTRATION ClinicalTrials.gov NCT03666039 . Registered 11 September 2018 - Retrospectively registered. Protocol version: Version 4 revised (issue date: 19 May 2021).
Collapse
Affiliation(s)
- Florian Beier
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Martin Löffler
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Frauke Nees
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Lucrezia Hausner
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
- Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lutz Frölich
- Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany.
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany.
| |
Collapse
|
6
|
Nazarova M, Novikov P, Ivanina E, Kozlova K, Dobrynina L, Nikulin VV. Mapping of multiple muscles with transcranial magnetic stimulation: absolute and relative test-retest reliability. Hum Brain Mapp 2021; 42:2508-2528. [PMID: 33682975 PMCID: PMC8090785 DOI: 10.1002/hbm.25383] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial accuracy of transcranial magnetic stimulation (TMS) may be as small as a few millimeters. Despite such great potential, navigated TMS (nTMS) mapping is still underused for the assessment of motor plasticity, particularly in clinical settings. Here, we investigate the within-limb somatotopy gradient as well as absolute and relative reliability of three hand muscle cortical representations (MCRs) using a comprehensive grid-based sulcus-informed nTMS motor mapping. We enrolled 22 young healthy male volunteers. Two nTMS mapping sessions were separated by 5-10 days. Motor evoked potentials were obtained from abductor pollicis brevis (APB), abductor digiti minimi, and extensor digitorum communis. In addition to individual MRI-based analysis, we studied normalized MNI MCRs. For the reliability assessment, we calculated intraclass correlation and the smallest detectable change. Our results revealed a somatotopy gradient reflected by APB MCR having the most lateral location. Reliability analysis showed that the commonly used metrics of MCRs, such as areas, volumes, centers of gravity (COGs), and hotspots had a high relative and low absolute reliability for all three muscles. For within-limb TMS somatotopy, the most common metrics such as the shifts between MCR COGs and hotspots had poor relative reliability. However, overlaps between different muscle MCRs were highly reliable. We, thus, provide novel evidence that inter-muscle MCR interaction can be reliably traced using MCR overlaps while shifts between the COGs and hotspots of different MCRs are not suitable for this purpose. Our results have implications for the interpretation of nTMS motor mapping results in healthy subjects and patients with neurological conditions.
Collapse
Affiliation(s)
- Maria Nazarova
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
- Federal State Budgetary Institution «Federal center of brain research and neurotechnologies» of the Federal Medical Biological AgencyMoscowRussian Federation
| | - Pavel Novikov
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
| | - Ekaterina Ivanina
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
| | - Ksenia Kozlova
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
| | | | - Vadim V. Nikulin
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
7
|
Liu P, Chrysidou A, Doehler J, Hebart MN, Wolbers T, Kuehn E. The organizational principles of de-differentiated topographic maps in somatosensory cortex. eLife 2021; 10:e60090. [PMID: 34003108 PMCID: PMC8186903 DOI: 10.7554/elife.60090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 05/17/2021] [Indexed: 01/09/2023] Open
Abstract
Topographic maps are a fundamental feature of cortex architecture in the mammalian brain. One common theory is that the de-differentiation of topographic maps links to impairments in everyday behavior due to less precise functional map readouts. Here, we tested this theory by characterizing de-differentiated topographic maps in primary somatosensory cortex (SI) of younger and older adults by means of ultra-high resolution functional magnetic resonance imaging together with perceptual finger individuation and hand motor performance. Older adults' SI maps showed similar amplitude and size to younger adults' maps, but presented with less representational similarity between distant fingers. Larger population receptive field sizes in older adults' maps did not correlate with behavior, whereas reduced cortical distances between D2 and D3 related to worse finger individuation but better motor performance. Our data uncover the drawbacks of a simple de-differentiation model of topographic map function, and motivate the introduction of feature-based models of cortical reorganization.
Collapse
Affiliation(s)
- Peng Liu
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Anastasia Chrysidou
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Juliane Doehler
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Martin N Hebart
- Vision and Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Thomas Wolbers
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Center for Behavioral Brain Sciences (CBBS) MagdeburgMagdeburgGermany
| | - Esther Kuehn
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Center for Behavioral Brain Sciences (CBBS) MagdeburgMagdeburgGermany
| |
Collapse
|
8
|
Blood oxygen level dependent fMRI and perfusion MRI in the sheep brain. Brain Res 2021; 1760:147390. [PMID: 33631207 DOI: 10.1016/j.brainres.2021.147390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/23/2022]
Abstract
The ovine model could be an effective translational model but remains underexplored. Here, Blood Oxygen Level dependent functional MRI during visual stimulation and resting-state perfusion MRI were explored. We aimed at investigating the impact of isoflurane anesthesia during visual stimulation and evaluate resting cerebral blood flow and cerebral blood volume parameters in the lamb and adult sheep brain. BOLD fMRI and perfusion MRI after a bolus of DOTAREM were conducted in 4 lambs and 6 adult ewes at 3 T. A visual stimulation paradigm was delivered during fMRI at increasing isoflurane doses (1-3%). Robust but weak BOLD responses (0.21 ± 0.08%) were found in the lateral geniculate nucleus (LGN) up to 3% isoflurane anaesthesia. No significant differences were found beween BOLD responses in the range 1 to 3% ISO (p > 0.05). However, LGN cluster size decreased and functional localization became less reliable at high ISO doses (2.5-3% ISO). BOLD responses were weaker in adult sheep than in lambs (4.6 ± 1.5 versus 13.6 ± 8.5; p = 0.08). Relative cerebral blood volumes (rCBV) and relative cerebral blood flows (rCBF) were significantly higher (p < 0.0001) in lambs than in adult sheep for both gray and white matter. The impact of volatile anesthesia was explored for the first time on BOLD responses demonstrating increased reliability of functional localization of brain activity at low doses. Perfusion MRI was conducted for the first time in both lambs and adult ewes. Assessment of baseline cerebrovascular values are of interest for future studies of brain diseases allowing an improved interpretation of BOLD responses.
