1
|
Qanbari S, Khanmohammadi R, Olyaei G, Hosseini Z, Hejazi HS. Effects of combining sensory-motor exercises with transcranial direct current stimulation on cortical processing and clinical symptoms in patients with lumbosacral radiculopathy: An exploratory randomized controlled trial. PLoS One 2024; 19:e0314361. [PMID: 39700238 DOI: 10.1371/journal.pone.0314361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/05/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Chronic low back pain (CLBP) is linked to reduced excitability in the primary motor (M1) and sensory (S1) cortices. Combining sensory-motor exercises with transcranial direct current stimulation (tDCS) to boost M1 and S1 excitability may improve treatment outcomes. This combined approach aligns with the neurophysiological mechanisms underlying CLBP and may target the neuroplastic changes induced by low back pain. This study aimed to assess whether enhancing M1 and S1 excitability via tDCS, alongside sensory-motor exercises, offers additional benefits for CLBP patients. METHOD Participants were randomly assigned to receive either real or sham tDCS alongside sensory-motor exercises. Outcome measures included pain intensity, disability level, motor control ability, amplitudes of N80 and N150, and the amplitude of motor-evoked potential (MEP) and active motor threshold (AMT) for the multifidus (MF) and transversus abdominis/internal oblique (TrA/IO) muscles. A linear mixed-effects model (LMM) analyzed group, time, and interaction effects, while Spearman's correlation assessed relationships between neurophysiological and clinical outcomes. RESULTS The results showed significant reductions in pain intensity and disability levels (P < 0.001) and improved motor control (P < 0.001) in both groups. Both groups also exhibited increase in MF MEP amplitude (P = 0.042) and N150 amplitude (P = 0.028). The tDCS group demonstrated a significant decrease in AMT of MF and TrA/IO muscles (P < 0.05) and an increase in N80 amplitude (P = 0.027), with no significant changes in the control group. Additionally, the tDCS group had significantly lower AMT for the TrA/IO muscle in the post-test compared to the sham group (P = 0.001). Increased N150 amplitude was correlated with improved motor control. CONCLUSIONS The findings showed that sensory-motor exercises combined with either tDCS or sham tDCS effectively reduced pain intensity, decreased disability, and improved lumbar motor control in lumbosacral radiculopathy patients. No significant differences were observed between groups, indicating no added clinical benefit from tDCS over exercises alone. However, both groups demonstrated increased N150 and MF MEP amplitudes, suggesting enhanced cortical excitability in motor and sensory regions. While clinical outcomes were similar, neurophysiological data indicate that sensory-motor exercises play a central role in boosting cortical excitability, with tDCS further amplifying this effect, as evidenced by a significant AMT reduction in MF and TrA/IO muscles and an increase in N80 amplitude.
Collapse
Affiliation(s)
- Soheila Qanbari
- Physical Therapy Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Khanmohammadi
- Physical Therapy Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Olyaei
- Physical Therapy Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Hosseini
- Physical Therapy Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanie Sadat Hejazi
- Physical Therapy Department, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Zhang S, Wang Y, Li T, Ma J, He R, Han X, Wu W, Wang C. Relation Between Abnormal Spontaneous Brain Activity and Altered Neuromuscular Activation of Lumbar Paraspinal Muscles in Chronic Low Back Pain. Arch Phys Med Rehabil 2024; 105:2107-2117. [PMID: 38969254 DOI: 10.1016/j.apmr.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/07/2024]
Abstract
