1
|
Utricular dysfunction in patients with orthostatic hypotension. Clin Auton Res 2022; 32:431-444. [PMID: 36074194 DOI: 10.1007/s10286-022-00890-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/22/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE To delineate the association between otolithic dysfunction and orthostatic hypotension (OH). METHODS We retrospectively reviewed the medical records of 382 patients who presented with orthostatic dizziness at a tertiary dizziness center between July 2017 and December 2021. Patients were included for analyses when they had completed ocular (oVEMP) and/or cervical vestibular-evoked myogenic potentials (cVEMP), and head-up tilt table test with a Finometer (n = 155). We compared the results between the patients with OH (n = 38) and those with NOI (normal head-up tilt table test despite orthostatic intolerance, n = 117). RESULTS Thirty-eight patients with OH were further categorized as either classic (n = 30), delayed (n = 7), or initial (n = 1) types. Multivariable logistic regression showed that OH was associated with high baseline systolic BP (p = 0.046), presence of heart failure (p = 0.016), and unilateral oVEMP abnormalities (p = 0.016). n1 latency of oVEMP were negatively correlated with the maximal changes of systolic blood pressure (BP) in 15 s ([Formula: see text]SBP15s, p = 0.013), 3 min ([Formula: see text]SBP3min, p = 0.005) and 10 min ([Formula: see text]SBP10min, p = 0.002). In contrast, the n1-p1 amplitude was positively correlated with [Formula: see text]SBP15s (p = 0.029). Meanwhile, p13 latency of cVEMP was negatively correlated with [Formula: see text]SBP10min (p = 0.018). CONCLUSIONS Our study provides evidence of utricular dysfunction related to OH.
Collapse
|
2
|
Rice D, Martinelli GP, Jiang W, Holstein GR, Rajguru SM. Pulsed Infrared Stimulation of Vertical Semicircular Canals Evokes Cardiovascular Changes in the Rat. Front Neurol 2021; 12:680044. [PMID: 34122320 PMCID: PMC8193737 DOI: 10.3389/fneur.2021.680044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022] Open
Abstract
A variety of stimuli activating vestibular end organs, including sinusoidal galvanic vestibular stimulation, whole body rotation and tilt, and head flexion have been shown to evoke significant changes in blood pressure (BP) and heart rate (HR). While a role for the vertical semicircular canals in altering autonomic activity has been hypothesized, studies to-date attribute the evoked BP and HR responses to the otolith organs. The present study determined whether unilateral activation of the posterior (PC) or anterior (AC) semicircular canal is sufficient to elicit changes in BP and/or HR. The study employed frequency-modulated pulsed infrared radiation (IR: 1,863 nm) directed via optical fibers to PC or AC of adult male Long-Evans rats. BP and HR changes were detected using a small-animal single pressure telemetry device implanted in the femoral artery. Eye movements evoked during IR of the vestibular endorgans were used to confirm the stimulation site. We found that sinusoidal IR delivered to either PC or AC elicited a rapid decrease in BP and HR followed by a stimulation frequency-matched modulation. The magnitude of the initial decrements in HR and BP did not correlate with the energy of the suprathreshold stimulus. This response pattern was consistent across multiple trials within an experimental session, replicable, and in most animals showed no evidence of habituation or an additive effect. Frequency modulated electrical current delivered to the PC and IR stimulation of the AC, caused decrements in HR and BP that resembled those evoked by IR of the PC. Frequency domain heart rate variability assessment revealed that, in most subjects, IR stimulation increased the low frequency (LF) component and decreased the high frequency (HF) component, resulting in an increase in the LF/HF ratio. This ratio estimates the relative contributions of sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) activities. An injection of atropine, a muscarinic cholinergic receptor antagonist, diminished the IR evoked changes in HR, while the non-selective beta blocker propranolol eliminated changes in both HR and BP. This study provides direct evidence that activation of a single vertical semicircular canal is sufficient to activate and modulate central pathways that control HR and BP.