Collapse
|
9
|
Grooms DR, Criss CR, Simon JE, Haggerty AL, Wohl TR. Neural Correlates of Knee Extension and Flexion Force Control: A Kinetically-Instrumented Neuroimaging Study. Front Hum Neurosci 2021; 14:622637. [PMID: 33613205 PMCID: PMC7890238 DOI: 10.3389/fnhum.2020.622637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Background: The regulation of muscle force is a vital aspect of sensorimotor control, requiring intricate neural processes. While neural activity associated with upper extremity force control has been documented, extrapolation to lower extremity force control is limited. Knowledge of how the brain regulates force control for knee extension and flexion may provide insights as to how pathology or intervention impacts central control of movement. Objectives: To develop and implement a neuroimaging-compatible force control paradigm for knee extension and flexion. Methods: A magnetic resonance imaging (MRI) safe load cell was used in a customized apparatus to quantify force (N) during neuroimaging (Philips Achieva 3T). Visual biofeedback and a target sinusoidal wave that fluctuated between 0 and 5 N was provided via an MRI-safe virtual reality display. Fifteen right leg dominant female participants (age = 20.3 ± 1.2 years, height = 1.6 ± 0.10 m, weight = 64.8 ± 6.4 kg) completed a knee extension and flexion force matching paradigm during neuroimaging. The force-matching error was calculated based on the difference between the visual target and actual performance. Brain activation patterns were calculated and associated with force-matching error and the difference between quadriceps and hamstring force-matching tasks were evaluated with a mixed-effects model (z > 3.1, p < 0.05, cluster corrected). Results: Knee extension and flexion force-matching tasks increased BOLD signal among cerebellar, sensorimotor, and visual-processing regions. Increased knee extension force-matching error was associated with greater right frontal cortex and left parietal cortex activity and reduced left lingual gyrus activity. Increased knee flexion force-matching error was associated with reduced left frontal and right parietal region activity. Knee flexion force control increased bilateral premotor, secondary somatosensory, and right anterior temporal activity relative to knee extension. The force-matching error was not statistically different between tasks. Conclusion: Lower extremity force control results in unique activation strategies depending on if engaging knee extension or flexion, with knee flexion requiring increased neural activity (BOLD signal) for the same level of force and no difference in relative error. These fMRI compatible force control paradigms allow precise behavioral quantification of motor performance concurrent with brain activity for lower extremity sensorimotor function and may serve as a method for future research to investigate how pathologies affect lower extremity neuromuscular function.
Collapse
Affiliation(s)
- Dustin R Grooms
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Grover Center, Athens, OH, United States.,Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Grover Center, Athens, OH, United States.,Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Sciences and Professions, Ohio University, Grover Center, Athens, OH, United States
| | - Cody R Criss
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Grover Center, Athens, OH, United States.,Translational Biomedical Sciences Program, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Janet E Simon
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Grover Center, Athens, OH, United States.,Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Grover Center, Athens, OH, United States
| | - Adam L Haggerty
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Grover Center, Athens, OH, United States.,Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Grover Center, Athens, OH, United States
| | - Timothy R Wohl
- Honors Tutorial College, Ohio University, Athens, OH, United States.,Division of Physical Therapy, School of Health and Rehabilitation Sciences, Ohio State University, Columbus, OH, United States
| |
Collapse
|
10
|
Fear of movement is associated with corticomotor depression in response to acute experimental muscle pain. Exp Brain Res 2020; 238:1945-1955. [DOI: 10.1007/s00221-020-05854-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/11/2020] [Indexed: 12/28/2022]
|
11
|
Chaves AR, Devasahayam AJ, Riemenschneider M, Pretty RW, Ploughman M. Walking Training Enhances Corticospinal Excitability in Progressive Multiple Sclerosis-A Pilot Study. Front Neurol 2020; 11:422. [PMID: 32581998 PMCID: PMC7287174 DOI: 10.3389/fneur.2020.00422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Inflammatory lesions and neurodegeneration lead to motor, cognitive, and sensory impairments in people with multiple sclerosis (MS). Accumulation of disability is at least partially due to diminished capacity for neuroplasticity within the central nervous system. Aerobic exercise is a potentially important intervention to enhance neuroplasticity since it causes upregulation of neurotrophins and enhances corticospinal excitability, which can be probed using single-pulse transcranial magnetic stimulation (TMS). Whether people with progressive MS who have accumulated substantial disability could benefit from walking rehabilitative training to enhance neuroplasticity is not known. Objective: We aimed to determine whether 10 weeks of task-specific walking training would affect corticospinal excitability over time (pre, post, and 3-month follow-up) among people with progressive MS who required walking aids. Results: Eight people with progressive MS (seven female; 29–74 years old) with an Expanded Disability Status Scale of 6–6.5 underwent harness-supported treadmill walking training in a temperature controlled room at 16°C (10 weeks; three times/week; 40 min at 40–65% heart rate reserve). After training, there was significantly higher corticospinal excitability in both brain hemispheres, reductions in TMS active motor thresholds, and increases in motor-evoked potential amplitudes and slope of the recruitment curve (REC). Decreased intracortical inhibition (shorter cortical silent period) after training was noted in the hemisphere corresponding to the stronger hand only. These effects were not sustained at follow-up. There was a significant relationship between increases in corticospinal excitability (REC, area under the curve) in the hemisphere corresponding to the stronger hand and lessening of both intensity and impact of fatigue on activities of daily living (Fatigue Severity Scale and Modified Fatigue Impact Scale, respectively). Conclusion: Our pilot results support that vigorous treadmill training can potentially improve neuroplastic potential and mitigate symptoms of the disease even among people who have accumulated substantial disability due to MS.
