1
|
Wooten T, Sansevere KS, Siqueira S, McWilliams T, Peach S, Hussey EK, Brunyé T, Ward N. Evaluating the efficacy of cranial electrotherapy stimulation in mitigating anxiety-induced cognitive deficits. Int J Psychophysiol 2024; 202:112388. [PMID: 38944283 DOI: 10.1016/j.ijpsycho.2024.112388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Cranial electrotherapy stimulation (CES) is a form of non-invasive brain stimulation (NIBS) that has demonstrated potential to modulate neural activity in a manner that may be conducive to improved cognitive performance. While other forms of NIBS, such as transcranial direct current stimulation (tDCS), have received attention in the field as potential acute cognitive enhancers, CES remains relatively unexplored. The current study aimed to assess the efficacy of CES in improving acute cognitive performance under normal experimental conditions, as well as during sessions of induced situational anxiety (threat of shock or ToS). To study this question, participants completed a cognitive battery assessing processing speed and distinct aspects of executive functioning (working memory, inhibition, and task switching) in two separate sessions in which they received active and sham CES. Participants were randomly assigned to between subject groups of either situational anxiety (ToS) or control condition (no ToS). We predicted that active CES would improve performance on assessments of executive functioning (working memory, inhibition, and task switching) relative to sham CES under ToS. We did not find any significant effects of ToS, CES, or an interaction between ToS and CES for any measures of executive functioning or processing speed. These findings suggest that a single dose of CES does not enhance executive functioning or processing speed under normal conditions or during ToS.
Collapse
Affiliation(s)
- Thomas Wooten
- Department of Psychology, Tufts University, Medford, MA, United States.
| | - Kayla S Sansevere
- Department of Psychology, Tufts University, Medford, MA, United States
| | - Sara Siqueira
- Department of Psychology, Tufts University, Medford, MA, United States
| | - Thomas McWilliams
- Department of Psychology, Tufts University, Medford, MA, United States
| | - Sidney Peach
- Department of Psychology, Tufts University, Medford, MA, United States
| | | | - Tad Brunyé
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States; U.S. Army Combat Capabilities Development Command Soldier Center, Natick, MA, United States
| | - Nathan Ward
- Department of Psychology, Tufts University, Medford, MA, United States
| |
Collapse
|
2
|
Wu PJ, Huang CH, Lee SY, Chang AYW, Wang WC, Lin CCK. The distinct and potentially conflicting effects of tDCS and tRNS on brain connectivity, cortical inhibition, and visuospatial memory. Front Hum Neurosci 2024; 18:1415904. [PMID: 38873654 PMCID: PMC11169625 DOI: 10.3389/fnhum.2024.1415904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Noninvasive brain stimulation (NIBS) techniques, including transcranial direct current stimulation (tDCS) and transcranial random noise stimulation (tRNS), are emerging as promising tools for enhancing cognitive functions by modulating brain activity and enhancing cognitive functions. Despite their potential, the specific and combined effects of tDCS and tRNS on brain functions, especially regarding functional connectivity, cortical inhibition, and memory performance, are not well-understood. This study aims to explore the distinct and combined impacts of tDCS and tRNS on these neural and cognitive parameters. Using a within-subject design, ten participants underwent four stimulation conditions: sham, tDCS, tRNS, and combined tDCS + tRNS. We assessed the impact on resting-state functional connectivity, cortical inhibition via Cortical Silent Period (CSP), and visuospatial memory performance using the Corsi Block-tapping Test (CBT). Our results indicate that while tDCS appears to induce brain lateralization, tRNS has more generalized and dispersive effects. Interestingly, the combined application of tDCS and tRNS did not amplify these effects but rather suggested a non-synergistic interaction, possibly due to divergent mechanistic pathways, as observed across fMRI, CSP, and CBT measures. These findings illuminate the complex interplay between tDCS and tRNS, highlighting their non-additive effects when used concurrently and underscoring the necessity for further research to optimize their application for cognitive enhancement.
Collapse
Affiliation(s)
- Pei-Jung Wu
- Department of Neurology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Hsu Huang
- Department of Neurology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuenn-Yuh Lee
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Alice Y. W. Chang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chi Wang
- Department of Neurology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chou-Ching K. Lin
- Department of Neurology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
3
|
Fresnoza S, Ischebeck A. Probing Our Built-in Calculator: A Systematic Narrative Review of Noninvasive Brain Stimulation Studies on Arithmetic Operation-Related Brain Areas. eNeuro 2024; 11:ENEURO.0318-23.2024. [PMID: 38580452 PMCID: PMC10999731 DOI: 10.1523/eneuro.0318-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 04/07/2024] Open
Abstract
This systematic review presented a comprehensive survey of studies that applied transcranial magnetic stimulation and transcranial electrical stimulation to parietal and nonparietal areas to examine the neural basis of symbolic arithmetic processing. All findings were compiled with regard to the three assumptions of the triple-code model (TCM) of number processing. Thirty-seven eligible manuscripts were identified for review (33 with healthy participants and 4 with patients). Their results are broadly consistent with the first assumption of the TCM that intraparietal sulcus both hold a magnitude code and engage in operations requiring numerical manipulations such as subtraction. However, largely heterogeneous results conflicted with the second assumption of the TCM that the left angular gyrus subserves arithmetic fact retrieval, such as the retrieval of rote-learned multiplication results. Support is also limited for the third assumption of the TCM, namely, that the posterior superior parietal lobule engages in spatial operations on the mental number line. Furthermore, results from the stimulation of brain areas outside of those postulated by the TCM show that the bilateral supramarginal gyrus is involved in online calculation and retrieval, the left temporal cortex in retrieval, and the bilateral dorsolateral prefrontal cortex and cerebellum in online calculation of cognitively demanding arithmetic problems. The overall results indicate that multiple cortical areas subserve arithmetic skills.
Collapse
Affiliation(s)
- Shane Fresnoza
- Department of Psychology, University of Graz, 8010 Graz, Austria
- BioTechMed, 8010 Graz, Austria
| | - Anja Ischebeck
- Department of Psychology, University of Graz, 8010 Graz, Austria
- BioTechMed, 8010 Graz, Austria
| |
Collapse
|
4
|
Chen X, You J, Ma H, Zhou M, Huang C. Transcranial pulse stimulation in Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14372. [PMID: 37469252 PMCID: PMC10848065 DOI: 10.1111/cns.14372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Transcranial pulse stimulation (TPS) is a novel noninvasive ultrasonic brain stimulation that can increase cortical and corticospinal excitability, induce neuroplasticity, and increase functional connectivity within the brain. Several trials have confirmed its potential in treating Alzheimer's disease (AD). OBJECTIVE To investigate the effect and safety of TPS on AD. DESIGN A systematic review. METHODS PubMed, Embase via Ovid, Web of Science, Cochrane Library, CNKI (China National Knowledge Infrastructure), VIP (China Science and Technology Journal Database), and WanFang were searched from inception to April 1, 2023. Study selection, data extraction, and quality evaluation of the studies were conducted by two reviewers independently, with any controversy resolved by consensus. The Methodological Index for Nonrandomized Studies was used to assess the risk of bias. RESULTS Five studies were included in this review, with a total of 99 patients with AD. For cognitive performance, TPS significantly improved the scores of the CERAD (Consortium to Establish a Registry for Alzheimer's Disease) test battery, Alzheimer's Disease Assessment Scale (cognitive), Montreal Cognitive Assessment, and Mini-Mental Status Examination. For depressive symptoms, TPS significantly reduced the scores of the Alzheimer's Disease Assessment Scale (affective), Geriatric Depression Score, and Beck Depression Inventory. By functional magnetic resonance imaging, studies have shown that TPS improved cognitive performance in AD patients by increasing functional connectivity in the hippocampus, parahippocampal cortex, precuneus, and parietal cortex, and activating cortical activity in the bilateral hippocampus. TPS alleviated depressive symptoms in AD patients by decreasing functional connectivity between the ventromedial network (left frontal orbital cortex) and the salience network (right anterior insula). Adverse events in this review, including headache, worsening mood, jaw pain, nausea, and drowsiness, were reversible and lasted no longer than 1 day. No serious adverse events or complications were observed. CONCLUSIONS TPS is promising in improving cognitive performance and reducing depressive symptoms in patients with AD. TPS may be a safe adjunct therapy in the treatment of AD. However, these findings lacked a sham control and were limited by the small sample size of the included studies. Further research may be needed to better explore the potential of TPS. PATIENT AND PUBLIC INVOLVEMENT Patients and the public were not involved in this study.