Collapse
Affiliation(s)
- Darrian Rice
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Giorgio P Martinelli
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Weitao Jiang
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Suhrud M Rajguru
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States.,Department of Otolaryngology, University of Miami, Miami, FL, United States
| |
Collapse
|
3
|
Foster M, Singh N, Kwok K, Macefield VG. Vestibular modulation of skin sympathetic nerve activity in sopite syndrome induced by low-frequency sinusoidal motion. J Neurophysiol 2020; 124:1551-1559. [PMID: 32965160 DOI: 10.1152/jn.00177.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sopite syndrome, centered around the drowsiness, lethargy, and irritability associated with motion sickness, can be induced by exposure to low-frequency motion. It is known that the vestibular apparatus plays an important role in the pathogenesis of motion sickness, which features several autonomic responses, and we have previously documented increased vestibular modulation of skin sympathetic nerve activity (SSNA) and an increase in skin blood flow associated with nausea. Here, we assessed whether imperceptibly slow sinusoidal motion, sufficient to induce sopite syndrome but not nausea, also modulates SSNA and skin blood flow. Participants were seated upright and exposed to a randomized set of sinusoidal linear accelerations, ranging from 0.03 Hz at 0.5 mG to 0.2 Hz at 5 mG, via a motorized platform. At all frequencies vestibular modulation was greater than the cardiac modulation of SSNA, but cardiac modulation and skin blood flow were both significantly lower during the motion than at baseline. We conclude that sopite syndrome is associated with a marked modulation of sympathetic outflow to the skin and cutaneous vasoconstriction.NEW & NOTEWORTHY Little is known about the autonomic consequences of sopite syndrome-the drowsiness that can be induced by low-amplitude cyclic motion. We recorded skin sympathetic nerve activity (SSNA) in seated participants exposed to slow sinusoidal linear acceleration (0.03-0.2 Hz), which preferentially activates hair cells in the utricular part of the otolithic organs, at amplitudes that generated no sensations of motion. At all frequencies, there was a clear vestibular modulation of SSNA and cutaneous vasoconstriction.
Collapse
Affiliation(s)
- Monique Foster
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
| | - Natasha Singh
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
| | - Kenny Kwok
- School of Civil Engineering, University of Sydney, Sydney, New South Wales, Australia
| | - Vaughan G Macefield
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Random-amplitude sinusoidal linear acceleration causes greater vestibular modulation of skin sympathetic nerve activity than constant-amplitude acceleration. Exp Brain Res 2018; 236:2619-2626. [PMID: 29968178 DOI: 10.1007/s00221-018-5323-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/28/2018] [Indexed: 01/30/2023]
Abstract
We tested the hypothesis that random variations in the magnitude of sinusoidal linear acceleration cause greater modulation of skin sympathetic nerve activity (SSNA), but not muscle sympathetic nerve activity (MSNA), than sinusoidal stimuli of the same frequency but constant amplitude. Subjects (n = 22) were seated in a sealed room mounted on a linear motor that could deliver peak sinusoidal accelerations of 30 mG in the antero-posterior direction. Subjects sat on a padded chair with their neck and head supported vertically, thereby minimizing somatosensory cues, facing the direction of motion in the anterior direction. Each block of sinusoidal motion was delivered at 0.2 Hz, either with a constant-amplitude (root mean square 14 mG) or randomly fluctuating amplitudes of the same mean amplitude. MSNA (n = 12) and SSNA (n = 10) were recorded via tungsten microelectrodes inserted into muscle or cutaneous fascicles of the common peroneal nerve. Cross-correlation analysis was used to measure the magnitude of vestibular modulation. The modulation index for SSNA was significantly higher during delivery of random vs constant-amplitude acceleration (31.4 ± 1.9 vs 24.5 ± 2.5%), but there was no significant difference in the modulation indices for MSNA (28.8 ± 2.9 vs 33.4 ± 4.1%). We conclude that the pattern of vestibular stimulation affects the magnitude of modulation of sympathetic outflow to skin but not to muscle. Presumably, this is related to the subperceptual development of nausea, which is known to be associated with greater vestibular modulation of SSNA but not MSNA.