OBJECTIVE To investigate the neural mechanism underlying functional reorganization and motor coordination strategies in patients with chronic low back pain (cLBP). DESIGN A case-control study based on data collected during routine clinical practice. SETTING This study was conducted at a university hospital. PARTICIPANTS Fifteen patients with cLBP and 15 healthy controls. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Whole brain blood oxygen level-dependent signals were measured using functional magnetic resonance imaging and amplitude of low-frequency fluctuation (ALFF) method to identify pain-induced changes in regional spontaneous brain activity. A novel approach based on the surface electromyogram (EMG) system and fine-wire electrodes was used to record EMG signals in the deep multifidus, superficial multifidus, and erector spinae. RESULTS In cLBP, compared with healthy groups, ALFF was higher in the medial prefrontal, primary somatosensory, primary motor, and inferior temporal cortices, whereas it was lower in the cerebellum and anterior cingulate and posterior cingulate cortices. Furthermore, the decrease in the average EMG activity of the 3 lumbar muscles in the cLBP group was positively correlated with the ALFF values of the primary somatosensory cortex, motor cortex, precuneus, and middle temporal cortex but significantly negatively correlated with the ALFF values of the medial prefrontal and inferior temporal cortices. Interestingly, the correlation between the functional activity in the cerebellum and the EMG activity varied in the lumbar muscles. CONCLUSIONS These findings suggest a functional association between changes in spontaneous brain activity and altered voluntary neuromuscular activation patterns of the lumbar paraspinal muscles, providing new insights into the mechanisms underlying pain chronicity as well as important implications for developing novel therapeutic targets of cLBP.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou
| | - Yanjun Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou
| | - Tingting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou
| | - Junqin Ma
- Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou
| | - Rongxing He
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiulan Han
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou
| | - Wen Wu
- Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou
| | - Chuhuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou.
| |
Collapse
|
3
|
Shraim MA, Massé-Alarie H, Farrell MJ, Cavaleri R, Loggia ML, Hodges PW. Neuroinflammatory activation in sensory and motor regions of the cortex is related to sensorimotor function in individuals with low back pain maintained by nociplastic mechanisms: A preliminary proof-of-concept study. Eur J Pain 2024; 28:1607-1626. [PMID: 39007713 DOI: 10.1002/ejp.2313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Chronic pain involves communication between neural and immune systems. Recent data suggest localization of glial (brain immune cells) activation to the sensorimotor regions of the brain cortex (S1/M1) in chronic low back pain (LBP). As glia perform diverse functions that impact neural function, activation might contribute to sensorimotor changes, particularly in LBP maintained by increased nervous system sensitivity (i.e., nociplastic pain). This preliminary proof-of-concept study aimed to: (i) compare evidence of neuroinflammatory activation in S1/M1 between individuals with and without LBP (and between nociceptive and nociplastic LBP phenotypes), and (ii) evaluate relationships between neuroinflammatory activation and sensorimotor function. METHODS Simultaneous PET-fMRI measured neuroinflammatory activation in functionally defined S1/M1 in pain-free individuals (n = 8) and individuals with chronic LBP (n = 9; nociceptive: n = 4, nociplastic: n = 5). Regions of S1/M1 related to the back were identified using fMRI during motor tasks and thermal stimuli. Sensorimotor measures included single and paired-pulse transcranial magnetic stimulation (TMS) and quantitative sensory testing (QST). Sleep, depression, disability and pain questionnaires were administered. RESULTS Neuroinflammatory activation was greater in the lower back cortical representation of S1/M1 of the nociplastic LBP group than both nociceptive LBP and pain-free groups. Neuroinflammatory activation in S1/M1 was positively correlated with sensitivity to hot (r = 0.52) and cold (r = 0.55) pain stimuli, poor sleep, depression, disability and BMI, and negatively correlated with intracortical facilitation (r = -0.41). CONCLUSION This preliminary proof-of-concept study suggests that neuroinflammation in back regions of S1/M1 in individuals with nociplastic LBP could plausibly explain some characteristic features of this LBP phenotype. SIGNIFICANCE STATEMENT Neuroinflammatory activation localized to sensorimotor areas of the brain in individuals with nociplastic pain might contribute to changes in sensory and motor function and aspects of central sensitization. If cause-effect relationships are established in longitudinal studies, this may direct development of therapies that target neuroinflammatory activation.