Collapse
Affiliation(s)
- Xinxin Chen
- Department of Rehabilitation MedicineWest China HospitalSichuan UniversityChengduSichuanChina
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
- School of Rehabilitation SciencesWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Jiuhong You
- Department of Rehabilitation MedicineWest China HospitalSichuan UniversityChengduSichuanChina
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
- School of Rehabilitation SciencesWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Hui Ma
- Department of Rehabilitation MedicineWest China HospitalSichuan UniversityChengduSichuanChina
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
- School of Rehabilitation SciencesWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Mei Zhou
- Department of Rehabilitation MedicineWest China HospitalSichuan UniversityChengduSichuanChina
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
- School of Rehabilitation SciencesWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Cheng Huang
- Department of Rehabilitation MedicineWest China HospitalSichuan UniversityChengduSichuanChina
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
5
|
Salm DC, Horewicz VV, Tanaka F, Ferreira JK, de Oliveira BH, Maio JMB, Donatello NN, Ludtke DD, Mazzardo-Martins L, Dutra AR, Mack JM, de C H Kunzler D, Cargnin-Ferreira E, Salgado ASI, Bittencourt EB, Bianco G, Piovezan AP, Bobinski F, Moré AOO, Martins DF. Electrical Stimulation of the Auricular Branch Vagus Nerve Using Random and Alternating Frequencies Triggers a Rapid Onset and Pronounced Antihyperalgesia via Peripheral Annexin A1-Formyl Peptide Receptor 2/ALX Pathway in a Mouse Model of Persistent Inflammatory Pain. Mol Neurobiol 2023; 60:2889-2909. [PMID: 36745336 DOI: 10.1007/s12035-023-03237-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023]
Abstract
This study evaluated the antihyperalgesic and anti-inflammatory effects of percutaneous vagus nerve electrical stimulation (pVNS) by comparing the effects of alternating and random frequencies in an animal model of persistent inflammatory hyperalgesia. The model was induced by Freund's complete adjuvant (CFA) intraplantar (i.pl.) injection. Mice were treated with different protocols of time (10, 20, or 30 min), ear laterality (right, left or both), and frequency (alternating or random). Mechanical hyperalgesia was evaluated, and some groups received i.pl. WRW4 (FPR2/ALX antagonist) to determine the involvement. Edema, paw surface temperature, and spontaneous locomotor activity were evaluated. Interleukin-1β, IL-6, IL-10, and IL4 levels were verified by enzyme-linked immunosorbent assay. AnxA1, FPR2/ALX, neutrophil, M1 and M2 phenotype macrophage, and apoptotic cells markers were identified using western blotting. The antihyperalgesic effect pVNS with alternating and random frequency effect is depending on the type of frequency, time, and ear treated. The pVNS random frequency in the left ear for 10 min had a longer lasting antihyperalgesic effect, superior to classical stimulation using alternating frequency and the FPR2/ALX receptor was involved in this effect. There was a reduction in the levels of pro-inflammatory cytokines and an increase in the immunocontent of AnxA1 and CD86 in mice paw. pVNS with a random frequency in the left ear for 10 min showed to be optimal for inducing an antihyperalgesic effect. Thus, the random frequency was more effective than the alternating frequency. Therefore, pVNS may be an important adjunctive treatment for persistent inflammatory pain.
Collapse
Affiliation(s)
- Daiana C Salm
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Verônica V Horewicz
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Fernanda Tanaka
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Júlia K Ferreira
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Bruna H de Oliveira
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Julia Maria Batista Maio
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Nathalia N Donatello
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daniela D Ludtke
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Leidiane Mazzardo-Martins
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Aline R Dutra
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Josiel M Mack
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Deborah de C H Kunzler
- Department of Physiotherapy, State University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | | | | | - Gianluca Bianco
- Research Laboratory of Posturology and Neuromodulation RELPON, Department of Human Neuroscience, Sapienza University, Rome, Italy
- Istituto Di Formazione in Agopuntura E Neuromodulazione IFAN, Rome, Italy
| | - Anna Paula Piovezan
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Ari O O Moré
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Integrative Medicine and Acupuncture Division, University Hospital, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daniel F Martins
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil.
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil.
| |
Collapse
|
6
|
Kanatome A, Takara T, Umeda S, Ano Y. Effects of matured hop bitter acids on heart rate variability and cognitive performance: A randomized placebo-controlled crossover trial. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
7
|
Sansevere KS, Wooten T, McWilliams T, Peach S, Hussey EK, Brunyé TT, Ward N. Self-reported Outcome Expectations of Non-invasive Brain Stimulation Are Malleable: a Registered Report that Replicates and Extends Rabipour et al. (2017). JOURNAL OF COGNITIVE ENHANCEMENT 2022. [DOI: 10.1007/s41465-022-00250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Wu Q, Fang G, Zhao J, Liu J. Effect of Transcranial Pulsed Current Stimulation on Fatigue Delay after Medium-Intensity Training. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127042. [PMID: 35742289 PMCID: PMC9222574 DOI: 10.3390/ijerph19127042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to investigate the effect of transcranial pulsed current stimulation (tPCS) on fatigue delay after medium-intensity training. Materials and Methods: Ninety healthy college athletes were randomly divided into an experimental group (n = 45) and control group (n = 45). The experimental group received medium-intensity training for a week. After each training, the experimental group received true stimulation of tPCS (continuous 15 min 1.5 mA current intensity stimulation). The control group received sham stimulation. The physiological and biochemical indicators of participants were tested before and after the experiment, and finally 30 participants in each group were included for data analysis. Results: In the experimental group, creatine kinase (CK), cortisol (C), time-domain heart rate variability indices root mean square of the successive differences (RMSSD), standard deviation of normal R-R intervals (SDNN), and frequency domain indicator low frequency (LF) all increased slowly after the intervention. Among these, CK, C, and SDNN values were significantly lower than those in the control group (p < 0.05). Testosterone (T), T/C, and heart rate variability frequency domain indicator high frequency (HF) in the experimental group decreased slowly after the intervention, and the HF value was significantly lower than that in the control group (p < 0.05). The changes in all of the indicators in the experimental group were smaller than those in the control group. Conclusion: The application of tPCS after medium-intensity training enhanced the adaptability to training and had a significant effect on the maintenance of physiological state. The application of tPCS can significantly promote the recovery of autonomic nervous system function, enhance the regulation of parasympathetic nerves, and delay the occurrence of fatigue.