Collapse
Affiliation(s)
- Arthur R Chaves
- Recovery and Performance Laboratory, Faculty of Medicine, L. A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Augustine J Devasahayam
- Recovery and Performance Laboratory, Faculty of Medicine, L. A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Morten Riemenschneider
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Ryan W Pretty
- Recovery and Performance Laboratory, Faculty of Medicine, L. A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michelle Ploughman
- Recovery and Performance Laboratory, Faculty of Medicine, L. A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
12
|
Exercise-Induced Brain Excitability Changes in Progressive Multiple Sclerosis: A Pilot Study. J Neurol Phys Ther 2020; 44:132-144. [DOI: 10.1097/npt.0000000000000308] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Hehl M, Swinnen SP, Cuypers K. Alterations of hand sensorimotor function and cortical motor representations over the adult lifespan. Aging (Albany NY) 2020; 12:4617-4640. [PMID: 32160591 PMCID: PMC7093194 DOI: 10.18632/aging.102925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/02/2020] [Indexed: 12/14/2022]
Abstract
Using a cross sectional design, we aimed to identify the effect of aging on sensorimotor function and cortical motor representations of two intrinsic hand muscles, as well as the course and timing of those changes. Furthermore, the link between cortical motor representations, sensorimotor function, and intracortical inhibition and facilitation was investigated. Seventy-seven participants over the full adult lifespan were enrolled. For the first dorsal interosseus (FDI) and abductor digiti minimi (ADM) muscle, cortical motor representations, GABAA-mediated short-interval intracortical inhibition (SICI), and glutamate-mediated intracortical facilitation (ICF) were assessed using transcranial magnetic stimulation over the dominant primary motor cortex. Additionally, participants' dexterity and force were measured. Linear, polynomial, and piecewise linear regression analyses were conducted to identify the course and timing of age-related differences. Our results demonstrated variation in sensorimotor function over the lifespan, with a marked decline starting around the mid-thirties. Furthermore, an age-related reduction in cortical motor representation volume and maximal MEP of the FDI, but not for ADM, was observed, occurring mainly until the mid-forties. Area of the cortical motor representation did not change with advancing age. Furthermore, cortical motor representations, sensorimotor function, and measures of intracortical inhibition and facilitation were not interrelated.
Collapse
Affiliation(s)
- Melina Hehl
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Leuven, Belgium
| | - Stephan P. Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Leuven, Belgium
- KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Koen Cuypers
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Leuven, Belgium
- REVAL Research Institute, Hasselt University, Agoralaan, Diepenbeek, Belgium
| |
Collapse
|
14
|
Li WQ, Lin T, Li X, Jing YH, Wu C, Li MN, Ding Q, Lan Y, Xu GQ. TMS brain mapping of the pharyngeal cortical representation in healthy subjects. Brain Stimul 2020; 13:891-899. [PMID: 32289722 DOI: 10.1016/j.brs.2020.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Brain mapping is fundamental to understanding brain organization and function. However, a major drawback to the traditional Brodmann parcellation technique is the reliance on the use of postmortem specimens. It has therefore historically been difficult to make any comparison regarding functional data from different regions or hemispheres within the same individual. Moreover, this method has been significant limited by subjective boundaries and classification criteria and therefore suffer from reproducibility issues. The development of transcranial magnetic stimulation (TMS) offers an alternative approach to brain mapping, specifically the motor cortical regions by eliciting quantifiable functional reactions. OBJECTIVE To precisely describe the motor cortical topographic representation of pharyngeal constrictor musculature using TMS and to further map the brain for use as a tool to study brain plasticity. METHODS 51 healthy subjects (20 male/31 female, 19-26 years old) were tested using single-pulse TMS combined with intraluminal catheter-guided high-resolution manometry and a standardized grid cap. We investigated various parameters of the motor-evoked potential (MEP) that include the motor map area, amplitude, latency, center of gravity (CoG) and asymmetry index. RESULTS Cortically evoked response latencies were similar for the left and right hemispheres at 6.79 ± 0.22 and 7.24 ± 0.27 ms, respectively. The average scalp positions (relative to the vertex) of the pharyngeal motor cortical representation were 10.40 ± 0.19 (SE) cm medio-lateral and 3.20 ± 0.20 (SE) cm antero-posterior in the left hemisphere and 9.65 ± 0.24 (SE) cm medio-lateral and 3.18 ± 0.23 (SE) cm antero-posterior in the right hemisphere. The mean motor map area of the pharynx in the left and right hemispheres were 9.22 ± 0.85(SE) cm2and 10.12 ± 1.24(SE) cm2, respectively. The amplitudes of the MEPs were 35.94 ± 1.81(SE)uV in the left hemisphere and 34.49 ± 1.95(SE)uV in the right hemisphere. By comparison, subtle but consistent differences in the degree of the bilateral hemispheric representation were also apparent both between and within individuals. CONCLUSION The swallowing musculature has a bilateral motor cortical representation across individuals, but is largely asymmetric within single subjects. These results suggest that TMS mapping using a guided intra-pharyngeal EMG catheter combined with a standardized gridded cap might be a useful tool to localize brain function/dysfunction by linking brain activation to the corresponding physical reaction.
Collapse
Affiliation(s)
- Wan-Qi Li
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tuo Lin
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| | - Xue Li
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Ying-Hua Jing
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Cheng Wu
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Meng-Ni Li
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Qian Ding
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yue Lan
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| | - Guang-Qing Xu
- Department of Rehabilitation Medicine, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
15
|
Jiang Y, Li Z, Zhao Y, Xiao X, Zhang W, Sun P, Yang Y, Zhu C. Targeting brain functions from the scalp: Transcranial brain atlas based on large-scale fMRI data synthesis. Neuroimage 2020; 210:116550. [PMID: 31981781 DOI: 10.1016/j.neuroimage.2020.116550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 12/16/2019] [Accepted: 01/14/2020] [Indexed: 12/28/2022] Open
Abstract
Transcranial brain mapping techniques, such as functional near-infrared spectroscopy (fNIRS) and transcranial magnetic stimulation (TMS), have been playing an increasingly important role in studies of human brain functions. Given a brain function of interest, fNIRS probes and TMS coils should be properly placed on the scalp to ensure that the function is effectively measured or modulated. However, since brain activity is inside the skull and invisible to the researcher during placement, this blind targeting may cause the device to partially or completely miss the functional target, resulting in inconsistent experimental results and divergent clinical outcomes, especially when participants' structural MRI data are not available. To address this issue, we propose here a framework for targeting a designated function directly from the scalp. First, a functional brain atlas for the targeted brain function is constructed via a meta-analysis of large-scale functional magnetic resonance imaging datasets. Second, the functional brain atlas is presented on the scalp surface by using a transcranial mapping previously established from an structural MRI dataset (n = 114), resulting in a novel functional transcranial brain atlas (fTBA). Finally, a low-cost, portable scalp-navigation system is used to localize the transcranial device on the individual's scalp with the guidance of the fTBA. To demonstrate the feasibility of the targeting framework, both fNIRS and TMS mapping experiments were conducted. The results show that fTBA-guided fNIRS positioning can detect functional activity with high sensitivity and specificity for working memory and motor systems; Moreover, compared with traditional TMS targeting approaches (e.g. the International 10-20 System and the conventional 5-cm rule), the fTBA suggested motor stimulation site is closesr to both the motor hotspot and the center of gravity of motor evoked potentials (MEP-COG). In summary, the proposed method unblinds the transcranial function targeting process using prior information, providing an effective and straightforward approach to transcranial brain mapping studies, especially those without participants' structural MRI data.
