1
|
Bogard AT, Hemmerle MR, Smith AC, Tan AQ. Enhanced motor learning and motor savings after acute intermittent hypoxia are associated with a reduction in metabolic cost. J Physiol 2024; 602:5879-5899. [PMID: 37983629 PMCID: PMC11102937 DOI: 10.1113/jp285425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
Breathing mild bouts of low oxygen air (i.e. acute intermittent hypoxia, AIH) has been shown to improve locomotor function in humans after a spinal cord injury. How AIH-induced gains in motor performance are achieved remains unclear. We examined the hypothesis that AIH augments motor learning and motor retention during a locomotor adaptation task. We further hypothesized that gains in motor learning and retention will be associated with reductions in net metabolic power, consistent with the acquisition of energetically favourable mechanics. Thirty healthy individuals were randomly allocated into either a control group or an AIH group. We utilized a split-belt treadmill to characterize adaptations to an unexpected belt speed perturbation of equal magnitude during an initial exposure and a second exposure. Adaptation was characterized by changes in spatiotemporal step asymmetry, anterior-posterior force asymmetry, and net metabolic power. While both groups adapted by reducing spatial asymmetry, only the AIH group achieved significant reductions in double support time asymmetry and propulsive force asymmetry during both the initial and the second exposures to the belt speed perturbation. Net metabolic power was also significantly lower in the AIH group, with significant reductions from the initial perturbation exposure to the second. These results provide the first evidence that AIH mediates improvements in both motor learning and retention. Further, our results suggest that reductions in net metabolic power continue to be optimized upon subsequent learning and are driven by more energetically favourable temporal coordination strategies. Our observation that AIH facilitates motor learning and retention can be leveraged to design rehabilitation interventions that promote functional recovery. KEY POINTS: Brief exposures to low oxygen air, known as acute intermittent hypoxia (AIH), improves locomotor function in humans after a spinal cord injury, but it remains unclear how gains in motor performance are achieved. In this study, we tested the hypothesis that AIH induces enhancements in motor learning and retention by quantifying changes in interlimb coordination, anterior-posterior force symmetry and metabolic cost during a locomotor adaptation task. We show the first evidence that AIH improves both motor learning and savings of newly learned temporal interlimb coordination strategies and force asymmetry compared to untreated individuals. We further demonstrate that AIH elicits greater reductions in metabolic cost during motor learning that continues to be optimized upon subsequent learning. Our findings suggest that AIH-induced gains in locomotor performance are facilitated by enhancements in motor learning and retention of more energetically favourable coordination strategies.
Collapse
Affiliation(s)
- Alysha T Bogard
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, CO, USA
| | - Makenna R Hemmerle
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, CO, USA
| | - Andrew C Smith
- Dept. of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Aurora, CO, USA
| | - Andrew Q Tan
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, CO, USA
- Center for Neuroscience, University of Colorado, Boulder, CO, USA
| |
Collapse
|
2
|
Carnwath TP, Demel SL, Prestigiacomo CJ. Genetics of ischemic stroke functional outcome. J Neurol 2024; 271:2345-2369. [PMID: 38502340 PMCID: PMC11055934 DOI: 10.1007/s00415-024-12263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/21/2024]
Abstract
Ischemic stroke, which accounts for 87% of cerebrovascular accidents, is responsible for massive global burden both in terms of economic cost and personal hardship. Many stroke survivors face long-term disability-a phenotype associated with an increasing number of genetic variants. While clinical variables such as stroke severity greatly impact recovery, genetic polymorphisms linked to functional outcome may offer physicians a unique opportunity to deliver personalized care based on their patient's genetic makeup, leading to improved outcomes. A comprehensive catalogue of the variants at play is required for such an approach. In this review, we compile and describe the polymorphisms associated with outcome scores such as modified Rankin Scale and Barthel Index. Our search identified 74 known genetic polymorphisms spread across 48 features associated with various poststroke disability metrics. The known variants span diverse biological systems and are related to inflammation, vascular homeostasis, growth factors, metabolism, the p53 regulatory pathway, and mitochondrial variation. Understanding how these variants influence functional outcome may be helpful in maximizing poststroke recovery.
Collapse
Affiliation(s)
- Troy P Carnwath
- University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Stacie L Demel
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Charles J Prestigiacomo
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| |
Collapse
|
3
|
Plotnik M, Arad E, Grinberg A, Salomon M, Bahat Y, Hassin-Baer S, Zeilig G. Differential gait adaptation patterns in Parkinson's disease - a split belt treadmill pilot study. BMC Neurol 2023; 23:279. [PMID: 37495943 PMCID: PMC10369736 DOI: 10.1186/s12883-023-03321-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 07/06/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Interventions using split belt treadmills (SBTM) aim to improve gait symmetry (GA) in Parkinson's disease (PD). Comparative effects in conjugated SBTM conditions were not studied systematically despite potentially affecting intervention outcomes. We compared gait adaptation effects instigated by SBTM walking with respect to the type (increased\decreased speed) and the side (more/less affected) of the manipulated belt in PD. METHODS Eight individuals with PD performed four trials of SBTM walking, each consisted of baseline tied belt configuration, followed by split belt setting - either WS or BS belt's speed increased or decreased by 50% from baseline, and final tied belt configuration. Based on the disease's motor symptoms, a 'worst' side (WS) and a 'best' side (BS) were defined for each participant. RESULTS SB initial change in GA was significant regardless of condition (p ≤ 0.02). This change was however more pronounced for BS-decrease compared with its matching condition WS-increase (p = 0.016). Similarly, the same was observed for WS-decrease compared to BS-increase (p = 0.013). Upon returning to tied belt condition, both BS-decrease and WS-increased resulted in a significant change in GA (p = 0.04). Upper limb asymmetry followed a similar trend of GA reversal, although non-significant. CONCLUSIONS Stronger effects on GA were obtained by decreasing the BS belt's speed of the best side, rather than increasing the speed of the worst side. Albeit a small sample size, which limits the generalisability of these results, we propose that future clinical studies would benefit from considering such methodological planning of SBTM intervention, for maximising of intervention outcomes. Larger samples may reveal arm swinging asymmetries alterations to match SBTM adaptation patterns. Finally, further research is warranted to study post-adaption effects in order to define optimal adaptation schemes to maximise the therapeutic effect of SBTM based interventions.
Collapse
Affiliation(s)
- Meir Plotnik
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Tel Hashomer, Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Evyatar Arad
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Tel Hashomer, Israel
| | - Adam Grinberg
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Tel Hashomer, Israel.
- Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden.
| | - Moran Salomon
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Tel Hashomer, Israel
| | - Yotam Bahat
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Tel Hashomer, Israel
| | - Sharon Hassin-Baer
- Movement Disorders Institute and Department of Neurology, Sheba Medical Center, Tel Hashomer, Israel
- Department of Neurology and Neurosurgery, Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Gabi Zeilig
- Department of Neurological Rehabilitation, Sheba Medical Center, Tel Hashomer, Israel
- Department of Physical and Rehabilitation Medicine, Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
- School of Health Professions, Ono Academic College, Kiryat Ono, Israel
| |
Collapse
|
4
|
Brinkerhoff SA, Sánchez N, Roper JA. Habitual exercise evokes fast and persistent adaptation during split-belt walking. PLoS One 2023; 18:e0286649. [PMID: 37267314 DOI: 10.1371/journal.pone.0286649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/19/2023] [Indexed: 06/04/2023] Open
Abstract
Changing movement patterns in response to environmental perturbations is a critical aspect of gait and is related to reducing the energetic cost of the movement. Exercise improves energetic capacity for submaximal exercise and may affect how people adapt movement to reach an energetic minimum. The purpose of this study was to determine whether self-reported exercise behavior influences gait adaptation in young adults. Young adults who met the optimal volume of exercise according to the Physical Activity Guidelines for Americans (MOVE; n = 19) and young adults who did not meet the optimal volume of exercise (notMOVE; n = 13) walked on a split-belt treadmill with one belt moving twice the speed of the other belt for 10 minutes. Step length asymmetry (SLA) and mechanical work done by each leg were measured. Nonlinear mixed effects models compared the time course of adaptation between MOVE and notMOVE, and t-tests compared net work at the end of adaptation between MOVE and notMOVE. Compared to notMOVE, MOVE had a faster initial response to the split belt treadmill, and continued to adapt over the duration of split-belt treadmill walking. Young adults who engage in sufficient amounts of exercise responded more quickly to the onset of a perturbation, and throughout the perturbation they continued to explore movement strategies, which might be related to reduction of energetic cost. Our findings provide insights into the multisystem positive effects of exercise, including walking adaptation.