Collapse
Affiliation(s)
- Qingchang Wu
- College of Sports Science, Nantong University, Nantong 226019, China;
| | - Guoliang Fang
- China Institute of Sport Science, Beijing 100061, China; (G.F.); (J.Z.)
| | - Jiexiu Zhao
- China Institute of Sport Science, Beijing 100061, China; (G.F.); (J.Z.)
| | - Jian Liu
- College of Sports Science, Nantong University, Nantong 226019, China;
- Correspondence:
| |
Collapse
|
9
|
Study on the Effect of Different Transcranial Pulse Current Stimulation Intervention Programs for Eliminating Physical Fatigue. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have reported the effect of transcranial pulsed current stimulation (tPCS) on eliminating cognitive fatigue, but there is little research on optimizing the intervention program of tPCS. The purpose of this study was to explore the effect of different tPCS intervention programs on the elimination of physical fatigue in college athletes. Accordingly, 40 healthy college athletes were randomly divided into two groups of 20, denoted as A and B. Both groups exercised on treadmills. There were 15 subjects in group A who met the criteria of moderate physical fatigue, and 15 subjects in group B who met the criteria of severe physical fatigue. The subjects in each group were intervened with five different intervention programs of tPCS (intervention programs I, II, III, IV and V). The heart rate variability (HRV) and concentrations of oxygenated hemoglobin (HbO2) were measured before and after each intervention to judge the elimination effects of different intervention programs on different degrees of physical fatigue; the measurement indicators of the HRV include RMSSD, SDNN, HF and LF. The results indicated that tPCS intervention can eliminate both moderate and severe physical fatigue. Programs II, III, and IV had a significant effect on eliminating the moderate physical fatigue of athletes (p < 0.05), among which program II, with a stimulation time of 30 min and a stimulation intensity of sensory intensity, had the best effect. Programs I, II, III, and IV all had significant effects on eliminating the severe physical fatigue of athletes (p < 0.05), among which program I, with a stimulation time of 30 min and a stimulation intensity of sensory intensity + 0.2 mA, had the best effect. We conclude that different tPCS intervention programs can have different effects on the elimination of physical fatigue. The effects of the five intervention programs on the elimination of physical fatigue in athletes are as follows: program II is most suitable for moderate physical fatigue, and program I is most suitable for severe physical fatigue.
Collapse
|
10
|
Barra A, Rosenfelder M, Mortaheb S, Carrière M, Martens G, Bodien YG, Morales-Quezada L, Bender A, Laureys S, Thibaut A, Fregni F. Transcranial Pulsed-Current Stimulation versus Transcranial Direct Current Stimulation in Patients with Disorders of Consciousness: A Pilot, Sham-Controlled Cross-Over Double-Blind Study. Brain Sci 2022; 12:429. [PMID: 35447961 PMCID: PMC9031379 DOI: 10.3390/brainsci12040429] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Transcranial direct-current stimulation (tDCS) over the prefrontal cortex can improve signs of consciousness in patients in a minimally conscious state. Transcranial pulsed-current stimulation (tPCS) over the mastoids can modulate brain activity and connectivity in healthy controls. This study investigated the feasibility of tPCS as a therapeutic tool in patients with disorders of consciousness (DoC) and compared its neurophysiological and behavioral effects with prefrontal tDCS. This pilot study was a randomized, double-blind sham-controlled clinical trial with three sessions: bi-mastoid tPCS, prefrontal tDCS, and sham. Electroencephalography (EEG) and behavioral assessments were collected before and after each stimulation session. Post minus pre differences were compared using Kruskal-Wallis and Wilcoxon signed-rank tests. Twelve patients with DoC were included in the study (eight females, four traumatic brain injury, 50.3 ± 14 y.o., 8.8 ± 10.5 months post-injury). We did not observe any side-effects following tPCS, nor tDCS, and confirmed their feasibility and safety. We did not find a significant effect of the stimulation on EEG nor behavioral outcomes for tPCS. However, consistent with prior findings, our exploratory analyses suggest that tDCS induces behavioral improvements and an increase in theta frontal functional connectivity.
Collapse
Affiliation(s)
- Alice Barra
- Coma Science Group, GIGA Consciousness-GIGA Research, University of Liège, 4000 Liège, Belgium; (A.B.); (S.M.); (M.C.); (G.M.); (S.L.)
- Centre du Cerveau, University Hospital of Liège, 4000 Liège, Belgium
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.G.B.); (L.M.-Q.)
| | - Martin Rosenfelder
- Department of Neurology, Therapiezentrum Burgau, Kapuzinerstrasse 34, 89331 Burgau, Germany; (M.R.); (A.B.)
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, 89081 Ulm, Germany
| | - Sepehr Mortaheb
- Coma Science Group, GIGA Consciousness-GIGA Research, University of Liège, 4000 Liège, Belgium; (A.B.); (S.M.); (M.C.); (G.M.); (S.L.)
- Physiology of Cognition Lab, GIGA-Consciousness, University of Liège, 4000 Liège, Belgium
| | - Manon Carrière
- Coma Science Group, GIGA Consciousness-GIGA Research, University of Liège, 4000 Liège, Belgium; (A.B.); (S.M.); (M.C.); (G.M.); (S.L.)
- Centre du Cerveau, University Hospital of Liège, 4000 Liège, Belgium
| | - Geraldine Martens
- Coma Science Group, GIGA Consciousness-GIGA Research, University of Liège, 4000 Liège, Belgium; (A.B.); (S.M.); (M.C.); (G.M.); (S.L.)
- Centre du Cerveau, University Hospital of Liège, 4000 Liège, Belgium
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.G.B.); (L.M.-Q.)
| | - Yelena G. Bodien
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.G.B.); (L.M.-Q.)
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Leon Morales-Quezada
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.G.B.); (L.M.-Q.)
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Andreas Bender
- Department of Neurology, Therapiezentrum Burgau, Kapuzinerstrasse 34, 89331 Burgau, Germany; (M.R.); (A.B.)
- Department of Neurology, Ludwig-Maximilians University (LMU), 81377 Munich, Germany
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness-GIGA Research, University of Liège, 4000 Liège, Belgium; (A.B.); (S.M.); (M.C.); (G.M.); (S.L.)
- Centre du Cerveau, University Hospital of Liège, 4000 Liège, Belgium
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre CIUSS, University Laval, Quebec, QC G1E1T2, Canada
| | - Aurore Thibaut
- Coma Science Group, GIGA Consciousness-GIGA Research, University of Liège, 4000 Liège, Belgium; (A.B.); (S.M.); (M.C.); (G.M.); (S.L.)
- Centre du Cerveau, University Hospital of Liège, 4000 Liège, Belgium
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Felipe Fregni
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA;
| |
Collapse
|
11
|
Lema A, Carvalho S, Fregni F, Gonçalves ÓF, Leite J. The effects of direct current stimulation and random noise stimulation on attention networks. Sci Rep 2021; 11:6201. [PMID: 33737661 PMCID: PMC7973424 DOI: 10.1038/s41598-021-85749-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/25/2021] [Indexed: 01/31/2023] Open
Abstract
Attention is a complex cognitive process that selects specific stimuli for further processing. Previous research suggested the existence of three attentional networks: alerting, orienting and executive. However, one important topic is how to enhance the efficiency of attentional networks. In this context, understanding how this system behaves under two different modulatory conditions, namely transcranial direct current stimulation (tDCS) and transcranial Random Noise Stimulation (tRNS), will provide important insights towards the understanding of the attention network system. Twenty-seven healthy students took part on a randomized single-blinded crossover study, testing the effects that involved three modalities of unilateral stimulation (tRNS, anodal tDCS, and sham) over the DLPFC, during the performance of the attention network test (ANT) in three different conditions: standard, speed and accuracy. Results showed that tRNS was able to increase attention during more complex situations, namely by increasing alerting and decreasing conflict effect in the executive network. Under the Speed condition, tRNS increased efficiency of the alerting network, as well as under the more demanding conflict network, tRNS overall increased the performance when comparing to sham. No statistical significant effects of tDCS were observed. These results are compatible with the attention requiring the synchronization of pre-existing networks, rather the reinforcement or creation of new pathways.