Collapse
Affiliation(s)
- Muath A Shraim
- The University of Queensland, School of Health & Rehabilitation Sciences, St Lucia, Queensland, Australia
| | - Hugo Massé-Alarie
- The University of Queensland, School of Health & Rehabilitation Sciences, St Lucia, Queensland, Australia
- Centre Interdisciplinaire de Recherche en réadaptation et Integration Sociale (CIRRIS), Université Laval, Québec City, Québec, Canada
| | - Michael J Farrell
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Rocco Cavaleri
- Brain Stimulation and Rehabilitation Lab, Western Sydney University, School of Health Sciences, Sydney, New South Wales, Australia
| | - Marco L Loggia
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul W Hodges
- The University of Queensland, School of Health & Rehabilitation Sciences, St Lucia, Queensland, Australia
| |
Collapse
|
4
|
Massé-Alarie H, Shraim M, Hodges PW. Sensorimotor Integration in Chronic Low Back Pain. Neuroscience 2024; 552:29-38. [PMID: 38878816 DOI: 10.1016/j.neuroscience.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/02/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
OBJECTIVE Chronic low back pain (CLBP) impacts on spine movement. Altered sensorimotor integration can be involved. Afferents from the lumbo-pelvic area might be processed differently in CLBP and impact on descending motor control. This study aimed to determine whether afferents influence the corticomotor control of paravertebral muscles in CLBP. Fourteen individuals with CLBP (11 females) and 13 pain-free controls (8 females) were tested with transcranial magnetic stimulation (TMS) to measure the motor-evoked potential [MEP] amplitude of paravertebral muscles. Noxious and non-noxious electrical stimulation, and magnetic stimulation in the lumbo-sacral area were used as afferent stimuli and triggered 20 to 200 ms prior to TMS. EMG modulation elicited by afferent stimulation alone was measured to control net motoneuron excitability. MEP/EMG ratio was used as a measure of corticospinal excitability with control of net motoneuron excitability. MEP/EMG ratio was larger at 60, 80 and 100-ms intervals in CLBP compared to controls, and afferent stimulations alone reduced EMG amplitude greater in CLBP than controls at 100 ms. Our results suggest alteration in sensorimotor integration in CLBP highlighted by a greater facilitation of the descending corticospinal input to paravertebral muscles. Our results can help to optimise interventions by better targeting mechanisms.
Collapse
Affiliation(s)
- Hugo Massé-Alarie
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, Brisbane, QLD, Australia; Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (CIRRIS), Université Laval, Québec, Canada.
| | - Muath Shraim
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, Brisbane, QLD, Australia
| | - Paul W Hodges
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Klerx SP, Bruijn SM, Coppieters MW, Kiers H, Twisk JWR, Pool-Goudzwaard AL. Differences in the organization of the primary motor cortex in people with and without low back pain and associations with motor control and sensory tests. Exp Brain Res 2024; 242:1609-1622. [PMID: 38767666 PMCID: PMC11208231 DOI: 10.1007/s00221-024-06844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Differences in organization of the primary motor cortex and altered trunk motor control (sensing, processing and motor output) have been reported in people with low back pain (LBP). Little is known to what extent these differences are related. We investigated differences in 1) organization of the primary motor cortex and 2) motor and sensory tests between people with and without LBP, and 3) investigated associations between the organization of the primary motor cortex and motor and sensory tests. We conducted a case-control study in people with (N=25) and without (N=25) LBP. The organization of the primary motor cortex (Center of Gravity (CoG) and Area of the cortical representation of trunk muscles) was assessed using neuronavigated transcranial magnetic stimulation, based on individual MRIs. Sensory tests (quantitative sensory testing, graphaesthesia, two-point discrimination threshold) and a motor test (spiral-tracking test) were assessed. Participants with LBP had a more lateral and lower location of the CoG and a higher temporal summation of pain. For all participants combined, better vibration test scores were associated with a more anterior, lateral, and lower CoG and a better two-point discrimination threshold was associated with a lower CoG. A small subset of variables showed significance. Although this aligns with the concept of altered organization of the primary motor cortex in LBP, there is no strong evidence of the association between altered organization of the primary motor cortex and motor and sensory test performance in LBP. Focusing on subgroup analyses regarding pain duration can be a topic for future research.