Collapse
Affiliation(s)
- Sarah A Brinkerhoff
- School of Kinesiology, Auburn University, Auburn, Alabama, United States of America
| | - Natalia Sánchez
- Department of Physical Therapy, Chapman University, Irvine, California, United States of America
| | - Jaimie A Roper
- School of Kinesiology, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
5
|
Dresang HC, Harvey DY, Xie SX, Shah-Basak PP, DeLoretta L, Wurzman R, Parchure SY, Sacchetti D, Faseyitan O, Lohoff FW, Hamilton RH. Genetic and Neurophysiological Biomarkers of Neuroplasticity Inform Post-Stroke Language Recovery. Neurorehabil Neural Repair 2022; 36:371-380. [PMID: 35428413 PMCID: PMC9133188 DOI: 10.1177/15459683221096391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND There is high variability in post-stroke aphasia severity and predicting recovery remains imprecise. Standard prognostics do not include neurophysiological indicators or genetic biomarkers of neuroplasticity, which may be critical sources of variability. OBJECTIVE To evaluate whether a common polymorphism (Val66Met) in the gene for brain-derived neurotrophic factor (BDNF) contributes to variability in post-stroke aphasia, and to assess whether BDNF polymorphism interacts with neurophysiological indicators of neuroplasticity (cortical excitability and stimulation-induced neuroplasticity) to improve estimates of aphasia severity. METHODS Saliva samples and motor-evoked potentials (MEPs) were collected from participants with chronic aphasia subsequent to left-hemisphere stroke. MEPs were collected prior to continuous theta burst stimulation (cTBS; index for cortical excitability) and 10 minutes following cTBS (index for stimulation-induced neuroplasticity) to the right primary motor cortex. Analyses assessed the extent to which BDNF polymorphism interacted with cortical excitability and stimulation-induced neuroplasticity to predict aphasia severity beyond established predictors. RESULTS Val66Val carriers showed less aphasia severity than Val66Met carriers, after controlling for lesion volume and time post-stroke. Furthermore, Val66Val carriers showed expected effects of age on aphasia severity, and positive associations between severity and both cortical excitability and stimulation-induced neuroplasticity. In contrast, Val66Met carriers showed weaker effects of age and negative associations between cortical excitability, stimulation-induced neuroplasticity and aphasia severity. CONCLUSIONS Neurophysiological indicators and genetic biomarkers of neuroplasticity improved aphasia severity predictions. Furthermore, BDNF polymorphism interacted with cortical excitability and stimulation-induced neuroplasticity to improve predictions. These findings provide novel insights into mechanisms of variability in stroke recovery and may improve aphasia prognostics.
Collapse
Affiliation(s)
- Haley C. Dresang
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, 3710 Hamilton Walk, Philadelphia, PA 19104,Moss Rehabilitation Research Institute, Einstein Medical Center, 50 Township Line Road, Philadelphia, PA 19027,Corresponding author:, Department of Neurology, University of Pennsylvania, Perelman School of Medicine, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Denise Y. Harvey
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Sharon Xiangwen Xie
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Perelman School of Medicine, 607 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104
| | - Priyanka P. Shah-Basak
- Medical College of Wisconsin, Department of Neurology, 8701 Watertown Plank Road Milwaukee, WI 53226
| | - Laura DeLoretta
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Rachel Wurzman
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Shreya Y. Parchure
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Daniela Sacchetti
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Olufunsho Faseyitan
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Falk W. Lohoff
- National Institute for Alcohol Abuse and Alcoholism, National Institutes of Health (NIH), 10 Center Drive (10CRC/2-2352), Bethesda, MD 20892
| | - Roy H. Hamilton
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, 3710 Hamilton Walk, Philadelphia, PA 19104
| |
Collapse
|
6
|
Kristinsson S, Fridriksson J. Genetics in aphasia recovery. HANDBOOK OF CLINICAL NEUROLOGY 2022; 185:283-296. [PMID: 35078606 DOI: 10.1016/b978-0-12-823384-9.00015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Considerable research efforts have been exerted toward understanding the mechanisms underlying recovery in aphasia. However, predictive models of spontaneous and treatment-induced recovery remain imprecise. Some of the hitherto unexplained variability in recovery may be accounted for with genetic data. A few studies have examined the effects of the BDNF val66met polymorphism on aphasia recovery, yielding mixed results. Advances in the study of stroke genetics and genetics of stroke recovery, including identification of several susceptibility genes through candidate-gene or genome-wide association studies, may have implications for the recovery of language function. The current chapter discusses both the direct and indirect evidence for a genetic basis of aphasia recovery, the implications of recent findings within the field, and potential future directions to advance understanding of the genetics-recovery associations.
Collapse
Affiliation(s)
- Sigfus Kristinsson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, United States
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
7
|
Kao PC, Pierro MA, Wu T, Gonzalez DM, Seeley R. Association between functional physical capacity and cognitive performance under destabilizing walking conditions in older adults. Exp Gerontol 2021; 155:111582. [PMID: 34637948 DOI: 10.1016/j.exger.2021.111582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cognitive decline increases the risk of falls in older adults. Understanding the association between cognitive function, functional physical capacity, and falls may help identify targets for fall screening and intervention. This study examined (1) cognitive and functional physical capacity in community-dwelling older adults with and without a history of falls or the presence of brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism (Val/Met), and (2) the association between their cognitive and functional physical capacity, focusing on the cognitive performance during dual-task, challenging walking conditions. METHODS Twenty-nine healthy, community-dwelling older adults attended two testing sessions for (1) functional assessments of physical capacity and global cognitive status, and (2) performing four cognitive tasks (visual and auditory Stroop tasks, Clock task, and Paced Auditory Serial Addition Test) during standing and while walking on the treadmill with and without medio-lateral treadmill platform sways. RESULTS Participants with a fall history had reduced functional reach distance whereas individuals with Val/Met had reduced functional gait assessment (FGA) score compared to their controls. In addition, participants with a fall history or Val/Met showed reduced Clock task performance under dual-task conditions. Among all cognitive tasks, visual-Stroop performance, especially during the perturbed walking conditions, was significantly correlated with more physical capacity items. The performance of the other three cognitive tasks provided complementary information on those items not correlated with visual-Stroop performance. CONCLUSIONS Clock task performance can distinguish fallers from non-fallers as well as older adults with and without the BDNF gene polymorphism. Administering different types of cognitive tasks and under more challenging walking conditions can better reveal the association between cognitive and functional physical capacity in older adults. Fall screening and prevention intervention should integrate cognitive tasks into the functional physical capacity assessment and training regime, and progress to a more challenging condition such as introducing gait or balance perturbations during the assessment or training.