Collapse
Affiliation(s)
- Alberto Lema
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Sandra Carvalho
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- Department of Education and Psychology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital & Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Óscar F Gonçalves
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Jorge Leite
- I2P-Portucalense Institute for Psychology, Portucalense University, Porto, Portugal.
| |
Collapse
|
12
|
Khaleghi A, Pirzad Jahromi G, Zarafshan H, Mostafavi SA, Mohammadi MR. Effects of transcranial direct current stimulation of prefrontal cortex on risk-taking behavior. Psychiatry Clin Neurosci 2020; 74:455-465. [PMID: 32415800 DOI: 10.1111/pcn.13025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/26/2020] [Accepted: 05/10/2020] [Indexed: 01/23/2023]
Abstract
AIM Recent cognitive neuroscience research shows that noninvasive brain stimulation can modify a wide range of behaviors in healthy people. Such regulation effects on human behaviors provide new insights into the neurobiology of cognitive processes and establish causal brain-behavior relations. Here, we aimed to examine the effects of transcranial electrical stimulation (TES) of the prefrontal cortex on risk-taking. METHODS We performed a systematic search on the PubMed, Web of Science, and Cochrane databases with appropriate keywords for original studies reporting the use of TES to modulate risk-taking behavior in healthy individuals. Then, in the meta-analysis phase, a random-effects model was used to measure the pooled effect size (ES). RESULTS Twenty articles were evaluated as eligible studies, including 16 articles on transcranial direct current stimulation (tDCS), two on transcranial alternating current stimulation, one on transcranial pulsed current stimulation, and one on high-definition tDCS. A meta-analysis showed a pooled estimated standardized ES of -0.20 (95% confidence interval [CI], -0.39 to -0.01), which indicates a small ES for active tDCS over the dorsolateral prefrontal cortex (DLPFC) in comparison to sham stimulation (z = 2.31, P = 0.03) in terms of less risky behaviors. Subgroup analysis showed that there is no significant ES for bilateral DLPFC stimulation (d = -0.01; 95%CI, -0.28 to 0.26), but a significant near-medium ES for unilateral DLPFC stimulation (d = -0.41; 95%CI, -0.71 to -0.10). CONCLUSION Our findings support a significant impact of neuroregulation of the DLPFC on risk-taking behavior in healthy individuals. Unilateral noninvasive electrical stimulation of the DLPFC can result in a conservative risk-averse response style, probably through modulating plasticity of the relevant brain networks, including cortical and subcortical structures, as well as increasing subcortical dopaminergic activity.
Collapse
Affiliation(s)
- Ali Khaleghi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gila Pirzad Jahromi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hadi Zarafshan
- Psychiatry and Psychology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed-Ali Mostafavi
- Psychiatry and Psychology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Mohammadi
- Psychiatry and Psychology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Guarnieri R, Brancucci A, D’Anselmo A, Manippa V, Swinnen SP, Tecchio F, Mantini D. A computationally efficient method for the attenuation of alternating current stimulation artifacts in electroencephalographic recordings. J Neural Eng 2020; 17:046038. [DOI: 10.1088/1741-2552/aba99d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Carrière M, Barra A, Mortaheb S, Binda Fossati M, Martens G, Bodien Y, Morales-Quezada L, Fregni F, Giacino J, Laureys S, Thibaut A. P181 Neurophysiological effects and behavioral outcomes after tPCS and tDCS in a patient in minimally conscious state. Clin Neurophysiol 2020. [DOI: 10.1016/j.clinph.2019.12.292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Mansouri F, Shanbour A, Mazza F, Fettes P, Zariffa J, Downar J. Effect of Theta Transcranial Alternating Current Stimulation and Phase-Locked Transcranial Pulsed Current Stimulation on Learning and Cognitive Control. Front Neurosci 2019; 13:1181. [PMID: 31798397 PMCID: PMC6867974 DOI: 10.3389/fnins.2019.01181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/18/2019] [Indexed: 12/03/2022] Open
Abstract
Non-invasive brain stimulation (NIBS) is emerging as a robust treatment alternative for major depressive disorder, with a potential for achieving higher remission rates by providing targeted stimulation to underlying brain networks, such as the salience network (SN). Growing evidence suggests that these therapeutic effects are dependent on the frequency and phase synchrony between SN oscillations and stimulation as well as the task-specific state of the SN during stimulation. However, the development of phase-synchronized non-invasive stimulation has proved challenging until recently. Here, we use a phase-locked pulsed brain stimulation approach to study the effects of two NIBS methods: transcranial alternating current stimulation (tACS) versus phase-locked transcranial pulsed current stimulation (tPCS), on the SN during an SN activating task. 20 healthy volunteers participated in the study. Each volunteer partook in four sessions, receiving one stimulation type at random (theta-tACS, peak tPCS, trough tPCS or sham) while undergoing a learning game, followed by an unstimulated test based on learned material. Each session lasted approximately 1.5 h, with an interval of at least 2 days to allow for washout and to avoid cross-over effects. Our results showed no statistically significant effect of stimulation on the event related potential (ERP) recordings, resting electroencephalogram (EEG), and the performance of the volunteers. While stimulation effects were not apparent in this study, the nominal performance of the phase-locking algorithm offers a technical foundation for further research in determining effective stimulation paradigms and conditions. Specifically, future work should investigate stronger stimulation and true task-specific stimulation of SN nodes responsible for the task as well as their recording. If refined, NIBS could offer an effective, homebased treatment option.
Collapse
Affiliation(s)
- Farrokh Mansouri
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Alaa Shanbour
- Department of Psychiatry, Central Michigan University, Mount Pleasant, MI, United States.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Frank Mazza
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Peter Fettes
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - José Zariffa
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,KITE, Toronto Rehab, University Health Network, Toronto, ON, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada.,Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Jonathan Downar
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Mental Health, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
16
|
Ma Z, Du X, Wang F, Ding R, Li Y, Liu A, Wei L, Hou S, Chen F, Hu Q, Guo C, Jiao Q, Liu S, Fang B, Shen H. Cortical Plasticity Induced by Anodal Transcranial Pulsed Current Stimulation Investigated by Combining Two-Photon Imaging and Electrophysiological Recording. Front Cell Neurosci 2019; 13:400. [PMID: 31555097 PMCID: PMC6727068 DOI: 10.3389/fncel.2019.00400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/19/2019] [Indexed: 11/13/2022] Open
Abstract
Anodal-transcranial pulsed current stimulation (a-tPCS) has been used in human studies to modulate cortical excitability or improve behavioral performance in recent years. Multiple studies show crucial roles of astrocytes in cortical plasticity. The calcium activity in astrocytes could regulate synaptic transmission and synaptic plasticity. Whether the astrocytic activity is involved in a-tPCS-induced cortical plasticity is presently unknown. The purpose of this study is to investigate the calcium responses in neurons and astrocytes evoked by a-tPCS with different current intensities, and thereby provides some indication of the mechanisms underlying a-tPCS-induced cortical plasticity. Two-photon calcium imaging was used to record the calcium responses of neurons and astrocytes in mouse somatosensory cortex. Local field potential (LFP) evoked by sensory stimulation was used to assess the effects of a-tPCS on plasticity. We found that long-duration a-tPCS with high-intensity current could evoke large-amplitude calcium responses in both neurons and astrocytes, whereas long-duration a-tPCS with low-intensity current evoked large-amplitude calcium responses only in astrocytes. The astrocytic Ca2+ elevations are driven by noradrenergic-dependent activation of the alpha-1 adrenergic receptors (A1ARs), while the intense Ca2+ responses of neurons are driven by action potentials. LFP recordings demonstrated that low-intensity a-tPCS led to enhancement of cortical excitability while high-intensity a-tPCS resulted in diminution of cortical excitability. The results provide some evidence that the enhancement of a-tPCS-induced cortical excitability might be partly associated with calcium elevation in astrocytes, whereas the diminution of a-tPCS-induced cortical excitability might be caused by excessive calcium activity in neurons. These findings indicate that the appropriate current intensity should be used in the application of a-tPCS.