Collapse
Affiliation(s)
- Yihan Jiang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zheng Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Yang Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Xiang Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Peipei Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Chaozhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
16
|
|
17
|
Sinitsyn DO, Chernyavskiy AY, Poydasheva AG, Bakulin IS, Suponeva NA, Piradov MA. Optimization of the Navigated TMS Mapping Algorithm for Accurate Estimation of Cortical Muscle Representation Characteristics. Brain Sci 2019; 9:brainsci9040088. [PMID: 31010190 PMCID: PMC6523347 DOI: 10.3390/brainsci9040088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
Navigated transcranial magnetic stimulation (nTMS) mapping of cortical muscle representations allows noninvasive assessment of the state of a healthy or diseased motor system, and monitoring changes over time. These applications are hampered by the heterogeneity of existing mapping algorithms and the lack of detailed information about their accuracy. We aimed to find an optimal motor evoked potential (MEP) sampling scheme in the grid-based mapping algorithm in terms of the accuracy of muscle representation parameters. The abductor pollicis brevis (APB) muscles of eight healthy subjects were mapped three times on consecutive days using a seven-by-seven grid with ten stimuli per cell. The effect of the MEP variability on the parameter accuracy was assessed using bootstrapping. The accuracy of representation parameters increased with the number of stimuli without saturation up to at least ten stimuli per cell. The detailed sampling showed that the between-session representation area changes in the absence of interventions were significantly larger than the within-session fluctuations and thus could not be explained solely by the trial-to-trial variability of MEPs. The results demonstrate that the number of stimuli has no universally optimal value and must be chosen by balancing the accuracy requirements with the mapping time constraints in a given problem.
Collapse
Affiliation(s)
- Dmitry O Sinitsyn
- Department of Neurorehabilitation and Physiotherapy, Research Center of Neurology, 125367 Moscow, Russia.
| | - Andrey Yu Chernyavskiy
- Department of Neurorehabilitation and Physiotherapy, Research Center of Neurology, 125367 Moscow, Russia.
- Quantum Computer Physics Laboratory, Valiev Institute of Physics and Technology of Russian Academy of Sciences, 117218 Moscow, Russia.
| | - Alexandra G Poydasheva
- Department of Neurorehabilitation and Physiotherapy, Research Center of Neurology, 125367 Moscow, Russia.
| | - Ilya S Bakulin
- Department of Neurorehabilitation and Physiotherapy, Research Center of Neurology, 125367 Moscow, Russia.
| | - Natalia A Suponeva
- Department of Neurorehabilitation and Physiotherapy, Research Center of Neurology, 125367 Moscow, Russia.
| | - Michael A Piradov
- Department of Neurorehabilitation and Physiotherapy, Research Center of Neurology, 125367 Moscow, Russia.
| |
Collapse
|
18
|
Houde F, Laroche S, Thivierge V, Martel M, Harvey MP, Daigle F, Olivares-Marchant A, Beaulieu LD, Leonard G. Transcranial Magnetic Stimulation Measures in the Elderly: Reliability, Smallest Detectable Change and the Potential Influence of Lifestyle Habits. Front Aging Neurosci 2018; 10:379. [PMID: 30542278 PMCID: PMC6277861 DOI: 10.3389/fnagi.2018.00379] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/31/2018] [Indexed: 12/23/2022] Open
Abstract
Background: Transcranial magnetic stimulation (TMS) is a non-invasive technique that can be used to evaluate cortical function and corticospinal pathway in normal and pathological aging. Yet, the metrologic properties of TMS-related measurements is still limited in the aging population. Objectives: The aim of this cross-sectional study was to document the reliability and smallest detectable change of TMS measurements among community-dwelling seniors. A secondary objective was to test if TMS measurements differ between elders based on lifestyle, medical and socio-demographic factors. Methods: Motor evoked potentials (MEPs) elicited by single-pulse TMS were recorded in the first dorsal interosseous (FDI) in 26 elderly individuals (mean age = 70 ± 3.8 years). Resting motor threshold (rMT), MEP amplitudes and contralateral silent period (cSP) were measured on two separate occasions (1-week interval), and the standard error of the measurement (SEMeas), intraclass correlation coefficient (ICC), and smallest detectable change in an individual (SDCindv) were calculated. Lifestyle, medical and socio-demographic factors were collected using questionnaires. TMS-related outcomes were compared using independent sample t-test based on the presence of chronic health diseases, chronic medication intake, obesity, history of smoking, physical activity levels, gender, and level of education. Results: rMT and cSP measures were the most reliable outcomes, with the lowest SEMeas and highest ICCs, whereas MEP amplitude-related measures were less reliable. SDCindv levels were generally high, even for rMT (7.29 %MSO) and cSP (43.16–50.84 ms) measures. Although not systematically significant, results pointed toward a higher corticospinal excitability in elderly individuals who were regularly active, who had no chronic medical conditions and who did not take any medication. Conclusion: Even though SDCindv levels were relatively high, these results show that rMT and cSP are the most reliable outcomes to investigate age-related changes in the corticomotor system and suggest that the influence of factors such as lifestyle habits and medications on TMS measures should be investigated further.