Collapse
Affiliation(s)
- Pei-Chun Kao
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA, United States; New England Robotics Validation and Experimentation (NERVE) Center, University of Massachusetts Lowell, Lowell, MA, United States.
| | - Michaela A Pierro
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, Lowell, MA, United States
| | - Tong Wu
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, United States
| | - Daniela M Gonzalez
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| | - Rachel Seeley
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
8
|
Dzewaltowski AC, Hedrick EA, Leutzinger TJ, Remski LE, Rosen AB. The Effect of Split-Belt Treadmill Interventions on Step Length Asymmetry in Individuals Poststroke: A Systematic Review With Meta-Analysis. Neurorehabil Neural Repair 2021; 35:563-575. [PMID: 33978525 DOI: 10.1177/15459683211011226] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Individuals poststroke experience gait asymmetries that result in decreased community ambulation and a lower quality of life. A variety of studies have utilized split-belt treadmill training to investigate its effect on gait asymmetry, but many employ various methodologies that report differing results. OBJECTIVE The purpose of this meta-analysis was to determine the effects of split-belt treadmill walking on step length symmetry in individuals poststroke both during and following training. METHODS A comprehensive search of PubMed/MEDLINE, CINAHL, Web of Science, and Scopus was conducted to find peer-reviewed journal articles that included individuals poststroke that participated in a split-belt treadmill walking intervention. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) was used to assess risk of bias. Pooled Hedge's g with random effects models were used to estimate the effect of split-belt training on step length symmetry. RESULTS Twenty-one studies were assessed and included in the systematic review with 11 of them included in the meta-analysis. Included studies had an average STROBE score of 16.2 ± 2.5. The pooled effects for step length asymmetry from baseline to late adaptation were not significant (g = 0.060, P = .701). Large, significant effects were found at posttraining after a single session (g = 1.04, P < .01), posttraining after multiple sessions (g = -0.70, P = .01), and follow-up (g = -0.718, P = .023). CONCLUSION Results indicate split-belt treadmill training with the shorter step length on the fast belt has the potential to improve step length symmetry in individuals poststroke when long-term training is implemented, but randomized controlled trials are needed to confirm the efficacy of split-belt treadmill training.
Collapse
|
9
|
Cerebellar Transcranial Direct Current Stimulation for Motor Learning in People with Chronic Stroke: A Pilot Randomized Controlled Trial. Brain Sci 2020; 10:brainsci10120982. [PMID: 33327476 PMCID: PMC7764949 DOI: 10.3390/brainsci10120982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022] Open
Abstract
Cerebellar transcranial direct current stimulation (ctDCS) is a non-invasive brain stimulation technique that alters neural plasticity through weak, continuous, direct currents delivered to the cerebellum. This study aimed to evaluate the feasibility of conducting a randomized controlled trial (RCT) delivering three consecutive days of ctDCS during split-belt treadmill training (SBTT) in people with chronic stroke. Using a double-blinded, parallel-group RCT design, eligible participants were randomly allocated to receive either active anodal ctDCS or sham ctDCS combined with SBTT on three consecutive days. Outcomes were assessed at one-week follow-up, using step length symmetry as a measure of motor learning and comfortable over-ground walking speed as a measure of walking capacity. The feasibility of the RCT protocol was evaluated based on recruitment, retention, protocol deviations and data completeness. The feasibility of the intervention was assessed based on safety, adherence and intervention fidelity. Of the 26 potential participants identified over four months, only four were enrolled in the study (active anodal ctDCS n = 1, sham ctDCS n = 3). Both the inclusion criteria and the fidelity of the SBTT relied upon the accurate estimation of step length asymmetry. The method used to determine the side of the step length asymmetry was unreliable and led to deviations in the protocol. The ctDCS intervention was well adhered to, safe, and delivered as per the planned protocol. Motor learning outcomes for individual participants revealed that treadmill step length symmetry remained unchanged for three participants but improved for one participant (sham ctDCS). Comfortable over-ground walking speed improved for two participants (sham ctDCS). The feasibility of the planned protocol and intervention was limited by intra-individual variability in the magnitude and side of the step length asymmetry. This limited the sample and compromised the fidelity of the SBTT intervention. To feasibly conduct a full RCT investigating the effect of ctDCS on locomotor adaptation, a reliable method of identifying and defining step length asymmetry in people with stroke is required. Future ctDCS research should either optimize the methods for SBTT delivery or utilize an alternative motor adaptation task.
Collapse
|
10
|
Braun RG, Kittner SJ, Ryan KA, Cole JW. Effects of the BDNF Val66Met polymorphism on functional status and disability in young stroke patients. PLoS One 2020; 15:e0237033. [PMID: 33306691 PMCID: PMC7732081 DOI: 10.1371/journal.pone.0237033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/17/2020] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE The preponderance of evidence from recent studies in human subjects supports a negative effect of the BDNF Val66Met polymorphism on motor outcomes and motor recovery. However prior studies have generally reported the effect of the Met allele in older stroke patients, while potential effects in younger stroke patients have remained essentially unexamined. The lack of research in younger patients is significant since aging effects on CNS repair and functional recovery after stroke are known to interact with the effects of genetic polymorphisms. Here we present a study of first-ever ischemic stroke patients aged 15-49 years that examines the effect of Met carrier status on functional disability. METHODS 829 patients with a first ischemic stroke (Average age = 41.4 years, SD = 6.9) were recruited from the Baltimore-Washington region. Genotyping was performed at the Johns Hopkins University Center for Inherited Disease Research (CIDR). Data cleaning and harmonization were done at the GEI-funded GENEVA Coordinating Center at the University of Washington. Our sample contained 165 Met carriers and 664 non-Met carriers. Modified Rankin scores as recorded at discharge were obtained from the hospital records by study personnel blinded to genotype, and binarized into "Good" versus "Poor" outcomes (mRS 0-2 vs. 3+), with mRS scores 3+ reflecting a degree of disability that causes loss of independence. RESULTS Our analysis showed that the Met allele conveyed a proportionally greater risk for poor outcomes and disability-related loss of independence with mRS scores 3+ (adjusted OR 1.73, 95% CI 1.13-2.64, p = 0.01). CONCLUSIONS The BDNF Val66Met polymorphism was negatively associated with functional outcomes at discharge in our sample of 829 young stroke patients. This finding stands in contrast to what would be predicted under the tenets of the resource modulation hypothesis (i.e. that younger patients would be spared from the negative effect of the Met allele on recovery since it is posited to arise as a manifestation of age-related decline in physiologic resources).
Collapse
Affiliation(s)
- Robynne G. Braun
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Steven J. Kittner
- University of Maryland School of Medicine, Baltimore, MD, United States of America
- Veterans Affairs Maryland Health Care System, Baltimore, MD, United States of America
| | - Kathleen A. Ryan
- Veterans Affairs Maryland Health Care System, Baltimore, MD, United States of America
| | - John W. Cole
- University of Maryland School of Medicine, Baltimore, MD, United States of America
- Veterans Affairs Maryland Health Care System, Baltimore, MD, United States of America
| |
Collapse
|
11
|
Hinton DC, Conradsson DM, Paquette C. Understanding Human Neural Control of Short-term Gait Adaptation to the Split-belt Treadmill. Neuroscience 2020; 451:36-50. [DOI: 10.1016/j.neuroscience.2020.09.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 12/31/2022]
|
12
|
Chung CC, Huang PH, Chan L, Chen JH, Chien LN, Hong CT. Plasma Exosomal Brain-Derived Neurotrophic Factor Correlated with the Postural Instability and Gait Disturbance-Related Motor Symptoms in Patients with Parkinson's Disease. Diagnostics (Basel) 2020; 10:E684. [PMID: 32932791 PMCID: PMC7555255 DOI: 10.3390/diagnostics10090684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is an essential neurotrophin, responsible for neuronal development, function, and survival. Assessments of peripheral blood BDNF in patients with Parkinson's disease (PD) previously yielded inconsistent results. Plasma exosomes can carry BDNF, so this study investigated the role of plasma exosomal BDNF level as a biomarker of PD. A total of 114 patients with mild to moderate PD and 42 non-PD controls were recruited, and their clinical presentations were evaluated. Plasma exosomes were isolated with exoEasy Maxi Kits, and enzyme-linked immunosorbent assay was used to assess plasma exosomal BDNF levels. Statistical analysis was performed using SPSS version 19.0, and findings were considered significant at p < 0.05. The analysis revealed no significant differences in plasma exosomal BDNF levels between patients with PD and controls. Patients with PD with low plasma exosomal BDNF levels (in the lowest quartile) exhibited a significant association with daily activity dysfunction but not with cognition/mood or overall motor symptoms as assessed using the Unified Parkinson's Disease Rating Scale (UPDRS). Investigation of UPDRS part III subitems revealed that low plasma exosomal BDNF level was significantly associated with increased motor severity of postural instability and gait disturbance (PIGD)-associated symptoms (rising from a chair, gait, and postural stability) after adjustment for age and sex. In conclusion, although plasma exosomal BDNF level could not distinguish patients with PD from controls, the association with PIGD symptoms in patients with PD may indicate its potential role as a biomarker. Follow-up studies should investigate the association between plasma exosomal BDNF levels and changes in clinical symptoms.