Collapse
Affiliation(s)
- Zengguang Ma
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Xiaolang Du
- Department of Pharmacy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Feifei Wang
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Ran Ding
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuanyuan Li
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Aili Liu
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Liangpeng Wei
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Shaowei Hou
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Feng Chen
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Qi Hu
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Cunle Guo
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Qingyan Jiao
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Shujing Liu
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Bei Fang
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Hui Shen
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
17
|
Dresler M, Sandberg A, Bublitz C, Ohla K, Trenado C, Mroczko-Wąsowicz A, Kühn S, Repantis D. Hacking the Brain: Dimensions of Cognitive Enhancement. ACS Chem Neurosci 2019; 10:1137-1148. [PMID: 30550256 PMCID: PMC6429408 DOI: 10.1021/acschemneuro.8b00571] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
In an increasingly complex information society, demands for cognitive functioning are growing steadily. In recent years, numerous strategies to augment brain function have been proposed. Evidence for their efficacy (or lack thereof) and side effects has prompted discussions about ethical, societal, and medical implications. In the public debate, cognitive enhancement is often seen as a monolithic phenomenon. On a closer look, however, cognitive enhancement turns out to be a multifaceted concept: There is not one cognitive enhancer that augments brain function per se, but a great variety of interventions that can be clustered into biochemical, physical, and behavioral enhancement strategies. These cognitive enhancers differ in their mode of action, the cognitive domain they target, the time scale they work on, their availability and side effects, and how they differentially affect different groups of subjects. Here we disentangle the dimensions of cognitive enhancement, review prominent examples of cognitive enhancers that differ across these dimensions, and thereby provide a framework for both theoretical discussions and empirical research.
Collapse
Affiliation(s)
- Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour , Radboud University Medical Centre , Nijmegen 6525 EN , The Netherlands
| | - Anders Sandberg
- Future of Humanity Institute , Oxford University , Oxford OX1 1PT , United Kingdom
| | | | - Kathrin Ohla
- Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM3) , Forschungszentrum Jülich , Jülich 52428 , Germany
| | - Carlos Trenado
- Institute of Clinical Neuroscience and Medical Psychology , Heinrich Heine University Düsseldorf , Düsseldorf 40225 , Germany
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors , TU Dortmund , Dortmund 44139 , Germany
| | | | - Simone Kühn
- Max Planck Institute for Human Development , Berlin 14195 , Germany
- Department of Psychiatry and Psychotherapy , University Clinic Hamburg Eppendorf , Hamburg 20246 , Germany
| | - Dimitris Repantis
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin 12203 , Germany
| |
Collapse
|
18
|
Kohli S, Casson AJ. Removal of Gross Artifacts of Transcranial Alternating Current Stimulation in Simultaneous EEG Monitoring. SENSORS 2019; 19:s19010190. [PMID: 30621077 PMCID: PMC6338981 DOI: 10.3390/s19010190] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/08/2018] [Accepted: 01/02/2019] [Indexed: 01/24/2023]
Abstract
Transcranial electrical stimulation is a widely used non-invasive brain stimulation approach. To date, EEG has been used to evaluate the effect of transcranial Direct Current Stimulation (tDCS) and transcranial Alternating Current Stimulation (tACS), but most studies have been limited to exploring changes in EEG before and after stimulation due to the presence of stimulation artifacts in the EEG data. This paper presents two different algorithms for removing the gross tACS artifact from simultaneous EEG recordings. These give different trade-offs in removal performance, in the amount of data required, and in their suitability for closed loop systems. Superposition of Moving Averages and Adaptive Filtering techniques are investigated, with significant emphasis on verification. We present head phantom testing results for controlled analysis, together with on-person EEG recordings in the time domain, frequency domain, and Event Related Potential (ERP) domain. The results show that EEG during tACS can be recovered free of large scale stimulation artifacts. Previous studies have not quantified the performance of the tACS artifact removal procedures, instead focusing on the removal of second order artifacts such as respiration related oscillations. We focus on the unresolved challenge of removing the first order stimulation artifact, presented with a new multi-stage validation strategy.
Collapse
Affiliation(s)
- Siddharth Kohli
- School of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, UK.
| | - Alexander J Casson
- School of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
19
|
Mansouri F, Fettes P, Schulze L, Giacobbe P, Zariffa J, Downar J. A Real-Time Phase-Locking System for Non-invasive Brain Stimulation. Front Neurosci 2018; 12:877. [PMID: 30559641 PMCID: PMC6287008 DOI: 10.3389/fnins.2018.00877] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022] Open
Abstract
Non-invasive brain stimulation techniques are entering widespread use for the investigation and treatment of a range of neurological and neuropsychiatric disorders. However, most current techniques are ‘open-loop’, without feedback from target brain region activity; this limitation could contribute to heterogeneous effects seen for nominally ‘inhibitory’ and ‘excitatory’ protocols across individuals. More potent and consistent effects may ensue from closed-loop and, in particular, phase-locked brain stimulation. In this work, a closed-loop brain stimulation system is introduced that can analyze EEG data in real-time, provide a forecast of the phase of an underlying brain rhythm of interest, and control pulsed transcranial electromagnetic stimulation to deliver pulses at a specific phase of the target frequency band. The technique was implemented using readily available equipment such as a basic EEG system, a low-cost Arduino board and MATLAB scripts. The phase-locked brain stimulation method was tested in 5 healthy volunteers and its phase-locking performance evaluated at 0, 90, 180, and 270 degree phases in theta and alpha frequency bands. On average phase locking values of 0.55° ± 0.11° and 0.52° ± 0.14° and error angles of 11° ± 11° and 3.3° ± 18° were achieved for theta and alpha stimulation, respectively. Despite the low-cost hardware implementation, signal processing time generated a phase delay of only 3.8° for theta and 57° for alpha stimulation, both readily accommodated in the pulse trigger algorithm. This work lays the methodological steps for achieving phase-locked brain stimulation for brief-pulse transcranial electrical stimulation (tES) and repetitive transcranial magnetic stimulation (rTMS), facilitating further research on the effect of stimulation phase for these techniques.