Collapse
Affiliation(s)
- Francis Houde
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.,Research Centre on Aging, CIUSSS de l'Estrie - CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sarah Laroche
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.,Research Centre on Aging, CIUSSS de l'Estrie - CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Veronique Thivierge
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.,Research Centre on Aging, CIUSSS de l'Estrie - CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marylie Martel
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.,Research Centre on Aging, CIUSSS de l'Estrie - CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie-Philippe Harvey
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.,Research Centre on Aging, CIUSSS de l'Estrie - CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Frederique Daigle
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.,Research Centre on Aging, CIUSSS de l'Estrie - CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Louis-David Beaulieu
- Research Centre on Aging, CIUSSS de l'Estrie - CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada.,Biomechanical and Neurophysiological Research Lab in Neuro-Musculo-Skelettal Rehabilitation, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Guillaume Leonard
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.,Research Centre on Aging, CIUSSS de l'Estrie - CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
19
|
Abstract
Anterior cruciate ligament (ACL) reconstruction is a common and predominantly successful surgical intervention. But are there specific preoperative patient characteristics or intraoperative surgeon decisions that lead to better or worse outcomes? And can understanding brain function changes of patients after ACL reconstruction reveal insights into the ways that postsurgical rehabilitation can be improved to further enhance outcomes? These intriguing and clinically applicable questions are addressed in this webinar titled "Improving ACL Reconstruction Outcomes," hosted jointly by JOSPT and JBJS. The webinar is based on 2 published research articles-one from JBJS and the other from JOSPT. Participants in this continuing education activity are asked to read both articles carefully before watching the webinar. JBJS co-author Kurt Spindler, MD, discusses findings from a longitudinal analysis that identified certain baseline patient characteristics and intraoperative choices that predicted higher and lower SF-36 Physical Component scores after ACL reconstruction. JOSPT co-author Dustin Grooms, PhD, ATC, shares recently published results of a controlled laboratory study that employed functional MRI to investigate brain-activation differences between patients who did and did not undergo ACL reconstruction. Moderated by Kevin Wilk, PT, DPT, FAPTA, a leading authority on rehabilitation of sports injuries, the webinar includes additional insights from expert commentators Eric McCarty, MD, and Karin Grävare Silbernagel, PT, PhD, ATC.
Collapse
|
20
|
Abstract
Study Design Controlled laboratory study. Background Anterior cruciate ligament (ACL) injury may result in neuroplastic changes due to lost mechanoreceptors of the ACL and compensations in neuromuscular control. These alterations are not completely understood. Assessing brain function after ACL injury and anterior cruciate ligament reconstruction (ACLR) with functional magnetic resonance imaging provides a means to address this gap in knowledge. Objective To compare differences in brain activation during knee flexion/extension in persons who have undergone ACLR and in matched controls. Methods Fifteen participants who had undergone left ACLR (38.13 ± 27.16 months postsurgery) and 15 healthy controls matched on age, sex, height, mass, extremity dominance, education level, sport participation, and physical activity level participated. Functional magnetic resonance imaging data were obtained during a unilateral knee motor task consisting of repeated cycles of knee flexion and extension. Results Participants who had undergone ACLR had increased activation in the contralateral motor cortex, lingual gyrus, and ipsilateral secondary somatosensory area and diminished activation in the ipsilateral motor cortex and cerebellum when compared to healthy matched controls. Conclusion Brain activation for knee flexion/extension motion may be altered following ACLR. The ACLR brain activation profile may indicate a shift toward a visual-motor strategy as opposed to a sensory-motor strategy to engage in knee movement. Level of Evidence Cohort, level 3. J Orthop Sports Phys Ther 2017;47(3):180-189. Epub 5 Nov 2016. doi:10.2519/jospt.2017.7003.
Collapse
|
21
|
Conway N, Wildschuetz N, Moser T, Bulubas L, Sollmann N, Tanigawa N, Meyer B, Krieg SM. Cortical plasticity of motor-eloquent areas measured by navigated transcranial magnetic stimulation in patients with glioma. J Neurosurg 2017; 127:981-991. [PMID: 28106500 DOI: 10.3171/2016.9.jns161595] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The goal of this study was to obtain a better understanding of the mechanisms underlying cerebral plasticity. Coupled with noninvasive detection of its occurrence, such an understanding has huge potential to improve glioma therapy. The authors aimed to demonstrate the frequency of plastic reshaping, find clues to the patterns behind it, and prove that it can be recognized noninvasively using navigated transcranial magnetic stimulation (nTMS). METHODS The authors used nTMS to map cortical motor representation in 22 patients with gliomas affecting the precentral gyrus, preoperatively and 3-42 months postoperatively. Location changes of the primary motor area, defined as hotspots and map centers of gravity, were measured. RESULTS Spatial normalization and analysis of hotspots showed an average shift of 5.1 ± 0.9 mm (mean ± SEM) on the mediolateral axis, and 10.7 ± 1.6 mm on the anteroposterior axis. Map centers of gravity were found to have shifted by 4.6 ± 0.8 mm on the mediolateral, and 8.7 ± 1.5 mm on the anteroposterior axis. Motor-eloquent points tended to shift toward the tumor by 4.5 ± 3.6 mm if the lesion was anterior to the rolandic region and by 2.6 ± 3.3 mm if it was located posterior to the rolandic region. Overall, 9 of 16 (56%) patients with high-grade glioma and 3 of 6 (50%) patients with low-grade glioma showed a functional shift > 10 mm at the cortical level. CONCLUSIONS Despite the small size of this series, analysis of these data showed that cortical functional reorganization occurs quite frequently. Moreover, nTMS was shown to detect such plastic reorganization noninvasively.