Collapse
Affiliation(s)
- Chen Chih Chung
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Zhongzheng Rd, Zhonghe District, New Taipei City 23561, Taiwan; (C.C.C.); (L.C.); (J.-H.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 11031, Taiwan
| | - Pai Hao Huang
- Department of Neurology, Cathay General Hospital, Taipei 106, Taiwan;
| | - Lung Chan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Zhongzheng Rd, Zhonghe District, New Taipei City 23561, Taiwan; (C.C.C.); (L.C.); (J.-H.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jia-Hung Chen
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Zhongzheng Rd, Zhonghe District, New Taipei City 23561, Taiwan; (C.C.C.); (L.C.); (J.-H.C.)
| | - Li-Nien Chien
- School of Health Care Administration, College of Management, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Chien Tai Hong
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Zhongzheng Rd, Zhonghe District, New Taipei City 23561, Taiwan; (C.C.C.); (L.C.); (J.-H.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
13
|
Luan S, Zhou B, Wu Q, Wan H, Li H. Brain-derived neurotrophic factor blood levels after electroconvulsive therapy in patients with major depressive disorder: A systematic review and meta-analysis. Asian J Psychiatr 2020; 51:101983. [PMID: 32146142 DOI: 10.1016/j.ajp.2020.101983] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/02/2020] [Accepted: 02/24/2020] [Indexed: 12/26/2022]
Abstract
Some evidence pointed out that Electro-Convulsive Treatment (ECT) could increase the level of brain-derived neurotrophic factor (BDNF) in depressive patients. However, there are some disagreements. The purpose of the study is through a systematic review and meta-analysis to evaluate BDNF levels after ECT in patients with Major depressive disorder. Two independent researchers searched of published articles in the databases of Cochrane Library, PubMed, MEDLINE, EMBASE and WanFang Data, from January 1990 to March 2019. The following key words were used: "depression" or "depressive disorder", "major depressive disorder", "unipolar depression", "brain-derived neurotrophic factor" or "BDNF", and "electroconvulsive" or "ECT". A total of 22 studies met the inclusion criteria of the meta-analysis and included into our analysis. BDNF levels were increased among patients with MDD after ECT (P = 0.000) in plasma samples. The standardized mean difference (SMD) was 0.695 (95 % CI: 0.402-0.988). We also found BDNF levels increased on one week and one month after finishing ECT (SMD = 0.491, 95 %CI: 0.150,0.833, P = 0.005; and SMD = 0.812, 95 %CI: 0.326,1.298, P = 0.001, respectively). Our findings suggest that BDNF levels may increase after ECT and may possibly be used as an indicator of treatment response after one or more weeks of ECT in patients with depression. However, additional investigation of BDNF levels with different ECT durations are needed in responders and non-responders.
Collapse
Affiliation(s)
- Shuxin Luan
- Department of Mental Health, The First Hospital of Jilin University, Changchun, 130021, China
| | - Bing Zhou
- Department of Surgery, Jilin University Hospital, Changchun, 130012, China
| | - Qiong Wu
- Medical Department, The Six Hospital of Changchun, Changchun, 130062, China
| | - Hongquan Wan
- Department of Mental Health, The First Hospital of Jilin University, Changchun, 130021, China.
| | - He Li
- Department of Pain Medicine, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
14
|
Aljuhni R, Cleland BT, Roth S, Madhavan S. Genetic polymorphisms for BDNF, COMT, and APOE do not affect gait or ankle motor control in chronic stroke: A preliminary cross-sectional study. Top Stroke Rehabil 2020; 28:72-80. [PMID: 32378476 DOI: 10.1080/10749357.2020.1762060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: Motor deficits after stroke are a primary cause of long-term disability. The extent of functional recovery may be influenced by genetic polymorphisms. Objectives: Determine the effect of genetic polymorphisms for brain-derived neurotrophic factor (BDNF), catechol-O-methyltransferase (COMT), and apolipoprotein E (APOE) on walking speed, walking symmetry, and ankle motor control in individuals with chronic stroke. Methods: 38 participants with chronic stroke were compared based upon genetic polymorphisms for BDNF (presence [MET group] or absence [VAL group] of a Met allele), COMT (presence [MET group] or absence [VAL group] of a Met allele), and APOE (presence [ε4+ group] of absence [ε4- group] of ε4 allele). Comfortable and maximal walking speed were measured with the 10-m walk test. Gait spatiotemporal symmetry was measured with the GAITRite electronic mat; symmetry ratios were calculated for step length, step time, swing time, and stance time. Ankle motor control was measured as the accuracy of performing an ankle tracking task. Results: No significant differences were detected (p ≥ 0.11) between the BDNF, COMT, or APOE groups for any variables. Conclusions: In these preliminary findings, genetic polymorphisms for BDNF, COMT, and APOE do not appear to affect walking speed, walking symmetry, or ankle motor performance in chronic stroke.
Collapse
Affiliation(s)
- Rehab Aljuhni
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago , Chicago, IL, USA
| | - Brice T Cleland
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago , Chicago, IL, USA
| | - Stephen Roth
- Department of Kinesiology, School of Public Health, University of Maryland , College Park, MD, USA
| | - Sangeetha Madhavan
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago , Chicago, IL, USA
| |
Collapse
|
15
|
Kristinsson S, Yourganov G, Xiao F, Bonilha L, Stark BC, Rorden C, Basilakos A, Fridriksson J. Brain-Derived Neurotrophic Factor Genotype-Specific Differences in Cortical Activation in Chronic Aphasia. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2019; 62:3923-3936. [PMID: 31756156 PMCID: PMC7203521 DOI: 10.1044/2019_jslhr-l-rsnp-19-0021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/02/2019] [Accepted: 07/29/2019] [Indexed: 05/04/2023]
Abstract
Purpose The brain-derived neurotrophic factor (BDNF) gene has been shown to be important for synaptic plasticity in animal models. Human research has suggested that BDNF genotype may influence stroke recovery. Some studies have suggested a genotype-specific motor-related brain activation in stroke recovery. However, recovery from aphasia in relation to BDNF genotype and language-related brain activation has received limited attention. We aimed to explore functional brain activation by BDNF genotype in individuals with chronic aphasia. Consistent with findings in healthy individuals and individuals with poststroke motor impairment, we hypothesized that, among individuals with aphasia, the presence of the Met allele of the BDNF gene is associated with reduced functional brain activation compared to noncarriers of the Met allele. Method Eighty-seven individuals with chronic stroke-induced aphasia performed a naming task during functional magnetic resonance imaging scanning and submitted blood or saliva samples for BDNF genotyping. The mean number of activated voxels was compared between groups, and group-based activation maps were directly compared. Neuropsychological testing was conducted to compare language impairment between BDNF genotype groups. The Western Aphasia Battery Aphasia Quotient (Kertesz, 2007) was included as a covariate in all analyses. Results While lesion size was comparable between groups, the amount of activation, quantified as the number of activated voxels, was significantly greater in noncarriers of the Met allele (whole brain: 98,500 vs. 28,630, p < .001; left hemisphere only: 37,209 vs. 7,000, p < .001; right hemisphere only: 74,830 vs. 30,630, p < .001). This difference was most strongly expressed in the right hemisphere posterior temporal area, pre- and postcentral gyrus, and frontal lobe, extending into the white matter. Correspondingly, the atypical BDNF genotype group was found to have significantly less severe aphasia (Western Aphasia Battery Aphasia Quotient of 64.2 vs. 54.3, p = .033) and performed better on a naming task (Philadelphia Naming Test [Roach, Schwartz, Martin, Grewal, & Brecher, 1996] score of 74.7 vs. 52.8, p = .047). A region of interest analysis of intensity of activation revealed no group differences, and a direct comparison of average activation maps across groups similarly yielded null results. Conclusion BDNF genotype mediates cortical brain activation in individuals with chronic aphasia. Correspondingly, individuals carrying the Met allele present with more severe aphasia compared to noncarriers. These findings warrant further study into the effects of BDNF genotype in aphasia. Supplemental Material https://doi.org/10.23641/asha.10073147 Presentation Video https://doi.org/10.23641/asha.10257581.