Collapse
Affiliation(s)
- Farrokh Mansouri
- Institute of Biomaterial and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Peter Fettes
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Laura Schulze
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Peter Giacobbe
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Mental Health, University Health Network, Toronto, ON, Canada.,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Jose Zariffa
- Institute of Biomaterial and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Jonathan Downar
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Mental Health, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
20
|
Laborde S, Mosley E, Mertgen A. A unifying conceptual framework of factors associated to cardiac vagal control. Heliyon 2018; 4:e01002. [PMID: 30623126 PMCID: PMC6313821 DOI: 10.1016/j.heliyon.2018.e01002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/20/2018] [Accepted: 11/29/2018] [Indexed: 11/30/2022] Open
Abstract
Cardiac vagal control (CVC) reflects the activity of the vagus nerve regulating cardiac functioning. CVC can be inferred via heart rate variability measurement, and it has been positively associated to a broad range of cognitive, emotional, social, and health outcomes. It could then be considered as an indicator for effective self-regulation, and given this role, one should understand the factors increasing and decreasing CVC. The aim of this paper is to review the broad range of factors influencing CVC, and to provide a unifying conceptual framework to integrate comprehensively those factors. The structure of the unifying conceptual framework is based on the theory of ecological rationality, while its functional aspects are based on the neurovisceral integration model. The structure of this framework distinguishes two broad areas of associations: person and environment, as this reflects adequately the role played by CVC regarding adaptation. The added value of this framework lies at different levels: theoretically, it allows integrating findings from a variety of scientific disciplines and refining the predictions of the neurovisceral integration model; methodologically, it helps identifying factors that increase and decrease CVC; and lastly at the applied level, it can play an important role for society regarding health policies and for the individual to empower one's flourishing.
Collapse
Affiliation(s)
- Sylvain Laborde
- German Sport University Cologne, Institute of Psychology, Department of Performance Psychology, Germany
- Normandie Université Caen, UFR STAPS, EA 4260, Germany
| | | | | |
Collapse
|
21
|
Patterns of brain oscillations across different electrode montages in transcranial pulsed current stimulation. Neuroreport 2018; 28:421-425. [PMID: 28394781 DOI: 10.1097/wnr.0000000000000772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transcranial pulsed current stimulation (tPCS) is a neuromodulatory technique that has been studied in the last decade. Several parameters have been assessed independently to optimize the effects. Our aim was to explore the effects of tPCS using different montages on cortical brain oscillations indexed by power spectrum and interhemispheric coherence in different electroencephalography frequency bands. Twenty healthy individuals were randomized to receive either active tPCS or sham intervention using the following bilateral montages: ear clip (conventional), ear hook, or mastoid placement. Electroencephalography was recorded before and after the electroencephalography intervention to assess tPCS-induced after effects. Our results showed that active tPCS with bimastoid montage increased significantly alpha absolute power (P=0.0166) and low alpha (P=0.0014) in the frontal region, as well as in the low alpha power spectrum in the central (P=0.0001) and parieto-occipital regions (P=0.0068) compared with the other montages. For interhemispheric coherence analysis, the Kruskal-Wallis test showed a significant main effect of group for theta (P=0.0012) in the frontal region, mainly for ear-clip montage. Our findings evidenced that tPCS delivered through different electrode montages exert different effects on cortical brain oscillations and thus have a different neural signature. We discuss the implications of these findings as well as potential clinical explorations of this technique.
Collapse
|
22
|
|
23
|
Carvalho S, Leite J, Fregni F. Transcranial Alternating Current Stimulation and Transcranial Random Noise Stimulation. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Dissanayaka T, Zoghi M, Farrell M, Egan GF, Jaberzadeh S. Does transcranial electrical stimulation enhance corticospinal excitability of the motor cortex in healthy individuals? A systematic review and meta-analysis. Eur J Neurosci 2017; 46:1968-1990. [DOI: 10.1111/ejn.13640] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Thusharika Dissanayaka
- Department of Physiotherapy; School of Primary Health Care; Faculty of Medicine; Nursing and Health Sciences; Monash University; Melbourne Victoria Australia
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport; School of Allied Health; La Trobe University; Bundoora Victoria Australia
| | - Michael Farrell
- Monash Biomedical Imaging; Monash University; Melbourne Victoria Australia
- Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences; Monash University; Melbourne Victoria Australia
| | - Gary F. Egan
- Monash Biomedical Imaging; Monash University; Melbourne Victoria Australia
| | - Shapour Jaberzadeh
- Department of Physiotherapy; School of Primary Health Care; Faculty of Medicine; Nursing and Health Sciences; Monash University; Melbourne Victoria Australia
| |
Collapse
|
25
|
Thibaut A, Russo C, Morales-Quezada L, Hurtado-Puerto A, Deitos A, Freedman S, Carvalho S, Fregni F. Neural signature of tDCS, tPCS and their combination: Comparing the effects on neural plasticity. Neurosci Lett 2017; 637:207-214. [PMID: 27765610 PMCID: PMC5541936 DOI: 10.1016/j.neulet.2016.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/05/2016] [Accepted: 10/17/2016] [Indexed: 12/19/2022]
Abstract
Transcranial pulsed current stimulation (tPCS) and transcranial direct current stimulation (tDCS) are two noninvasive neuromodulatory brain stimulation techniques whose effects on human brain and behavior have been studied individually. In the present study we aimed to quantify the effects of tDCS and tPCS, individually and in combination, on cortical activity, sensitivity and pain-related assessments in healthy individuals in order to understand their neurophysiological mechanisms and potential applications in clinical populations. A total of 48 healthy individuals participated in this randomized double blind sham controlled study. Participants were randomized to receive a single stimulation session of either: active or sham tPCS and active or sham tDCS. Quantitative electroencephalography (qEEG), sensitivity and pain assessments were used before and after each stimulation session. We observed that tPCS had a higher effect on power, as compared to tDCS, in several bandwidths on various cortical regions: the theta band in the parietal region (p=0.021), the alpha band in the temporal (p=0.009), parietal (p=0.0063), and occipital (p<0.0001) regions. We found that the combination of tPCS and tDCS significantly decreased power in the low beta bandwidth of the frontal (p=0.0006), central (p=0.0001), and occipital (p=0.0003) regions, when compared to sham stimulation. Additionally, tDCS significantly increased power in high beta over the temporal (p=0.0015) and parietal (p=0.0007) regions, as compared to sham. We found no effect on sensitivity or pain-related assessments. We concluded that tPCS and tDCS have different neurophysiological mechanisms, elicit distinct signatures, and that the combination of the two leads to no effect or a decrease on qEEG power. Further studies are required to examine the effects of these techniques on clinical populations in which EEG signatures have been found altered.