Collapse
Affiliation(s)
- Sabrine P Klerx
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands.
- Research Group Lifestyle and Health, HU University of Applied Sciences, Utrecht, The Netherlands.
| | - Sjoerd M Bruijn
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Institute of Brain and Behaviour , Amsterdam, The Netherlands
| | - Michel W Coppieters
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- School of Health Sciences and Social Work, Menzies Health Institute Queensland, Brisbane and Gold Coast, Griffith University, Brisbane and Gold Coast, Australia
| | - Henri Kiers
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Research Group Lifestyle and Health, HU University of Applied Sciences, Utrecht, The Netherlands
- Research Centre for Digital Business and Media, HU University of Applied Sciences, Utrecht, The Netherlands
| | - Jos W R Twisk
- Department of Epidemiology and Data Science, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Annelies L Pool-Goudzwaard
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- SOMT University of Physiotherapy, Amersfoort, The Netherlands
| |
Collapse
|
6
|
Carayannopoulos A, Johnson D, Lee D, Giuffrida A, Poply K, Mehta V, Amann M, Santillo D, Ghandour Y, Koch A, Langhorst M, Heros R. Precision Rehabilitation After Neurostimulation Implantation for Multifidus Dysfunction in Nociceptive Mechanical Chronic Low Back Pain. Arch Rehabil Res Clin Transl 2024; 6:100333. [PMID: 39006113 PMCID: PMC11240036 DOI: 10.1016/j.arrct.2024.100333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Chronic low back pain (CLBP) is a debilitating, painful, and costly condition. Implantable neuromuscular electrical stimulation targeting the multifidus musculature is growing as a non-pharmacologic option for patients with recalcitrant nociceptive mechanical CLBP who have failed conservative treatments (including medications and physical therapy) and for whom surgery is not indicated. Properly selecting patients who meet specific criteria (based on historical results from randomized controlled trials), who diligently adhere to implant usage and precisely implement neuromuscular rehabilitation, improve success of significant functional recovery, as well as pain medication reductions. Patients with nociceptive mechanical CLBP who underwent implanted multifidus neurostimulation have been treated by physicians and rehabilitation specialists who have honed their experience working with multifidus neurostimulation. They have collaborated on consensus and evidence-driven guidelines to improve quality outcomes and to assist providers when encountering patients with this device. Physicians and physical therapists together provide precision patient-centric medical management with quality neuromuscular rehabilitation to encourage patients to be experts of both their implants and quality spine motion to help override long-standing multifidus dysfunction related to their CLBP.
Collapse
Affiliation(s)
- Alexios Carayannopoulos
- Departments of Neurosurgery and Neurology, Brown University/Warren Alpert Medical School, Providence, RI
| | - David Johnson
- A City to Coast Neurosurgery, Brisbane, Queensland, Australia
| | - David Lee
- Fullerton Orthopedic Surgery Medical Group, Fullerton, CA
| | - Anthony Giuffrida
- Cantor Spine Center, Paley Orthopedic & Spine Institute, Fort Lauderdale, FL
| | - Kavita Poply
- Queen Mary University of London/St. Bartholomew's Hospital/Health NHS Trust, London, UK
| | - Vivek Mehta
- St. Bartholomew's Hospital/Health NHS Trust, London, UK
| | - Marco Amann
- Orthopädische Klinik Schloss Werneck, Germany
| | | | - Yousef Ghandour
- Physical Rehabilitation Network/University of St. Augustine for Health Sciences, San Diego, CA
| | - Amy Koch
- Methodist Health System, Omaha, NE
| | | | | |
Collapse
|
7
|
Tieppo Francio V, Westerhaus BD, Carayannopoulos AG, Sayed D. Multifidus dysfunction and restorative neurostimulation: a scoping review. PAIN MEDICINE (MALDEN, MASS.) 2023; 24:1341-1354. [PMID: 37439698 PMCID: PMC10690869 DOI: 10.1093/pm/pnad098] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/14/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023]
Abstract