Collapse
Affiliation(s)
- Neal Conway
- Department of Neurosurgery and.,Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Germany; and
| | - Noémie Wildschuetz
- Department of Neurosurgery and.,Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Germany; and
| | - Tobias Moser
- Department of Neurosurgery and.,Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Germany; and
| | - Lucia Bulubas
- Department of Neurosurgery and.,Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Germany; and
| | - Nico Sollmann
- Department of Neurosurgery and.,Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Germany; and
| | - Noriko Tanigawa
- Faculty of Linguistics, Philology, & Phonetics, University of Oxford, United Kingdom
| | - Bernhard Meyer
- Department of Neurosurgery and.,Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Germany; and
| | - Sandro M Krieg
- Department of Neurosurgery and.,Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Germany; and
| |
Collapse
|
22
|
Neuromuscular Plasticity: Disentangling Stable and Variable Motor Maps in the Human Sensorimotor Cortex. Neural Plast 2016; 2016:7365609. [PMID: 27610248 PMCID: PMC5004060 DOI: 10.1155/2016/7365609] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/28/2016] [Accepted: 07/19/2016] [Indexed: 02/02/2023] Open
Abstract
Motor maps acquired with transcranial magnetic stimulation (TMS) are evolving as a biomarker for monitoring disease progression or the effects of therapeutic interventions. High test-retest reliability of this technique for long observation periods is therefore required to differentiate daily or weekly fluctuations from stable plastic reorganization of corticospinal connectivity. In this study, a novel projection, interpolation, and coregistration technique, which considers the individual gyral anatomy, was applied in healthy subjects for biweekly acquired TMS motor maps over a period of twelve weeks. The intraclass correlation coefficient revealed long-term reliability of motor maps with relevant interhemispheric differences. The sensorimotor cortex and nonprimary motor areas of the dominant hemisphere showed more extended and more stable corticospinal connectivity. Long-term correlations of the MEP amplitudes at each stimulation site revealed mosaic-like clusters of consistent corticospinal excitability. The resting motor threshold, centre of gravity, and mean MEPs across all TMS sites, as highly reliable cortical map parameters, could be disentangled from more variable parameters such as MEP area and volume. Cortical TMS motor maps provide high test-retest reliability for long-term monitoring when analyzed with refined techniques. They may guide restorative interventions which target dormant corticospinal connectivity for neurorehabilitation.
Collapse
|
23
|
Reliability of TMS metrics in patients with chronic incomplete spinal cord injury. Spinal Cord 2016; 54:980-990. [DOI: 10.1038/sc.2016.47] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/18/2016] [Accepted: 02/28/2016] [Indexed: 12/26/2022]
|
24
|
Reliability of negative BOLD in ipsilateral sensorimotor areas during unimanual task activity. Brain Imaging Behav 2016; 9:245-54. [PMID: 24788334 DOI: 10.1007/s11682-014-9302-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Research using functional magnetic resonance imaging has for numerous years now reported the existence of a negative blood oxygenation level dependent (BOLD) response. Based on accumulating evidence, this negative BOLD signal appears to represent an active inhibition of cortical areas in which it is found during task activity. This particularly important with respect to motor function given that it is fairly well-established that, in younger adults, the ipsilateral sensorimotor cortex exhibits negative BOLD during unimanual movements in fMRI. This interhemispheric suppression of cortical activity may have useful implications for our understanding of both basic motor function and rehabilitation of injury or disease. However, to date, we are aware of no study that has tested the reliability of evoked negative BOLD in ipsilateral sensorimotor cortex in individuals across sessions. The current study employs a unimanual finger opposition task previously shown to evoke negative BOLD in ipsilateral sensorimotor cortex across three sessions. Reliability metrics across sessions indicates that both the magnitude and location of ipsilateral sensorimotor negative BOLD response is relatively stable over each of the three sessions. Moreover, the volume of negative BOLD in ipsilateral cortex was highly correlated with volume of positive BOLD activity in the contralateral primary motor cortex. These findings show that the negative BOLD signal can be reliably evoked in unimanual task paradigms, and that the signal dynamic could represent an active suppression of the ipsilateral sensorimotor cortex originating from the contralateral motor areas.
Collapse
|
25
|
Forster MT, Limbart M, Seifert V, Senft C. Test-retest reliability of navigated transcranial magnetic stimulation of the motor cortex. Neurosurgery 2014; 10 Suppl 1:51-5; discussion 55-6. [PMID: 23842557 DOI: 10.1227/neu.0000000000000075] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Because navigated transcranial magnetic stimulation (nTMS) is increasingly used in neurosurgical research, interpretation of its results is of utmost importance. OBJECTIVE To evaluate the test-retest reliability of nTMS. METHODS Twelve healthy participants underwent nTMS at 2 different sessions separated by 10.3 ± 9.6 days. Investigated parameters included resting motor thresholds, hotspots, and centers of gravity calculated for the first dorsal interosseous, abductor pollicis brevis, extensor digitorum, tibial anterior, and abductor hallucis muscles. RESULTS Excellent reliability of resting motor thresholds was observed. Hotspots and centers of gravity showed moderate to excellent repeatability along the anteroposterior axis (intraclass correlation coefficient, 0.54-0.89), whereas the x coordinate presented mainly poor to moderate stability (intraclass correlation coefficient, 0.11-0.89). Movement of centers of gravity over sessions was 0.57 ± 0.32 cm, and hotspots laid 0.79 ± 0.47 cm apart. Calculation of coefficient of variation revealed high reliability of investigated parameters in upper extremities; in lower extremity muscles, high variation across sessions was observed. CONCLUSION nTMS can be considered a reliable tool, thus opening new fields of noninvasive investigations in neurosurgery. The results presented here should be considered in the interpretation of individual nTMS results.