Collapse
Affiliation(s)
- Aurore Thibaut
- Spaulding-Labuschagne Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA; Coma Science Group, GIGA-Research, University and University Hospital of Liege, Liege, Belgium
| | - Cristina Russo
- Spaulding-Labuschagne Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA; Department of Psychology and Milan Center for Neuroscience-NeuroMi, University of Milano-Bicocca, Milano, Italy
| | - Leon Morales-Quezada
- Spaulding-Labuschagne Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Aura Hurtado-Puerto
- Laboratory for Neuropsychiatry and Neuromodulation, Transcranial Magnetic Stimulation Clinical Service, Department of Psychiatry, Massachusetts General Hospital, Boston, USA
| | - Alícia Deitos
- Spaulding-Labuschagne Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA; Post-graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratory of Pain and Neuromodulation at UFRGS, Porto Alegre, Brazil
| | - Steven Freedman
- Division of Translational Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sandra Carvalho
- Spaulding-Labuschagne Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA; Neuropsychophysiology Laboratory, CIPsi, School of Psychology (EPsi), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Felipe Fregni
- Spaulding-Labuschagne Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T, Mourdoukoutas AP, Kronberg G, Truong D, Boggio P, Brunoni AR, Charvet L, Fregni F, Fritsch B, Gillick B, Hamilton RH, Hampstead BM, Jankord R, Kirton A, Knotkova H, Liebetanz D, Liu A, Loo C, Nitsche MA, Reis J, Richardson JD, Rotenberg A, Turkeltaub PE, Woods AJ. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul 2016; 9:641-661. [PMID: 27372845 PMCID: PMC5007190 DOI: 10.1016/j.brs.2016.06.004] [Citation(s) in RCA: 870] [Impact Index Per Article: 96.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/10/2016] [Accepted: 06/12/2016] [Indexed: 01/13/2023] Open
Abstract
This review updates and consolidates evidence on the safety of transcranial Direct Current Stimulation (tDCS). Safety is here operationally defined by, and limited to, the absence of evidence for a Serious Adverse Effect, the criteria for which are rigorously defined. This review adopts an evidence-based approach, based on an aggregation of experience from human trials, taking care not to confuse speculation on potential hazards or lack of data to refute such speculation with evidence for risk. Safety data from animal tests for tissue damage are reviewed with systematic consideration of translation to humans. Arbitrary safety considerations are avoided. Computational models are used to relate dose to brain exposure in humans and animals. We review relevant dose-response curves and dose metrics (e.g. current, duration, current density, charge, charge density) for meaningful safety standards. Special consideration is given to theoretically vulnerable populations including children and the elderly, subjects with mood disorders, epilepsy, stroke, implants, and home users. Evidence from relevant animal models indicates that brain injury by Direct Current Stimulation (DCS) occurs at predicted brain current densities (6.3-13 A/m(2)) that are over an order of magnitude above those produced by conventional tDCS. To date, the use of conventional tDCS protocols in human trials (≤40 min, ≤4 milliamperes, ≤7.2 Coulombs) has not produced any reports of a Serious Adverse Effect or irreversible injury across over 33,200 sessions and 1000 subjects with repeated sessions. This includes a wide variety of subjects, including persons from potentially vulnerable populations.
Collapse
Affiliation(s)
- Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| | - Pnina Grossman
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Chris Thomas
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | | | - Jimmy Jiang
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Tatheer Adnan
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | | | - Greg Kronberg
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Dennis Truong
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Paulo Boggio
- Cognitive Neuroscience Laboratory and Developmental Disorders Program, Center for Health and Biological Sciences, Mackenzie Presbyterian University, Sao Paulo, Brazil
| | - André R Brunoni
- Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, Laboratory of Neurosciences (LIM-27), University of São Paulo, São Paulo, Brazil
| | - Leigh Charvet
- NYU MS Comprehensive Care Center, Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Felipe Fregni
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Brita Fritsch
- Department of Neurology, University Medical Center, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Germany
| | - Bernadette Gillick
- Department of Physical Medicine and Rehabilitation, University of Minnesota Medical School, Minneapolis, MN
| | - Roy H Hamilton
- Laboratory for Cognition and Neural Stimulation, University of Pennsylvania, Philadelphia, PA, USA; Center for Cognitive Neuroscience, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin M Hampstead
- Mental Health Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Ryan Jankord
- Applied Neuroscience, 711th Human Performance Wing, Air Force Research Laboratory, WPAFB, OH, USA
| | - Adam Kirton
- Departments of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Helena Knotkova
- MJHS Institute for Innovation in Palliative Care, New York, NY, USA; Department of Social and Family Medicine, Albert Einstein College of Medicine, The Bronx, NY, USA
| | - David Liebetanz
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Goettingen 37075, Germany
| | - Anli Liu
- NYU Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY, USA
| | - Colleen Loo
- Psychiatry, Black Dog Institute, Clinical Academic, St George Hospital, University of New South Wales, Sydney, Australia
| | - Michael A Nitsche
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Goettingen 37075, Germany; Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund, Dortmund, Germany; Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Janine Reis
- Department of Neurology, University Medical Center, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Germany
| | - Jessica D Richardson
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Department of Communication Sciences & Disorders, The University of South Carolina, Columbia, SC, USA; Department of Speech and Hearing Sciences, The University of New Mexico, Albuquerque, NM, USA
| | - Alexander Rotenberg
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA; Pediatric Neuromodulation Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - Peter E Turkeltaub
- Department of Neurology, Georgetown University, Washington, DC, USA; Research Division, MedStar National Rehabilitation Hospital, Washington, DC, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, Institute on Aging, Department of Aging and Geriatric Research, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
27
|
Vasquez A, Malavera A, Doruk D, Morales-Quezada L, Carvalho S, Leite J, Fregni F. Duration Dependent Effects of Transcranial Pulsed Current Stimulation (tPCS) Indexed by Electroencephalography. Neuromodulation 2016; 19:679-688. [PMID: 27400423 DOI: 10.1111/ner.12457] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 04/16/2016] [Accepted: 04/29/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To explore the duration of tPCS after effects given different durations of stimulation on power and interhemispheric coherence of the EEG frequency bands. Our hypothesis was that longer tPCS duration would induce a differential effect on the EEG analysis and a longer duration of after effects on the EEG frequency bands. MATERIALS AND METHODS We conducted a double blind, sham controlled study in which forty healthy subjects were randomized to receive a single session of either 10, 20, 30 min of active (2 mA, random frequency between 6 and 10 Hz, ear clip montage) or sham tPCS. EEG was recorded before and after the intervention to assess tPCS induced after effects. RESULTS We found that 10 and 20 min of active tPCS induced a significant increase in alpha (p = 0.004) and theta (p = 0.006) coherence in the frontal region as compared with the sham stimulation. No significant changes were found with 30 min of stimulation (p < 0.05). The Kaplan Meier analysis showed that 10 and 20 min of tPCS induced after effects that lasted 50 min. CONCLUSIONS These results evidence the nonlinear relationship between the stimulation duration and the tPCS after effects, suggesting the presence of homeostatic mechanisms.