OBJECTIVE Chronic low back pain (CLBP) is multifactorial in nature, with recent research highlighting the role of multifidus dysfunction in a subset of nonspecific CLBP. This review aimed to provide a foundational reference that elucidates the pathophysiological cascade of multifidus dysfunction, how it contrasts with other CLBP etiologies and the role of restorative neurostimulation. METHODS A scoping review of the literature. RESULTS In total, 194 articles were included, and findings were presented to highlight emerging principles related to multifidus dysfunction and restorative neurostimulation. Multifidus dysfunction is diagnosed by a history of mechanical, axial, nociceptive CLBP and exam demonstrating functional lumbar instability, which differs from other structural etiologies. Diagnostic images may be used to grade multifidus atrophy and assess other structural pathologies. While various treatments exist for CLBP, restorative neurostimulation distinguishes itself from traditional neurostimulation in a way that treats a different etiology, targets a different anatomical site, and has a distinctive mechanism of action. CONCLUSIONS Multifidus dysfunction has been proposed to result from loss of neuromuscular control, which may manifest clinically as muscle inhibition resulting in altered movement patterns. Over time, this cycle may result in potential atrophy, degeneration and CLBP. Restorative neurostimulation, a novel implantable neurostimulator system, stimulates the efferent lumbar medial branch nerve to elicit repetitive multifidus contractions. This intervention aims to interrupt the cycle of dysfunction and normalize multifidus activity incrementally, potentially restoring neuromuscular control. Restorative neurostimulation has been shown to reduce pain and disability in CLBP, improve quality of life and reduce health care expenditures.
Collapse
Affiliation(s)
- Vinicius Tieppo Francio
- Department of Physical Medicine & Rehabilitation, The University of Kansas Medical Center, Kansas City, KS 66160, United States
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Benjamin D Westerhaus
- Cantor Spine Institute at the Paley Orthopedic & Spine Institute, West Palm Beach, FL 33407, United States
| | - Alexios G Carayannopoulos
- Department of Neurosurgery and Neurology, Warren Alpert Medical School of Brown University, Providence, RI 02903, United States
| | - Dawood Sayed
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, United States
| |
Collapse
|
8
|
Wittkopf PG, Boye Larsen D, Gregoret L, Graven-Nielsen T. Disrupted Cortical Homeostatic Plasticity Due to Prolonged Capsaicin-induced Pain. Neuroscience 2023; 533:1-9. [PMID: 37774909 DOI: 10.1016/j.neuroscience.2023.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
Homeostatic plasticity (HP) regulates cortical excitability (CE) stability but is disrupted in persistent pain conditions. This study investigated how prolonged experimental pain affects HP and if pain relief modulates disrupted HP. Twenty-four healthy participants were randomised into a PainRelief or NoPainRelief group and attended four sessions; two sessions on consecutive days, separated by two weeks. Transcranial magnetic stimulation motor-evoked potentials reflecting CE and quantitative sensory testing (QST) measures were recorded. A capsaicin (pain condition) or placebo (control condition) patch was applied to the hand. HP was induced by cathodal-cathodal transcranial direct current stimulation (HP1) with CE assessment before and after. The PainRelief group had ice applied to the patch, while the NoPainRelief group waited for five minutes; subsequently another HP induction (HP2) and CE assessment were performed. After 24 h with the patch on, HP induction (HP3), QST, and CE recordings were repeated. Capsaicin reduced CE and the pain condition showed disrupted homeostatic responses at all time points (HP1: showed CE inhibition instead of facilitation; HP2 & HP3: lack of CE facilitation). Conversely, homeostatic responses were induced at all time points for the placebo condition. Capsaicin pain disrupts HP which is not restored by ice-induced pain relief. Future research may explore the prevention of HP disruption by targeting capsaicin-induced nociception but not pain perception.