Collapse
|
5
|
Bolton PS, Hammam E, Macefield VG. Neck movement but not neck position modulates skin sympathetic nerve activity supplying the lower limbs of humans. J Neurophysiol 2018; 119:1283-1290. [PMID: 29357457 DOI: 10.1152/jn.00043.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously showed that dynamic, but not static, neck displacement modulates muscle sympathetic nerve activity (MSNA) to lower limbs of humans. However, it is not known whether dynamic neck displacement modulates skin sympathetic nerve activity (SSNA). Tungsten microelectrodes inserted into the common peroneal nerve were used to record SSNA in 5 female and 4 male subjects lying supine on a table that fixed their head in space but allowed trapezoidal ramp (8.1 ± 1.2°/s) and hold (17.5° for 53 s) or sinusoidal (35° peak to peak at 0.33-0.46 Hz) horizontal displacement of the body about the head. SSNA recordings were made before, during, and after trapezoidal and sinusoidal displacements of the body. Spike frequency analysis of trapezoidal displacements and cross-correlation analysis during sinusoidal displacements revealed that SSNA was not changed by trapezoid body-only displacement but was cyclically modulated during sinusoidal angular displacements (median, 95% CI: 27.9%, 19.6-48.0%). The magnitude of this modulation was not statistically ( P > 0.05) different from that of cardiac and respiratory modulation at rest (47.1%, 18.7-56.3% and 48.6%, 28.4-59.3%, respectively) or during sinusoidal displacement (10.3%, 6.2-32.1% and 26.9%, 13.6-43.3%, respectively). Respiratory frequency was entrained above its resting rate (0.26 Hz, 0.2-0.29 Hz) during sinusoidal neck displacement; there was no significant difference ( P > 0.05) between respiratory frequency (0.38 Hz, 0.25-0.49 Hz) and sinusoidal displacement frequency (0.39 Hz, 0.35-0.42 Hz). This study provides evidence that SSNA is modulated during neck movement, raising the possibility that neck mechanoreceptors may contribute to the cutaneous vasoconstriction and sweat release associated with motion sickness. NEW & NOTEWORTHY This study demonstrates that dynamic, but not static, stretching of the neck modulates skin sympathetic nerve activity in the lower limbs.
Collapse
Affiliation(s)
- Philip S Bolton
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, Callaghan, Australia
| | - Elie Hammam
- School of Medicine, Western Sydney University , Sydney , Australia
| | - Vaughan G Macefield
- School of Medicine, Western Sydney University , Sydney , Australia.,Neuroscience Research Australia, Sydney , Australia
| |
Collapse
|
6
|
Hammam E, Macefield VG. Vestibular Modulation of Sympathetic Nerve Activity to Muscle and Skin in Humans. Front Neurol 2017; 8:334. [PMID: 28798718 PMCID: PMC5526846 DOI: 10.3389/fneur.2017.00334] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 06/26/2017] [Indexed: 12/19/2022] Open
Abstract
We review the existence of vestibulosympathetic reflexes in humans. While several methods to activate the human vestibular apparatus have been used, galvanic vestibular stimulation (GVS) is a means of selectively modulating vestibular afferent activity via electrodes over the mastoid processes, causing robust vestibular illusions of side-to-side movement. Sinusoidal GVS (sGVS) causes partial entrainment of sympathetic outflow to muscle and skin. Modulation of muscle sympathetic nerve activity (MSNA) from vestibular inputs competes with baroreceptor inputs, with stronger temporal coupling to the vestibular stimulus being observed at frequencies remote from the cardiac frequency; “super entrainment” was observed in some individuals. Low-frequency (<0.2 Hz) sGVS revealed two peaks of modulation per cycle, with bilateral recordings of MSNA or skin sympathetic nerve activity, providing evidence of lateralization of sympathetic outflow during vestibular stimulation. However, it should be noted that GVS influences the firing of afferents from the entire vestibular apparatus, including the semicircular canals. To identify the specific source of vestibular input responsible for the generation of vestibulosympathetic reflexes, we used low-frequency (<0.2 Hz) sinusoidal linear acceleration of seated or supine subjects to, respectively, target the utricular or saccular components of the otoliths. While others had discounted the semicircular canals, we showed that the contributions of the utricle and saccule to the vestibular modulation of MSNA are very similar. Moreover, that modulation of MSNA occurs at accelerations well below levels at which subjects are able to perceive any motion indicates that, like vestibulospinal control of posture, the vestibular system contributes to the control of blood pressure through potent reflexes in humans.