Collapse
|
26
|
Cunningham DA, Machado A, Janini D, Varnerin N, Bonnett C, Yue G, Jones S, Lowe M, Beall E, Sakaie K, Plow EB. Assessment of inter-hemispheric imbalance using imaging and noninvasive brain stimulation in patients with chronic stroke. Arch Phys Med Rehabil 2014; 96:S94-103. [PMID: 25194451 DOI: 10.1016/j.apmr.2014.07.419] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 06/23/2014] [Accepted: 07/18/2014] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To determine how interhemispheric balance in stroke, measured using transcranial magnetic stimulation (TMS), relates to balance defined using neuroimaging (functional magnetic resonance [fMRI], diffusion-tensor imaging [DTI]) and how these metrics of balance are associated with clinical measures of upper-limb function and disability. DESIGN Cross sectional. SETTING Laboratory. PARTICIPANTS Patients with chronic stroke (N = 10; age, 63 ± 9 y) in a population-based sample with unilateral upper-limb paresis. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Interhemispheric balance was measured with TMS, fMRI, and DTI. TMS defined interhemispheric differences in the recruitment of corticospinal output, size of the corticomotor output maps, and degree of mutual transcallosal inhibition that they exerted on one another. fMRI studied whether cortical activation during the movement of the paretic hand was lateralized to the ipsilesional or to the contralesional primary motor cortex (M1), premotor cortex (PMC), and supplementary motor cortex (SMA). DTI was used to define interhemispheric differences in the integrity of the corticospinal tracts projecting from the M1. Clinical outcomes tested function (upper extremity Fugl-Meyer [UEFM]) and perceived disability in the use of the paretic hand (Motor Activity Log [MAL] amount score). RESULTS Interhemispheric balance assessed with TMS relates differently to fMRI and DTI. Patients with high fMRI lateralization to the ipsilesional hemisphere possessed stronger ipsilesional corticomotor output maps (M1: r = .831, P = .006; PMC: r = .797, P = .01) and better balance of mutual transcallosal inhibition (r = .810, P = .015). Conversely, we found that patients with less integrity of the corticospinal tracts in the ipsilesional hemisphere show greater corticospinal output of homologous tracts in the contralesional hemisphere (r = .850, P = .004). However, an imbalance in integrity and output do not relate to transcallosal inhibition. Clinically, although patients with less integrity of corticospinal tracts from the ipsilesional hemisphere showed worse impairments (UEFM) (r = -.768, P = .016), those with low fMRI lateralization to the ipsilesional hemisphere had greater perception of disability (MAL amount score) (M1: r = .883, P = .006; PMC: r = .817, P = .007; SMA: r = .633, P = .062). CONCLUSIONS In patients with chronic motor deficits of the upper limb, fMRI may serve to mark perceived disability and transcallosal influence between hemispheres. DTI-based integrity of the corticospinal tracts, however, may be useful in categorizing the range of functional impairments of the upper limb. Further, in patients with extensive corticospinal damage, DTI may help infer the role of the contralesional hemisphere in recovery.
Collapse
Affiliation(s)
- David A Cunningham
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; School of Biomedical Sciences, Kent State University, Kent, OH
| | - Andre Machado
- Center for Neurological Restoration, Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Daniel Janini
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Nicole Varnerin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Corin Bonnett
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Guang Yue
- Human Performance and Engineering Laboratory, Kessler Foundation Research Center, West Orange, NJ
| | | | - Mark Lowe
- Imaging Institute, Cleveland Clinic, Cleveland, OH
| | - Erik Beall
- Imaging Institute, Cleveland Clinic, Cleveland, OH
| | - Ken Sakaie
- Imaging Institute, Cleveland Clinic, Cleveland, OH
| | - Ela B Plow
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; Center for Neurological Restoration, Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH; Department of Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
27
|
Intersession reliability of fMRI activation for heat pain and motor tasks. NEUROIMAGE-CLINICAL 2014; 5:309-21. [PMID: 25161897 PMCID: PMC4141974 DOI: 10.1016/j.nicl.2014.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/22/2014] [Accepted: 07/17/2014] [Indexed: 11/20/2022]
Abstract
As the practice of conducting longitudinal fMRI studies to assess mechanisms of pain-reducing interventions becomes more common, there is a great need to assess the test–retest reliability of the pain-related BOLD fMRI signal across repeated sessions. This study quantitatively evaluated the reliability of heat pain-related BOLD fMRI brain responses in healthy volunteers across 3 sessions conducted on separate days using two measures: (1) intraclass correlation coefficients (ICC) calculated based on signal amplitude and (2) spatial overlap. The ICC analysis of pain-related BOLD fMRI responses showed fair-to-moderate intersession reliability in brain areas regarded as part of the cortical pain network. Areas with the highest intersession reliability based on the ICC analysis included the anterior midcingulate cortex, anterior insula, and second somatosensory cortex. Areas with the lowest intersession reliability based on the ICC analysis also showed low spatial reliability; these regions included pregenual anterior cingulate cortex, primary somatosensory cortex, and posterior insula. Thus, this study found regional differences in pain-related BOLD fMRI response reliability, which may provide useful information to guide longitudinal pain studies. A simple motor task (finger-thumb opposition) was performed by the same subjects in the same sessions as the painful heat stimuli were delivered. Intersession reliability of fMRI activation in cortical motor areas was comparable to previously published findings for both spatial overlap and ICC measures, providing support for the validity of the analytical approach used to assess intersession reliability of pain-related fMRI activation. A secondary finding of this study is that the use of standard ICC alone as a measure of reliability may not be sufficient, as the underlying variance structure of an fMRI dataset can result in inappropriately high ICC values; a method to eliminate these false positive results was used in this study and is recommended for future studies of test–retest reliability. Intersession reliability of pain-related fMRI responses was fair-to-moderate Intersession reliability of pain-related fMRI responses varied by brain region Intersession reliability is comparable for fixed temperature and fixed perception stimuli Standard methods of assessing intersession reliability can lead to false positives
Collapse
|
28
|
A Reliability Study on Brain Activation During Active and Passive Arm Movements Supported by an MRI-Compatible Robot. Brain Topogr 2014; 27:731-46. [DOI: 10.1007/s10548-014-0355-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
|
29
|
Age-related weakness of proximal muscle studied with motor cortical mapping: a TMS study. PLoS One 2014; 9:e89371. [PMID: 24586726 PMCID: PMC3931763 DOI: 10.1371/journal.pone.0089371] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/17/2014] [Indexed: 11/30/2022] Open
Abstract
Aging-related weakness is due in part to degeneration within the central nervous system. However, it is unknown how changes to the representation of corticospinal output in the primary motor cortex (M1) relate to such weakness. Transcranial magnetic stimulation (TMS) is a noninvasive method of cortical stimulation that can map representation of corticospinal output devoted to a muscle. Using TMS, we examined age-related alterations in maps devoted to biceps brachii muscle to determine whether they predicted its age-induced weakness. Forty-seven right-handed subjects participated: 20 young (22.6±0.90 years) and 27 old (74.96±1.35 years). We measured strength as force of elbow flexion and electromyographic activation of biceps brachii during maximum voluntary contraction. Mapping variables included: 1) center of gravity or weighted mean location of corticospinal output, 2) size of map, 3) volume or excitation of corticospinal output, and 4) response density or corticospinal excitation per unit area. Center of gravity was more anterior in old than in young (p<0.001), though there was no significant difference in strength between the age groups. Map size, volume, and response density showed no significant difference between groups. Regardless of age, center of gravity significantly predicted strength (β = −0.34, p = 0.005), while volume adjacent to the core of map predicted voluntary activation of biceps (β = 0.32, p = 0.008). Overall, the anterior shift of the map in older adults may reflect an adaptive change that allowed for the maintenance of strength. Laterally located center of gravity and higher excitation in the region adjacent to the core in weaker individuals could reflect compensatory recruitment of synergistic muscles. Thus, our study substantiates the role of M1 in adapting to aging-related weakness and subtending strength and muscle activation across age groups. Mapping from M1 may offer foundation for an examination of mechanisms that preserve strength in elderly.