Collapse
Affiliation(s)
- Sigfus Kristinsson
- Department of Communication Sciences & Disorders, University of South Carolina, Columbia
| | | | - Feifei Xiao
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston
| | - Brielle C. Stark
- Department of Speech and Hearing Sciences, Indiana University, Bloomington
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia
| | - Alexandra Basilakos
- Department of Communication Sciences & Disorders, University of South Carolina, Columbia
| | - Julius Fridriksson
- Department of Communication Sciences & Disorders, University of South Carolina, Columbia
| |
Collapse
|
16
|
Charalambous CC, French MA, Morton SM, Reisman DS. A single high-intensity exercise bout during early consolidation does not influence retention or relearning of sensorimotor locomotor long-term memories. Exp Brain Res 2019; 237:2799-2810. [PMID: 31444538 PMCID: PMC6801096 DOI: 10.1007/s00221-019-05635-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 08/19/2019] [Indexed: 01/05/2023]
Abstract
A single exercise bout has been found to improve the retention of a skill-based upper extremity motor task up to a week post-practice. This effect is the greatest when exercise intensity is high and exercise is administered immediately after motor practice (i.e., early in consolidation). Whether exercise can affect other motor learning types (e.g., sensorimotor adaptation) and tasks (e.g., walking) is still unclear as previous studies have not optimally refined the exercise parameters and long-term retention testing. Therefore, we investigated whether a single high-intensity exercise bout during early consolidation would improve the long-term retention and relearning of sensorimotor adaptation during split-belt treadmill walking. Twenty-six neurologically intact adults attended three sessions; sessions 2 and 3 were 1 day and 7 days after session 1, respectively. Participants were allocated either to Rest (REST) or to Exercise (EXE) group. In session 1, all groups walked on a split-belt treadmill in a 2:1 speed ratio (1.5:0.75 m/s). Then, half of the participants exercised for 5 min (EXE), while the other half rested for 5 min (REST). A short exercise bout during early consolidation did not improve retention or relearning of locomotor memories one or seven days after session 1. This result reinforces previous findings that the effect of exercise on motor learning may differ between sensorimotor locomotor adaptation and skilled-based upper extremity tasks; thus, the utility of exercise as a behavioral booster of motor learning may depend on the type of motor learning and task.
Collapse
Affiliation(s)
- Charalambos C Charalambous
- Department of Neurology, New York University School of Medicine, 222 E 41st St, 10th Floor, New York, NY, 10017, USA
- Department of Physical Therapy, University of Delaware, 540 South College Ave, Newark, DE, 19713, USA
| | - Margaret A French
- Department of Physical Therapy, University of Delaware, 540 South College Ave, Newark, DE, 19713, USA
- Biomechanics and Movement Science Program, University of Delaware, 540 South College Ave, Newark, DE, 19713, USA
| | - Susanne M Morton
- Department of Physical Therapy, University of Delaware, 540 South College Ave, Newark, DE, 19713, USA
- Biomechanics and Movement Science Program, University of Delaware, 540 South College Ave, Newark, DE, 19713, USA
| | - Darcy S Reisman
- Department of Physical Therapy, University of Delaware, 540 South College Ave, Newark, DE, 19713, USA.
- Biomechanics and Movement Science Program, University of Delaware, 540 South College Ave, Newark, DE, 19713, USA.
| |
Collapse
|
17
|
Finan JD, Udani SV, Patel V, Bailes JE. The Influence of the Val66Met Polymorphism of Brain-Derived Neurotrophic Factor on Neurological Function after Traumatic Brain Injury. J Alzheimers Dis 2019; 65:1055-1064. [PMID: 30149456 DOI: 10.3233/jad-180585] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Functional outcomes after traumatic brain injury (TBI) vary widely across patients with apparently similar injuries. This variability hinders prognosis, therapy, and clinical innovation. Recently, single nucleotide polymorphism (SNPs) that influence outcome after TBI have been identified. These discoveries create opportunities to personalize therapy and stratify clinical trials. Both of these changes would propel clinical innovation in the field. This review focuses on one of most well-characterized of these SNPs, the Val66Met SNP in the brain-derived neurotrophic factor (BDNF) gene. This SNP influences neurological function in healthy subjects as well as TBI patients and patients with similar acute insults to the central nervous system. A host of other patient-specific factors including ethnicity, age, gender, injury severity, and post-injury time point modulate this influence. These interactions confound efforts to define a simple relationship between this SNP and TBI outcomes. The opportunities and challenges associated with personalizing TBI therapy around this SNP and other similar SNPs are discussed in light of these results.
Collapse
Affiliation(s)
- John D Finan
- Department of Neurosurgery, NorthShore University Health System, Evanston, IL, USA
| | - Shreya V Udani
- Department of Neurosurgery, NorthShore University Health System, Evanston, IL, USA
| | - Vimal Patel
- Department of Neurosurgery, NorthShore University Health System, Evanston, IL, USA
| | - Julian E Bailes
- Department of Neurosurgery, NorthShore University Health System, Evanston, IL, USA
| |
Collapse
|
18
|
Math N, Han TS, Lubomirova I, Hill R, Bentley P, Sharma P. Influences of genetic variants on stroke recovery: a meta-analysis of the 31,895 cases. Neurol Sci 2019; 40:2437-2445. [PMID: 31359356 PMCID: PMC6848040 DOI: 10.1007/s10072-019-04024-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/20/2019] [Indexed: 02/07/2023]
Abstract
Background The influences of genetic variants on functional clinical outcomes following stroke are unclear. In order to reliably quantify these influences, we undertook a comprehensive meta-analysis of outcomes after acute intracerebral haemorrhage (ICH) or ischaemic stroke (AIS) in relation to different genetic variants. Methods PubMed, PsycInfo, Embase and Medline electronic databases were searched up to January 2019. Outcomes, defined as favourable or poor, were assessed by validated scales (Barthel index, modified Rankin scale, Glasgow outcome scale and National Institutes of Health stroke scale). Results Ninety-two publications comprising 31,895 cases met our inclusion criteria. Poor outcome was observed in patients with ICH who possessed the APOE4 allele: OR =2.60 (95% CI = 1.25–5.41, p = 0.01) and in AIS patients with the GA or AA variant at the BDNF-196 locus: OR = 2.60 (95% CI = 1.25–5.41, p = 0.01) or a loss of function allele of CYP2C19: OR = 2.36 (95% CI = 1.56–3.55, p < 0.0001). Poor outcome was not associated with APOE4: OR = 1.02 (95% CI = 0.81–1.27, p = 0.90) or IL6-174 G/C: OR = 2.21 (95% CI = 0.55–8.86, p = 0.26) in patients with AIS. Conclusions We demonstrate that recovery of AIS was unfavourably associated with variants of BDNF and CYP2C19 genes whilst recovery of ICH was unfavourably associated with APOE4 gene. Electronic supplementary material The online version of this article (10.1007/s10072-019-04024-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nikhil Math
- Department of Neuroscience, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Thang S Han
- Institute of Cardiovascular Research Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK.