Collapse
Affiliation(s)
- Elie Hammam
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Vaughan G Macefield
- School of Medicine, Western Sydney University, Sydney, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia
| |
Collapse
|
7
|
Bolton PS, Hammam E, Kwok K, Macefield VG. Skin Sympathetic Nerve Activity is Modulated during Slow Sinusoidal Linear Displacements in Supine Humans. Front Neurosci 2016; 10:39. [PMID: 26909019 PMCID: PMC4754441 DOI: 10.3389/fnins.2016.00039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/01/2016] [Indexed: 11/13/2022] Open
Abstract
Low-frequency sinusoidal linear acceleration (0.08 Hz, ±4 mG) modulates skin sympathetic nerve activity (SSNA) in seated subjects (head vertical), suggesting that activation of the utricle in the peripheral vestibular labyrinth modulates SSNA. The aim of the current study was to determine whether SSNA is also modulated by input from the saccule. Tungsten microelectrodes were inserted into the common peroneal nerve to record oligounitary SSNA in 8 subjects laying supine on a motorized platform with the head aligned with the longitudinal axis of the body. Slow sinusoidal (0.08 Hz, 100 cycles) linear acceleration-decelerations (peak ±4 mG) were applied rostrocaudally to predominately activate the saccules, or mediolaterally to predominately activate the utricles. Cross-correlation histograms were constructed between the negative-going sympathetic spikes and the positive peaks of the sinusoidal stimuli. Sinusoidal linear acceleration along the rostrocaudal axis or mediolateral axis both resulted in sinusoidal modulation of SSNA (Median, IQR 27.0, 22-33% and 24.8, 17-39%, respectively). This suggests that both otolith organs act on sympathetic outflow to skin and muscle in a similar manner during supine displacements.
Collapse
Affiliation(s)
- Philip S Bolton
- School of Biomedical Sciences and Pharmacy, University of NewcastleCallaghan, NSW, Australia; Hunter Medical Research InstituteCallaghan, NSW, Australia
| | - Elie Hammam
- School of Medicine, Western Sydney University Sydney, NSW, Australia
| | - Kenny Kwok
- Institute for Infrastructure Engineering, Western Sydney University Sydney, NSW, Australia
| | - Vaughan G Macefield
- School of Medicine, Western Sydney UniversitySydney, NSW, Australia; Neuroscience Research AustraliaSydney, NSW, Australia
| |
Collapse
|
8
|
Holstein GR, Friedrich VL, Martinelli GP. Projection neurons of the vestibulo-sympathetic reflex pathway. J Comp Neurol 2015; 522:2053-74. [PMID: 24323841 DOI: 10.1002/cne.23517] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/19/2013] [Accepted: 12/04/2013] [Indexed: 12/20/2022]
Abstract
Changes in head position and posture are detected by the vestibular system and are normally followed by rapid modifications in blood pressure. These compensatory adjustments, which allow humans to stand up without fainting, are mediated by integration of vestibular system pathways with blood pressure control centers in the ventrolateral medulla. Orthostatic hypotension can reflect altered activity of this neural circuitry. Vestibular sensory input to the vestibulo-sympathetic pathway terminates on cells in the vestibular nuclear complex, which in turn project to brainstem sites involved in the regulation of cardiovascular activity, including the rostral and caudal ventrolateral medullary regions (RVLM and CVLM, respectively). In the present study, sinusoidal galvanic vestibular stimulation was used to activate this pathway, and activated neurons were identified through detection of c-Fos protein. The retrograde tracer Fluoro-Gold was injected into the RVLM or CVLM of these animals, and immunofluorescence studies of vestibular neurons were conducted to visualize c-Fos protein and Fluoro-Gold concomitantly. We observed activated projection neurons of the vestibulo-sympathetic reflex pathway in the caudal half of the spinal, medial, and parvocellular medial vestibular nuclei. Approximately two-thirds of the cells were ipsilateral to Fluoro-Gold injection sites in both the RVLM and CVLM, and the remainder were contralateral. As a group, cells projecting to the RVLM were located slightly rostral to those with terminals in the CVLM. Individual activated projection neurons were multipolar, globular, or fusiform in shape. This study provides the first direct demonstration of the central vestibular neurons that mediate the vestibulo-sympathetic reflex.