Collapse
|
30
|
McGregor KM, Nocera JR, Sudhyadhom A, Patten C, Manini TM, Kleim JA, Crosson B, Butler AJ. Effects of aerobic fitness on aging-related changes of interhemispheric inhibition and motor performance. Front Aging Neurosci 2013; 5:66. [PMID: 24198784 PMCID: PMC3812779 DOI: 10.3389/fnagi.2013.00066] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/11/2013] [Indexed: 11/26/2022] Open
Abstract
Physical fitness has been long associated with maintenance and improvement of motor performance as we age. In particular, measures of psychomotor speed and motor dexterity tend to be higher in physically fit aging adults as compared to their sedentary counterparts. Using functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS), we explored the patterns of neural activity that may, in part, account for differences between individuals of varying physical fitness levels. In this study, we enrolled both sedentary and physically fit middle age (40–60) and younger (18–30) adults and measured upper extremity motor performance during behavioral testing. In a follow-up session, we employed TMS and fMRI to assess levels of interhemispheric communication during unimanual tasks. Results show that increased physical fitness is associated with better upper extremity motor performance on distal dexterity assessments and increased levels of interhemispheric inhibition in middle age adults. Further, the functional correlates of changes of ipsilateral activity appears to be restricted to the aging process as younger adults of varying fitness levels do not differ in hemispheric patterns of activity or motor performance. We conclude that sedentary aging confers a loss of interhemispheric inhibition that is deleterious to some aspects of motor function, as early as midlife, but these changes can be mediated by chronic engagement in aerobic exercise.
Collapse
Affiliation(s)
- Keith M McGregor
- Center for Visual and Neurocognitive Rehabilitation, U.S. Department of Veterans Affairs , Decatur, GA , USA ; Department of Neurology, Emory University , Atlanta, GA , USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zlatar ZZ, Towler S, McGregor KM, Dzierzewski JM, Bauer A, Phan S, Cohen M, Marsiske M, Manini TM, Crosson B. Functional language networks in sedentary and physically active older adults. J Int Neuropsychol Soc 2013; 19:625-34. [PMID: 23458438 PMCID: PMC3691286 DOI: 10.1017/s1355617713000246] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Functional magnetic resonance imaging (fMRI) studies have identified consistent age-related changes during various cognitive tasks, such that older individuals display more positive and less negative task-related activity than young adults. Recently, evidence shows that chronic physical exercise may alter aging-related changes in brain activity; however, the effect of exercise has not been studied for the neural substrates of language function. Additionally, the potential mechanisms by which aging alters neural recruitment remain understudied. To address these points, the present study enrolled elderly adults who were either sedentary or physically active to characterize the neural correlates of language function during semantic fluency between these groups in comparison to a young adult sample. Participants underwent fMRI during semantic fluency and transcranial magnetic stimulation to collect the ipsilateral silent period, a measure of interhemispheric inhibition. Results indicated that sedentary older adults displayed reductions in negative task-related activity compared to the active old group in areas of the attention network. Longer interhemispheric inhibition was associated with more negative task-related activity in the right and left posterior perisylvian cortex, suggesting that sedentary aging may result in losses in task facilitatory cortical inhibition. However, these losses may be mitigated by regular engagement in physical exercise.
Collapse
Affiliation(s)
- Zvinka Z Zlatar
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093-0664, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Freitas C, Farzan F, Pascual-Leone A. Assessing brain plasticity across the lifespan with transcranial magnetic stimulation: why, how, and what is the ultimate goal? Front Neurosci 2013; 7:42. [PMID: 23565072 PMCID: PMC3613699 DOI: 10.3389/fnins.2013.00042] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 03/09/2013] [Indexed: 12/30/2022] Open
Abstract
Sustaining brain and cognitive function across the lifespan must be one of the main biomedical goals of the twenty-first century. We need to aim to prevent neuropsychiatric diseases and, thus, to identify and remediate brain and cognitive dysfunction before clinical symptoms manifest and disability develops. The brain undergoes a complex array of changes from developmental years into old age, putatively the underpinnings of changes in cognition and behavior throughout life. A functionally “normal” brain is a changing brain, a brain whose capacity and mechanisms of change are shifting appropriately from one time-point to another in a given individual's life. Therefore, assessing the mechanisms of brain plasticity across the lifespan is critical to gain insight into an individual's brain health. Indexing brain plasticity in humans is possible with transcranial magnetic stimulation (TMS), which, in combination with neuroimaging, provides a powerful tool for exploring local cortical and brain network plasticity. Here, we review investigations to date, summarize findings, and discuss some of the challenges that need to be solved to enhance the use of TMS measures of brain plasticity across all ages. Ultimately, TMS measures of plasticity can become the foundation for a brain health index (BHI) to enable objective correlates of an individual's brain health over time, assessment across diseases and disorders, and reliable evaluation of indicators of efficacy of future preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Catarina Freitas
- Department of Neurology, Division of Cognitive Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| | | | | |
Collapse
|