- Department of Endocrinology, Ashford & St Peter's NHS Foundation Trust, Chertsey, England.
| | - Irina Lubomirova
- Department of Neuroscience, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Robert Hill
- Department of Neuroscience, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Paul Bentley
- Department of Neuroscience, Imperial College London, South Kensington, London, SW7 2AZ, UK
- Imperial College Healthcare NHS Trust, London, W2 1NY, UK
| | - Pankaj Sharma
- Institute of Cardiovascular Research Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK.
- Department of Endocrinology, Ashford & St Peter's NHS Foundation Trust, Chertsey, England.
- Imperial College Healthcare NHS Trust, London, W2 1NY, UK.
| |
Collapse
|
19
|
Fridriksson J, Elm J, Stark BC, Basilakos A, Rorden C, Sen S, George MS, Gottfried M, Bonilha L. BDNF genotype and tDCS interaction in aphasia treatment. Brain Stimul 2018; 11:1276-1281. [PMID: 30150003 PMCID: PMC6293970 DOI: 10.1016/j.brs.2018.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Several studies, including a randomized controlled trial by our group, support applying anodal tDCS (A-tDCS) to the left hemisphere during behavioral aphasia treatment to improve outcomes. A clear mechanism explaining A-tDCS’s efficacy has not been established, but modulation of neuroplasticity may be involved. Objective/hypothesis: The brain-derived neurotrophic factor (BDNF) gene influences neuroplasticity and may modulate the effects of tDCS. Utilizing data from our recently completed trial, we conducted a planned test of whether aphasia treatment outcome is influenced by interaction between A-tDCS and a single-nucleotide polymorphism of the BDNF gene, rs6265. Methods: Seventy-four individuals with chronic stroke-induced aphasia completed 15 language therapy sessions and were randomized to receive 1 mA A-tDCS or sham tDCS (S-tDCS) to the intact left temporoparietal region for the first 20 min of each session. BDNF genotype was available for 67 participants: 37 participants had the typical val/val genotype. The remaining 30 participants had atypical BDNF genotype (Met allele carriers). The primary outcome factor was improvement in object naming at 1 week after treatment completion. Maintenance of treatment effects was evaluated at 4 and 24 weeks. Results: An interaction was revealed between tDCS condition and genotype for treatment-related naming improvement (F = 4.97, p = 0.03). Participants with val/val genotype who received A-tDCS showed greater response to aphasia treatment than val/val participants who received S-tDCS, as well as the Met allele carriers, regardless of tDCS condition. Conclusion: Individuals with the val/val BDNF genotype are more likely to benefit from A-tDCS during aphasia treatment.
Collapse
Affiliation(s)
- Julius Fridriksson
- Department of Communication Sciences & Disorders, University of South Carolina, USA.
| | - Jordan Elm
- Department of Public Health Sciences, Medical University of South Carolina, USA
| | - Brielle C Stark
- Department of Communication Sciences & Disorders, University of South Carolina, USA
| | - Alexandra Basilakos
- Department of Communication Sciences & Disorders, University of South Carolina, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, USA
| | - Souvik Sen
- Department of Neurology, University of South Carolina, USA
| | - Mark S George
- Department of Psychiatry, Medical University of South Carolina, USA; Department of Neurology, Medical University of South Carolina, USA; Ralph H. Johnson VA Medical Center, Charleston, USA
| | - Michelle Gottfried
- Department of Public Health Sciences, Medical University of South Carolina, USA
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, USA
| |
Collapse
|
20
|
Balkaya M, Cho S. Genetics of stroke recovery: BDNF val66met polymorphism in stroke recovery and its interaction with aging. Neurobiol Dis 2018; 126:36-46. [PMID: 30118755 DOI: 10.1016/j.nbd.2018.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/24/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Stroke leads to long term sensory, motor and cognitive impairments. Most patients experience some degree of spontaneous recovery which is mostly incomplete and varying greatly among individuals. The variation in recovery outcomes has been attributed to numerous factors including lesion size, corticospinal tract integrity, age, gender and race. It is well accepted that genetics play a crucial role in stroke incidence and accumulating evidence suggests that it is also a significant determinant in recovery. Among the number of genes and variations implicated in stroke recovery the val66met single nucleotide polymorphism (SNP) in the BDNF gene influences post-stroke plasticity in the most significant ways. Val66met is the most well characterized BDNF SNP and is common (40-50 % in Asian and 25-32% in Caucasian populations) in humans. It reduces activity-dependent BDNF release, dampens cortical plasticity and is implicated in numerous diseases. Earlier studies on the effects of val66met on stroke outcome and recovery presented primarily a maladaptive role. Novel findings however indicate a much more intricate interaction between val66met and stroke recovery which appears to be influenced by lesion location, post-stroke stage and age. This review will focus on the role of BDNF and val66met SNP in relation to stroke recovery and try to identify potential pathophysiologic mechanisms involved. The effects of age on val66met associated alterations in plasticity and potential consequences in terms of stroke are also discussed.
Collapse
Affiliation(s)
- Mustafa Balkaya
- Burke-Cornell Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine at Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA
| | - Sunghee Cho
- Burke-Cornell Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine at Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA.
| |
Collapse
|
21
|
Charalambous CC, Alcantara CC, French MA, Li X, Matt KS, Kim HE, Morton SM, Reisman DS. A single exercise bout and locomotor learning after stroke: physiological, behavioural, and computational outcomes. J Physiol 2018; 596:1999-2016. [PMID: 29569729 PMCID: PMC5978382 DOI: 10.1113/jp275881] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/12/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Previous work demonstrated an effect of a single high-intensity exercise bout coupled with motor practice on the retention of a newly acquired skilled arm movement, in both neurologically intact and impaired adults. In the present study, using behavioural and computational analyses we demonstrated that a single exercise bout, regardless of its intensity and timing, did not increase the retention of a novel locomotor task after stroke. Considering both present and previous work, we postulate that the benefits of exercise effect may depend on the type of motor learning (e.g. skill learning, sensorimotor adaptation) and/or task (e.g. arm accuracy-tracking task, walking). ABSTRACT Acute high-intensity exercise coupled with motor practice improves the retention of motor learning in neurologically intact adults. However, whether exercise could improve the retention of locomotor learning after stroke is still unknown. Here, we investigated the effect of exercise intensity and timing on the retention of a novel locomotor learning task (i.e. split-belt treadmill walking) after stroke. Thirty-seven people post stroke participated in two sessions, 24 h apart, and were allocated to active control (CON), treadmill walking (TMW), or total body exercise on a cycle ergometer (TBE). In session 1, all groups exercised for a short bout (∼5 min) at low (CON) or high (TMW and TBE) intensity and before (CON and TMW) or after (TBE) the locomotor learning task. In both sessions, the locomotor learning task was to walk on a split-belt treadmill in a 2:1 speed ratio (100% and 50% fast-comfortable walking speed) for 15 min. To test the effect of exercise on 24 h retention, we applied behavioural and computational analyses. Behavioural data showed that neither high-intensity group showed greater 24 h retention compared to CON, and computational data showed that 24 h retention was attributable to a slow learning process for sensorimotor adaptation. Our findings demonstrated that acute exercise coupled with a locomotor adaptation task, regardless of its intensity and timing, does not improve retention of the novel locomotor task after stroke. We postulate that exercise effects on motor learning may be context specific (e.g. type of motor learning and/or task) and interact with the presence of genetic variant (BDNF Val66Met).