Collapse
Affiliation(s)
- Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, 10029
| | | | | |
Collapse
|
9
|
Abstract
Evidence accumulated over 30 years, from experiments on animals and human subjects, has conclusively demonstrated that inputs from the vestibular otolith organs contribute to the control of blood pressure during movement and changes in posture. This review considers the effects of gravity on the body axis, and the consequences of postural changes on blood distribution in the body. It then separately considers findings collected in experiments on animals and human subjects demonstrating that the vestibular system regulates blood distribution in the body during movement. Vestibulosympathetic reflexes differ from responses triggered by unloading of cardiovascular receptors such as baroreceptors and cardiopulmonary receptors, as they can be elicited before a change in blood distribution occurs in the body. Dissimilarities in the expression of vestibulosympathetic reflexes in humans and animals are also described. In particular, there is evidence from experiments in animals, but not humans, that vestibulosympathetic reflexes are patterned, and differ between body regions. Results from neurophysiological and neuroanatomical studies in animals are discussed that identify the neurons that mediate vestibulosympathetic responses, which include cells in the caudal aspect of the vestibular nucleus complex, interneurons in the lateral medullary reticular formation, and bulbospinal neurons in the rostral ventrolateral medulla. Recent findings showing that cognition can modify the gain of vestibulosympathetic responses are also presented, and neural pathways that could mediate adaptive plasticity in the responses are proposed, including connections of the posterior cerebellar vermis with the vestibular nuclei and brainstem nuclei that regulate blood pressure.
Collapse
Affiliation(s)
- Bill J Yates
- Departments of Otolaryngology and Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
10
|
Hammam E, Bolton PS, Kwok K, Macefield VG. Vestibular modulation of muscle sympathetic nerve activity during sinusoidal linear acceleration in supine humans. Front Neurosci 2014; 8:316. [PMID: 25346657 PMCID: PMC4191191 DOI: 10.3389/fnins.2014.00316] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/18/2014] [Indexed: 12/18/2022] Open
Abstract
The utricle and saccular components of the vestibular apparatus preferentially detect linear displacements of the head in the horizontal and vertical planes, respectively. We previously showed that sinusoidal linear acceleration in the horizontal plane of seated humans causes a pronounced modulation of muscle sympathetic nerve activity (MSNA), supporting a significant role for the utricular component of the otolithic organs in the control of blood pressure. Here we tested the hypothesis that the saccule can also play a role in blood pressure regulation by modulating lower limb MSNA. Oligounitary MSNA was recorded via tungsten microelectrodes inserted into the common peroneal nerve in 12 subjects, laying supine on a motorized platform with the head aligned with the longitudinal axis of the body. Slow sinusoidal linear accelerations-decelerations (peak acceleration ±4 mG) were applied in the rostrocaudal axis (which predominantly stimulates the saccule) and in the mediolateral axis (which also engages the utricle) at 0.08 Hz. The modulation of MSNA in the rostrocaudal axis (29.4 ± 3.4%) was similar to that in the mediolateral axis (32.0 ± 3.9%), and comparable to that obtained by stimulation of the utricle alone in seated subjects with the head vertical. We conclude that both the saccular and utricular components of the otolithic organs play a role in the control of arterial pressure during postural challenges.