Collapse
Affiliation(s)
- Alejandra Vasquez
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Alejandra Malavera
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Deniz Doruk
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Leon Morales-Quezada
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA.,Department of Physical Medicine and Rehabilitation, School of Health Sciences, De Montfort University, Leicester, UK.,Division of General Medicine and Primary Care, Beth Israel Deaconess Medical Center, Brookline, MA, USA
| | - Sandra Carvalho
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA.,Neuropsychophysiology Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Jorge Leite
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA.,Neuropsychophysiology Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Paneri B, Adair D, Thomas C, Khadka N, Patel V, Tyler WJ, Parra L, Bikson M. Tolerability of Repeated Application of Transcranial Electrical Stimulation with Limited Outputs to Healthy Subjects. Brain Stimul 2016; 9:740-754. [PMID: 27372844 DOI: 10.1016/j.brs.2016.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 05/20/2016] [Accepted: 05/22/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The safety and tolerability of limited output transcranial electrical stimulation (tES) in clinical populations support a non-significant risk designation. The tolerability of long-term use in a healthy population had remained untested. OBJECTIVE We tested the tolerability and compliance of two tES waveforms, transcranial direct current stimulation (tDCS) and modulated high frequency transcranial pulsed current stimulation (MHF-tPCS) compared to sham-tDCS, applied to healthy subjects for three to five days (17-20 minutes per day) per week for up to six weeks in a communal setting. MHF-tPCS consisted of asymmetric high-frequency pulses (7-11 kHz) having a peak amplitude of 10-20 mA peak, adjusted by subject, resulting in an average current of 5-7 mA. METHOD A total of 100 treatment blind healthy subjects were randomly assigned to one of three treatment groups: tDCS (n = 33), MHF-tPCS (n = 30), or sham-tDCS (n = 37). In order to test the role of waveform, electrode type and montage were fixed across tES and sham-tDCS arms: high-capacity self-adhering electrodes on the right lateral forehead and back of the neck. We conducted 1905 sessions (636 sham-tDCS, 623 tDCS, and 646 MHF-tPCS sessions) on study volunteers over a period of six weeks. RESULTS Common adverse events were primarily restricted to influences upon the skin and included skin tingling, itching, and mild burning sensations. The incidence of these events in the active tES treatment arms (MHF-tPCS, tDCS) was equivalent or significantly lower than their incidence in the sham-tDCS treatment arm. Other adverse events had a rarity (<5% incidence) that could not be significantly distinguished across the treatment groups. Some subjects were withdrawn from the study due to atypical headache (sham-tDCS n = 2, tDCS n = 2, and MHF-tPCS n = 3), atypical discomfort (sham-tDCS n = 0, tDCS n = 1, and MHF-tPCS n = 1), or atypical skin irritation (sham-tDCS n = 2, tDCS n = 8, and MHF-tPCS n = 1). The rate of compliance, elected sessions completed, for the MHF-tPCS group was significantly greater than the sham-tDCS group's compliance (p = 0.007). There were no serious adverse events in any treatment condition. CONCLUSION We conclude that repeated application of limited output tES across extended periods, limited to the hardware, electrodes, and protocols tested here, is well tolerated in healthy subjects, as previously observed in clinical populations.
Collapse
Affiliation(s)
- Bhaskar Paneri
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Ave., New York 10031, USA
| | - Devin Adair
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Ave., New York 10031, USA
| | - Chris Thomas
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Ave., New York 10031, USA
| | - Niranjan Khadka
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Ave., New York 10031, USA
| | - Vaishali Patel
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Ave., New York 10031, USA
| | - William J Tyler
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287 USA
| | - Lucas Parra
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Ave., New York 10031, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Ave., New York 10031, USA.
| |
Collapse
|
29
|
Optimal random frequency range in transcranial pulsed current stimulation indexed by quantitative electroencephalography. Neuroreport 2016; 26:747-52. [PMID: 26154494 DOI: 10.1097/wnr.0000000000000415] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Given the recent results provided by previous investigations on transcranial pulsed current stimulation (tPCS) demonstrating its modulatory effects on cortical connectivity; we aimed to explore the application of different random pulsed frequencies. The utility of tPCS as a neuromodulatory technique for cognition performance will come as additional frequency ranges are tested with the purpose to find optimal operational parameters for tPCS. This study was designed to analyze the effects of tPCS using the following random frequencies; 1-5, 6-10, and 11-15 Hz compared with sham on quantitative electroencephalographic changes in the spectral power and interhemispheric coherence of each electroencephalographic frequency band. This was a parallel, randomized, double-blinded, sham-controlled trial. Forty healthy individuals older than 18 years were eligible to participate. The main outcomes were differences in the spectral power analysis and interhemispheric coherence as measured by quantitative electroencephalography. Participants were randomly allocated to four groups of random frequency stimulation and received a single session of stimulation for 20 min with a current intensity of 2 mA delivered by bilateral periauricular electrode clips. We found that a random pulsed frequency between 6-10 Hz significantly increased the power and coherence in frontal and central areas for the alpha band compared with sham stimulation, while 11-15 Hz tPCS decreased the power for the alpha and theta bandwidth. Our findings corroborate the hypothesis that a random frequency ranging into the boundaries of 6-10 Hz induces changes in the naturally occurring alpha oscillatory activity, providing additional data for further studies with tPCS.
Collapse
|
30
|
Morales-Quezada L, Leite J, Carvalho S, Castillo-Saavedra L, Cosmo C, Fregni F. Behavioral effects of transcranial pulsed current stimulation (tPCS): Speed-accuracy tradeoff in attention switching task. Neurosci Res 2016; 109:48-53. [PMID: 26851768 DOI: 10.1016/j.neures.2016.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 11/19/2022]
Abstract
Transcranial pulsed current stimulation (tPCS) has been shown to increase inter-hemispheric coherence of brain oscillatory activity, mainly in fronto-temporal regions, leading to enhancement of functional connectivity across neural networks. The question is whether tPCS can modulate behavior significantly. Our aim was to identify the effects of tPCS on paired associative learning task (PALT) and attention switching task (AST), and to further categorize physiological autonomic responses by heart rate variability and electrodermal activity measurements before and after task performance. Thirty healthy volunteers were randomized to receive a single session of sham or active 2mA tPCS stimulation with a random frequency between 1 and 5Hz. We show that active tPCS significantly improved response time in the AST compared to sham stimulation, so that subjects who received active tPCS significantly exhibit decreased switching cost between repeat and switch trials. No differences were found in response accuracy on AST and PALT. No significant changes were observed in physiological parameters. Based on our results, we suggest that tPCS has a more pronounced effect on tasks that require the increase of functional connectivity across pre-existent neural circuitry, rather than on tasks that require the development of new learning circuits or the creation of new connections.
Collapse
Affiliation(s)
- Leon Morales-Quezada
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA; School of Health Sciences, De Montfort University, Leicester, UK
| | - Jorge Leite
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA; Neuropsychophysiology Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Sandra Carvalho
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA; Neuropsychophysiology Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Laura Castillo-Saavedra
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Camila Cosmo
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA; Post Graduate Program, Interactive Process of Organs and Systems, Federal University of Bahia, Salvador, Brazil
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Pérez C, Leite J, Carvalho S, Fregni F. Transcranial Electrical Stimulation (tES) for the Treatment of Neuropsychiatric Disorders Across Lifespan. EUROPEAN PSYCHOLOGIST 2016. [DOI: 10.1027/1016-9040/a000252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract. Transcranial electrical stimulation (tES) is a safe, painless, and inexpensive noninvasive brain stimulation (NIBS) technique. tES has been shown to reduce symptoms in a variety of neuropsychiatric conditions such as depression, schizophrenia, anxiety, autism, and craving. There are many factors that can influence the effects of tES, such as current intensity, duration, baseline level of activity, gender, and age. Age is a critical variable, since the human brain undergoes several anatomic and functional changes across the lifespan. Therefore, tES-induced effects may not be the same across the lifespan. In this review we summarize the effects of tES, including tDCS, tACS, and tRNS, on clinical outcomes in several neuropsychiatric conditions, using a framework in which studies are organized according to the age of subjects. The use of tES in neuropsychiatric disorders has yielded promising results with mild, if any, adverse effects. Most of the published studies with tES have been conducted with tDCS in adult population. Future studies should focus on interventions guided by surrogate outcomes of neuroplasticity. A better understanding of neuroplasticity across the lifespan will help optimize current tES stimulation parameters, especially for use with children and elderly populations.
Collapse
Affiliation(s)
- Carolina Pérez
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jorge Leite
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Neuropsychophysiology Laboratory, CIPsi, School of Psychology (EPsi), University of Minho, Braga, Portugal
| | - Sandra Carvalho
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Neuropsychophysiology Laboratory, CIPsi, School of Psychology (EPsi), University of Minho, Braga, Portugal
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|