Collapse
Affiliation(s)
| | - Carolina C Alcantara
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, Brazil
| | - Margaret A French
- Biomechanics and Movement Science Program, University of Delaware, Newark, DE, USA
| | - Xin Li
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
- Biomechanics and Movement Science Program, University of Delaware, Newark, DE, USA
| | - Kathleen S Matt
- College of Health Sciences, University of Delaware, Newark, DE, USA
| | - Hyosub E Kim
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Susanne M Morton
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
- Biomechanics and Movement Science Program, University of Delaware, Newark, DE, USA
| | - Darcy S Reisman
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
- Biomechanics and Movement Science Program, University of Delaware, Newark, DE, USA
| |
Collapse
|
22
|
Liu XL, Zu QQ, Wang B, Lu SS, Xu XQ, Liu S, Shi HB. Differentiation of genetically modified canine bone mesenchymal stem cells labeled with superparamagnetic iron oxide into neural‑like cells. Mol Med Rep 2018; 17:7902-7910. [PMID: 29620288 DOI: 10.3892/mmr.2018.8847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/19/2017] [Indexed: 11/06/2022] Open
Abstract
The use of mesenchymal stem cells (MSCs) has been reported to improve outcomes in various types of nervous system diseases, primarily based on their neural regenerative differentiation ability and paracrine effect on different neuroprotective cytokines. Genetically modified MSCs may enhance the paracrine effect and may further improve the cell‑based therapeutic outcome of nervous system diseases. Magnetic resonance imaging has been used to monitor distribution and migration of cells labeled with superparamagnetic iron oxide (SPIO) nanoparticles. However, few studies have described the neural differentiation ability of genetically modified and SPIO‑labeled MSCs, which is the foundation for cell tracking and cell therapy in vivo. In this study, canine bone marrow‑derived MSCs (BMSCs) were initially labeled with SPIO, by culturing with 20 µg/ml SPIO for 24 h, and transfected with the brain‑derived neurotrophic factor (BDNF) gene using lentivirus transfection at different multiplicities of infection (MOI) values. The optimized MOI value was demonstrated by cellular viability and enhanced green fluorescent protein (eGFP) rate. Subsequently, the BMSCs were induced to differentiate into neuron‑like cells by chemical induction. The results demonstrated that BDNF‑overexpressing BMSCs labeled with SPIO can be induced into neuron‑like cells with high efficiency and minimal effects on cell viability. Additionally, following neural differentiation, the cells transfected with BDNF and labeled with SPIO expressed significantly higher levels of BDNF and neural markers. The overexpression of BDNF may contribute to neural differentiation of BDNFs, and may have potential benefits for further BMSC‑based therapy in vivo.
Collapse
Affiliation(s)
- Xing-Long Liu
- Radiology Department, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Qing-Quan Zu
- Radiology Department, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Bin Wang
- Radiology Department, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Shan-Shan Lu
- Radiology Department, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Xiao-Quan Xu
- Radiology Department, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Sheng Liu
- Radiology Department, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Hai-Bin Shi
- Radiology Department, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
23
|
Alawieh A, Zhao J, Feng W. Factors affecting post-stroke motor recovery: Implications on neurotherapy after brain injury. Behav Brain Res 2018; 340:94-101. [PMID: 27531500 PMCID: PMC5305670 DOI: 10.1016/j.bbr.2016.08.029] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/27/2016] [Accepted: 08/12/2016] [Indexed: 02/05/2023]
Abstract
Neurological disorders are a major cause of chronic disability globally among which stroke is a leading cause of chronic disability. The advances in the medical management of stroke patients over the past decade have significantly reduced mortality, but at the same time increased numbers of disabled survivors. Unfortunately, this reduction in mortality was not paralleled by satisfactory therapeutics and rehabilitation strategies that can improve functional recovery of patients. Motor recovery after brain injury is a complex, dynamic, and multifactorial process in which an interplay among genetic, pathophysiologic, sociodemographic and therapeutic factors determines the overall recovery trajectory. Although stroke recovery is the most well-studied form of post-injury neuronal recovery, a thorough understanding of the pathophysiology and determinants affecting stroke recovery is still lacking. Understanding the different variables affecting brain recovery after stroke will not only provide an opportunity to develop therapeutic interventions but also allow for developing personalized platforms for patient stratification and prognosis. We aim to provide a narrative review of major determinants for post-stroke recovery and their implications in other forms of brain injury.
Collapse
Affiliation(s)
- Ali Alawieh
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jing Zhao
- Minhang District Central Hospital, Fudan University, Shanghai, 201199, China
| | - Wuwei Feng
- Department of Neurology, MUSC Stroke Center, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Health Science and Research, The Center of Rehabilitation Science in Neurological Conditions, College of Health Professions, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
24
|
de Boer RGA, Spielmann K, Heijenbrok-Kal MH, van der Vliet R, Ribbers GM, van de Sandt-Koenderman WME. The Role of the BDNF Val66Met Polymorphism in Recovery of Aphasia After Stroke. Neurorehabil Neural Repair 2017; 31:851-857. [PMID: 28818006 DOI: 10.1177/1545968317723752] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is assumed to play a role in mediating neuroplasticity after stroke. Carriers of the function-limiting Val66Met (rs6265) single nucleotide polymorphism (SNP) may have a downregulation in BDNF secretion, which may lead to a poorer prognosis after stroke compared to noncarriers in motor learning and motor function recovery. The present study investigates whether this polymorphism may also affect the recovery of poststroke aphasia (ie, language impairment). OBJECTIVE To study the influence of the BDNF Val66Met polymorphism on the recovery of poststroke aphasia. METHODS We included 53 patients with poststroke aphasia, all participating in an inpatient rehabilitation program with speech and language therapy. All patients were genotyped for the Val66Met SNP and subdivided into carriers (at least one Met allele) and noncarriers (no Met allele). Primary outcome measures included the improvement over rehabilitation time on the Amsterdam-Nijmegen Everyday Language Test (ANELT) and the Boston Naming Test (BNT). RESULTS The outcome measures showed a large variability in the improvement scores on both the ANELT and BNT. There was no significant difference between noncarriers and carriers in the primary outcome measures. CONCLUSION This study investigated the effect of the BDNF Val66Met polymorphism on clinical recovery of poststroke aphasia. In contrast to earlier studies describing a reducing effect of this polymorphism on motor function recovery after stroke, the present study does not support a reduction in language recovery for carriers compared to noncarriers with poststroke aphasia.