Collapse
Affiliation(s)
- Elie Hammam
- School of Medicine, University of Western Sydney Sydney, NSW, Australia
| | - Philip S Bolton
- School of Biomedical Sciences and Pharmacy, University of Newcastle Newcastle, NSW, Australia ; Hunter Medical Research Institute Newcastle, NSW, Australia
| | - Kenny Kwok
- Institute for Infrastructure Engineering, University of Western Sydney Sydney, NSW, Australia
| | - Vaughan G Macefield
- School of Medicine, University of Western Sydney Sydney, NSW, Australia ; Neuroscience Research Australia Sydney, NSW, Australia
| |
Collapse
|
11
|
Tanaka K, Ito Y, Ikeda M, Katafuchi T. RR interval variability during galvanic vestibular stimulation correlates with arterial pressure upon head-up tilt. Auton Neurosci 2014; 185:100-6. [PMID: 24783995 DOI: 10.1016/j.autneu.2014.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 02/19/2014] [Accepted: 04/04/2014] [Indexed: 02/07/2023]
Abstract
RR interval variability (RRIV) in the supine position without and with galvanic vestibular stimulation (GVS (off) and GVS (on), respectively), changes in mean arterial pressure (MAP) at the onset of 60° head-up tilt (HUT) during GVS (off), and their relationship were analyzed in 25 healthy young subjects. MAP decreased by less than 5mmHg or increased upon HUT in 12 subjects (UP), but MAP decreased by more than 5mmHg in 13 subjects (DOWN). Applying sinusoidal GVS of 2mA at a random frequency of 0.2 to 10.0Hz did not change the RR intervals or MAP. However, the high frequency component (HF) of RRIV increased in both UP and DOWN subjects. The increase in DOWN subjects was larger than that in UP subjects. The ratio of the low frequency component to HF (L/H) increased in UP subjects during GVS (on), but did not reach a significant level in DOWN subjects. The changes in the HF were significantly correlated with changes in MAP at the onset of HUT; i.e., the subjects with larger increases in the HF during GVS (on) showed larger decreases in MAP. Thus, GVS or vestibular input during HUT possibly activates the vagal nerves, and the dominance of excitation in sympathetic or vagal nerves during vestibular stimulation is important for controlling MAP at the onset of HUT.
Collapse
Affiliation(s)
- Kunihiko Tanaka
- Gifu University of Medical Science, Department of Radiological Technology, Seki, Gifu 501-3894, Japan.
| | - Yamato Ito
- Gifu University of Medical Science, Department of Radiological Technology, Seki, Gifu 501-3894, Japan
| | - Mayumi Ikeda
- Gifu University of Medical Science, Department of Radiological Technology, Seki, Gifu 501-3894, Japan
| | - Tetsuro Katafuchi
- Gifu University of Medical Science, Department of Radiological Technology, Seki, Gifu 501-3894, Japan
| |
Collapse
|
12
|
Vestibular modulation of muscle sympathetic nerve activity by the utricle during sub-perceptual sinusoidal linear acceleration in humans. Exp Brain Res 2014; 232:1379-88. [PMID: 24504198 DOI: 10.1007/s00221-014-3856-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/25/2014] [Indexed: 10/25/2022]
Abstract
We assessed the capacity for the vestibular utricle to modulate muscle sympathetic nerve activity (MSNA) during sinusoidal linear acceleration at amplitudes extending from imperceptible to clearly perceptible. Subjects (n = 16) were seated in a sealed room, eliminating visual cues, mounted on a linear motor that could deliver peak sinusoidal accelerations of 30 mG in the antero-posterior direction. Subjects sat on a padded chair with their neck and head supported vertically, thereby minimizing somatosensory cues, facing the direction of motion in the anterior direction. Each block of sinusoidal motion was applied at a time unknown to subjects and in a random order of amplitudes (1.25, 2.5, 5, 10, 20 and 30 mG), at a constant frequency of 0.2 Hz. MSNA was recorded via tungsten microelectrodes inserted into muscle fascicles of the common peroneal nerve. Subjects used a linear potentiometer aligned to the axis of motion to indicate any perceived movement, which was compared with the accelerometer signal of actual room movement. On average, 67% correct detection of movement did not occur until 6.5 mG, with correct knowledge of the direction of movement at ~10 mG. Cross-correlation analysis revealed potent sinusoidal modulation of MSNA even at accelerations subjects could not perceive (1.25-5 mG). The modulation index showed a positive linear increase with acceleration amplitude, such that the modulation was significantly higher (25.3 ± 3.7%) at 30 mG than at 1.25 mG (15.5 ± 1.2%). We conclude that selective activation of the vestibular utricle causes a pronounced modulation of MSNA, even at levels well below perceptual threshold, and provides further evidence in support of the importance of vestibulosympathetic reflexes in human cardiovascular control.
Collapse
|
13
|
Modulation of muscle sympathetic nerve activity by low-frequency physiological activation of the vestibular utricle in awake humans. Exp Brain Res 2013; 230:137-42. [PMID: 23852323 DOI: 10.1007/s00221-013-3637-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/28/2013] [Indexed: 01/25/2023]
Abstract
We recently showed that selective stimulation of one set of otolithic organs-those located in the utricle, sensitive to displacement in the horizontal axis-causes a marked entrainment of skin sympathetic nerve activity (SSNA). Here, we assessed whether muscle sympathetic nerve activity (MSNA) is similarly modulated. MSNA was recorded via tungsten microelectrodes inserted into cutaneous fascicles of the common peroneal nerve in 12 awake subjects, seated (head vertical, eyes closed) on a motorised platform. Slow sinusoidal accelerations-decelerations (±4 mG) were applied in the X (antero-posterior) or Y (medio-lateral) direction at 0.08 Hz. Cross-correlation analysis revealed partial entrainment of MSNA: vestibular modulation was 32 ± 3 % for displacements in the X-axis and 29 ± 3 % in the Y-axis; these were significantly smaller than those evoked in SSNA (97 ± 3 and 91 ± 5 %, respectively). For each sinusoidal cycle, there were two peaks of modulation-one associated with acceleration as the platform moved forward or to the side and one associated with acceleration in the opposite direction. We believe the two peaks reflect inertial displacement of the stereocilia within the utricle during sinusoidal acceleration, which evokes vestibulosympathetic reflexes that are expressed as vestibular modulation of MSNA as well as of SSNA. The smaller vestibular modulation of MSNA can be explained by the dominant modulation of MSNA by the arterial baroreceptors.