Collapse
Affiliation(s)
- Riemke G A de Boer
- 1 Rijndam Rehabilitation, Rotterdam, Netherlands.,2 Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Kerstin Spielmann
- 1 Rijndam Rehabilitation, Rotterdam, Netherlands.,2 Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Majanka H Heijenbrok-Kal
- 1 Rijndam Rehabilitation, Rotterdam, Netherlands.,2 Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rick van der Vliet
- 1 Rijndam Rehabilitation, Rotterdam, Netherlands.,2 Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Gerard M Ribbers
- 1 Rijndam Rehabilitation, Rotterdam, Netherlands.,2 Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - W Mieke E van de Sandt-Koenderman
- 1 Rijndam Rehabilitation, Rotterdam, Netherlands.,2 Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
25
|
Stewart JC, Cramer SC. Genetic Variation and Neuroplasticity: Role in Rehabilitation After Stroke. J Neurol Phys Ther 2017; 41 Suppl 3:S17-S23. [PMID: 28628592 PMCID: PMC5477674 DOI: 10.1097/npt.0000000000000180] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND PURPOSE In many neurologic diagnoses, significant interindividual variability exists in the outcomes of rehabilitation. One factor that may impact response to rehabilitation interventions is genetic variation. Genetic variation refers to the presence of differences in the DNA sequence among individuals in a population. Genetic polymorphisms are variations that occur relatively commonly and, while not disease-causing, can impact the function of biological systems. The purpose of this article is to describe genetic polymorphisms that may impact neuroplasticity, motor learning, and recovery after stroke. SUMMARY OF KEY POINTS Genetic polymorphisms for brain-derived neurotrophic factor (BDNF), dopamine, and apolipoprotein E have been shown to impact neuroplasticity and motor learning. Rehabilitation interventions that rely on the molecular and cellular pathways of these factors may be impacted by the presence of the polymorphism. For example, it has been hypothesized that individuals with the BDNF polymorphism may show a decreased response to neuroplasticity-based interventions, decreased rate of learning, and overall less recovery after stroke. However, research to date has been limited and additional work is needed to fully understand the role of genetic variation in learning and recovery. RECOMMENDATIONS FOR CLINICAL PRACTICE Genetic polymorphisms should be considered as possible predictors or covariates in studies that investigate neuroplasticity, motor learning, or motor recovery after stroke. Future predictive models of stroke recovery will likely include a combination of genetic factors and other traditional factors (eg, age, lesion type, corticospinal tract integrity) to determine an individual's expected response to a specific rehabilitation intervention.
Collapse
Affiliation(s)
- Jill Campbell Stewart
- Physical Therapy Program, Department of Exercise Science, University of South Carolina
| | - Steven C. Cramer
- Departments of Neurology, Anatomy & Neurobiology, and Physical Medicine & Rehabilitation, University of California, Irvine
| |
Collapse
|
26
|
The influence of high intensity exercise and the Val66Met polymorphism on circulating BDNF and locomotor learning. Neurobiol Learn Mem 2017; 144:77-85. [PMID: 28668279 DOI: 10.1016/j.nlm.2017.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 05/04/2017] [Accepted: 06/20/2017] [Indexed: 11/21/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) has been directly related to exercise-enhanced motor performance in the neurologically injured animal model; however literature concerning the role of BDNF in the enhancement of motor learning in the human population is limited. Previous studies in healthy subjects have examined the relationship between intensity of an acute bout of exercise, increases in peripheral BDNF and motor learning of a simple isometric upper extremity task. The current study examined the role of high intensity exercise on upregulation of peripheral BDNF levels as well as the role of high intensity exercise in mediation of motor learning and retention of a novel locomotor task in neurologically intact adults. In addition, the impact of a single nucleotide polymorphism in the BDNF gene (Val66Met) in moderating the relationship between exercise and motor learning was explored. It was hypothesized that participation in high intensity exercise prior to practicing a novel walking task (split-belt treadmill walking) would elicit increases in peripheral BDNF as well as promote an increased rate and magnitude of within session learning and retention on a second day of exposure to the walking task. Within session learning and retention would be moderated by the presence or absence of Val66Met polymorphism. Fifty-four neurologically intact participants participated in two sessions of split-belt treadmill walking. Step length and limb phase were measured to assess learning of spatial and temporal parameters of walking. Serum BDNF was collected prior to and immediately following either high intensity exercise or 5min of quiet rest. The results demonstrated that high intensity exercise provides limited additional benefit to learning of a novel locomotor pattern in neurologically intact adults, despite increases in circulating BDNF. In addition, presence of a single nucleotide polymorphism on the BDNF gene did not moderate the magnitude of serum BDNF increases with high intensity exercise, nor did it moderate the relationship between high intensity exercise and locomotor learning.
Collapse
|
27
|
Kotlęga D, Peda B, Zembroń-Łacny A, Gołąb-Janowska M, Nowacki P. The role of brain-derived neurotrophic factor and its single nucleotide polymorphisms in stroke patients. Neurol Neurochir Pol 2017; 51:240-246. [PMID: 28291539 DOI: 10.1016/j.pjnns.2017.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/08/2017] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
Abstract
Stroke is the main cause of motoric and neuropsychological disability in adults. Recent advances in research into the role of the brain-derived neurotrophic factor in neuroplasticity, neuroprotection and neurogenesis might provide important information for the development of new poststroke-rehabilitation strategies. It plays a role as a mediator in motor learning and rehabilitation after stroke. Concentrations of BDNF are lower in acute ischemic-stroke patients compared to controls. Lower levels of BDNF are correlated with an increased risk of stroke, worse functional outcomes and higher mortality. BDNF signalling is dependent on the genetic variation which could affect an individual's response to recovery after stroke. Several single nucleotide polymorphisms of the BDNF gene have been studied with regard to stroke patients, but most papers analyse the rs6265 which results in a change from valine to methionine in the precursor protein. Subsequently a reduction in BDNF activity is observed. There are studies indicating the role of this polymorphism in brain plasticity, functional and morphological changes in the brain. It may affect the risk of ischemic stroke, post-stroke outcomes and the efficacy of the rehabilitation process within physical exercise and transcranial magnetic stimulation. There is a consistent trend of Met alleles' being connected with worse outcomes and prognoses after stroke. However, there is no satisfactory data confirming the importance of Met allele in stroke epidemiology and the post-stroke rehabilitation process. We present the current data on the role of BDNF and polymorphisms of the BDNF gene in stroke patients, concentrating on human studies.
Collapse
Affiliation(s)
- Dariusz Kotlęga
- Department of Neurology, Pomeranian Medical University in Szczecin, Szczecin, Poland; Department of Neurology, District Hospital, Głogów, Poland.
| | - Barbara Peda
- Department of Neurology, District Hospital, Głogów, Poland
| | - Agnieszka Zembroń-Łacny
- Department of Applied and Clinical Physiology, University of Zielona Góra, Zielona Góra, Poland
| | - Monika Gołąb-Janowska
- Department of Neurology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Przemysław Nowacki
- Department of Neurology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
28
|
Cassidy JM, Cramer SC. Spontaneous and Therapeutic-Induced Mechanisms of Functional Recovery After Stroke. Transl Stroke Res 2016; 8:33-46. [PMID: 27109642 DOI: 10.1007/s12975-016-0467-5] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 01/05/2023]
Abstract
With increasing rates of survival throughout the past several years, stroke remains one of the leading causes of adult disability. Following the onset of stroke, spontaneous mechanisms of recovery at the cellular, molecular, and systems levels ensue. The degree of spontaneous recovery is generally incomplete and variable among individuals. Typically, the best recovery outcomes entail the restitution of function in injured but surviving neural matter. An assortment of restorative therapies exists or is under development with the goal of potentiating restitution of function in damaged areas or in nearby ipsilesional regions by fostering neuroplastic changes, which often rely on mechanisms similar to those observed during spontaneous recovery. Advancements in stroke rehabilitation depend on the elucidation of both spontaneous and therapeutic-driven mechanisms of recovery. Further, the implementation of neural biomarkers in research and clinical settings will enable a multimodal approach to probing brain state and predicting the extent of post-stroke functional recovery. This review will discuss spontaneous and therapeutic-induced mechanisms driving post-stroke functional recovery while underscoring several potential restorative therapies and biomarkers.
Collapse
Affiliation(s)
- Jessica M Cassidy
- Department of Neurology, University of California, Irvine Medical Center, 200 S. Manchester Ave, Suite 206, Orange, CA, 92868-4280, USA
| | - Steven C Cramer
- Department of Neurology, University of California, Irvine Medical Center, 200 S. Manchester Ave, Suite 206, Orange, CA, 92868-4280, USA. .,Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, 92697, USA. .,Department of Physical Medicine & Rehabilitation, University of California, Irvine Medical Center, 200 S. Manchester Ave, Suite 210, Orange, CA, 92868-5397, USA. .,Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Rd, Irvine, 92697, CA, USA.
| |
Collapse
|