Collapse
|
14
|
Cohen B, Martinelli GP, Raphan T, Schaffner A, Xiang Y, Holstein GR, Yakushin SB. The vasovagal response of the rat: its relation to the vestibulosympathetic reflex and to Mayer waves. FASEB J 2013; 27:2564-72. [PMID: 23504712 PMCID: PMC3688754 DOI: 10.1096/fj.12-226381] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/04/2013] [Indexed: 12/15/2022]
Abstract
Vasovagal responses (VVRs) are characterized by transient drops in blood pressure (BP) and heart rate (HR) and increased amplitude of low-frequency oscillations in the Mayer wave frequency range. Typical VVRs were induced in anesthetized, male, Long-Evans rats by sinusoidal galvanic vestibular stimulation (sGVS). VVRs were also produced by single sinusoids that transiently increased BP and HR, by 70-90° nose-up tilts, and by 60° tilts of the gravitoinertial acceleration vector using translation while rotating (TWR). The average power of the BP signal in the Mayer wave range increased substantially when tilts were >70° (0.91 g), i.e., when linear accelerations in the x-z plane were ≥0.9-1.0 g. The standard deviations of the wavelet-filtered BP signals during tilt and TWR overlaid when they were normalized to 1 g. Thus, the amplitudes of the Mayer waves coded the magnitude of the linear acceleration ≥1 g acting on the head and body, and the average power in this frequency range was associated with the generation of VVRs. These data show that VVRs are a natural outcome of stimulation of the vestibulosympathetic reflex and are not a disease. The results also demonstrate the usefulness of the rat as a small animal model for studying human VVRs.
Collapse
Affiliation(s)
- Bernard Cohen
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, Brooklyn 10029-6574, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Cohen B, Yakushin SB, Holstein GR. What does galvanic vestibular stimulation actually activate: response. Front Neurol 2012; 3:148. [PMID: 23093948 PMCID: PMC3477639 DOI: 10.3389/fneur.2012.00148] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/01/2012] [Indexed: 01/20/2023] Open
Affiliation(s)
- Bernard Cohen
- Departments of Neurology, Mount Sinai School of Medicine New York, NY, USA
| | | | | |
Collapse
|
16
|
El Sayed K, Dawood T, Hammam E, Macefield VG. Evidence from bilateral recordings of sympathetic nerve activity for lateralisation of vestibular contributions to cardiovascular control. Exp Brain Res 2012; 221:427-36. [PMID: 22811217 DOI: 10.1007/s00221-012-3185-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 07/03/2012] [Indexed: 11/29/2022]
Abstract
Using low-frequency (0.08-0.18 Hz) sinusoidal galvanic vestibular stimulation (sGVS), we recently showed that two peaks of modulation of muscle sympathetic nerve activity (MSNA) and skin sympathetic nerve activity (SSNA) occurred for each cycle of stimulation: a large peak associated with the positive peak of the sinusoid (defined as the primary peak) and a smaller peak (defined as the secondary peak) related to the negative peak of the sinusoid. However, these recordings were only made from the left common peroneal nerve, so to investigate lateralisation of vestibulosympathetic reflexes, concurrent recordings were made from both sides of the body. Tungsten microelectrodes were inserted into muscle or cutaneous fascicles of the left and right common peroneal nerves in 17 healthy individuals. Bipolar binaural sinusoidal GVS (±2 mA, 100 cycles) was applied to the mastoid processes at 0.08 Hz. Cross-correlation analysis revealed that vestibular modulation of MSNA (10 bilateral recordings) and SSNA (6 bilateral recordings) on the left side was expressed as a primary peak related to the positive phase of the sinusoid and a secondary peak related to the negative phase of the sinusoid. Conversely, on the right side, the primary and secondary peaks were reversed: the secondary peak on the right coincided with the primary peak on the left and vice versa. Moreover, differences in pattern of outflow were apparent across sides. We believe the results support the conclusion that the left and right vestibular nuclei send both an ipsilateral and contralateral projection to the left and right medullary output nuclei from which MSNA and SSNA originate. This causes a "flip-flop" patterning between the two sympathetic outflows: when vestibular modulation of a burst is high on the left, it is low on the right, and when modulation is low on the left, it is high on the right.
Collapse
Affiliation(s)
- Khadigeh El Sayed
- School of Medicine, University of Western Sydney, Locked Bag 1797, Penrith, Sydney, NSW 2751, Australia
| | | | | | | |
Collapse
|