Collapse
Affiliation(s)
- Priscilla Geraldine Wittkopf
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, 9260 Gistrup, Aalborg, Denmark
| | - Dennis Boye Larsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, 9260 Gistrup, Aalborg, Denmark
| | - Luisina Gregoret
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, 9260 Gistrup, Aalborg, Denmark
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, 9260 Gistrup, Aalborg, Denmark.
| |
Collapse
|
9
|
Wattananon P, Thu KW, Maharjan S, Sornkaew K, Wang HK. Cortical excitability and multifidus activation responses to transcranial direct current stimulation in patients with chronic low back pain during remission. Sci Rep 2023; 13:16242. [PMID: 37758911 PMCID: PMC10533487 DOI: 10.1038/s41598-023-43597-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023] Open
Abstract
Evidence indicates that patients with chronic low back pain (CLBP) have lumbar multifidus muscle (LM) activation deficit which might be caused by changes in cortical excitability. Anodal transcranial direct current stimulation (a-tDCS) can be used to restore cortical excitability. This study aimed to (1) determine the immediate effects of a-tDCS on the cortical excitability and LM activation and (2) explore the relationship between cortical excitability and LM activation. Thirteen participants with CLBP during remission and 11 healthy participants were recruited. Cortical excitability (peak-to-peak motor evoked potential amplitude; P2P and cortical silent period; CSP) and LM activation were measured at pre- and post-intervention. We found significant difference (P < 0.05) in P2P between groups. However, no significant differences (P > 0.05) in P2P, CSP and LM activation were found between pre- and post-intervention in CLBP. The CLBP group demonstrated significant correlation (P = 0.05) between P2P and LM activation. Although our finding demonstrates change in P2P in the CLBP group, one-session of a-tDCS cannot induce changes in cortical excitability and LM activation. However, moderate to strong correlation between P2P and LM activation suggests the involvement of cortical level in LM activation deficit. Therefore, non-significant changes could have been due to inadequate dose of a-tDCS.
Collapse
Affiliation(s)
- Peemongkon Wattananon
- Spine Biomechanics Laboratory, Faculty of Physical Therapy, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, 73170, Nakhon Pathom, Thailand.
| | - Khin Win Thu
- Spine Biomechanics Laboratory, Faculty of Physical Therapy, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, 73170, Nakhon Pathom, Thailand
| | - Soniya Maharjan
- Spine Biomechanics Laboratory, Faculty of Physical Therapy, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, 73170, Nakhon Pathom, Thailand
| | - Kanphajee Sornkaew
- Department of Physical Therapy, Faculty of Allied Health Sciences, Naresuan University, 99 Nakhonsawan-Phitsanulok Road, Tumbon Thapho, Phitsanulok, 65000, Thailand
| | - Hsing-Kuo Wang
- Sports Physiotherapy Lab, School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, No.17, Xuzhou Rd., Zhongzheng District, Taipei City 100, Taiwan
| |
Collapse
|
10
|
Zhang C, Chen X, Yin Y, Xie D, Luo J, Ai Y, Zhan W, Kan H, Zhang S, Jiang G, Hu X. Functional Alterations of the Basal Ganglia Are Associated with Voluntary Activation of the Core Stabilizing Muscles in Patients with Chronic Low Back Pain: A Cross-Sectional Study. Pain Res Manag 2023; 2023:2028379. [PMID: 37693681 PMCID: PMC10484657 DOI: 10.1155/2023/2028379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/15/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023]
Abstract
Purpose Deficits in voluntary activation of the core stabilizing muscles are consistently observed in patients with chronic low back pain (CLBP); however, the underlying neural mechanism remains unclear. This cross-sectional study aimed at testing the hypothesis that the impaired voluntary activation of core stabilizing muscles is associated with structural and functional alterations in the basal ganglia, thalamus, and cortex in patients with CLBP. Methods We obtained structural and resting-state functional magnetic resonance imaging (rs-fMRI) data from 53 patients with CLBP and 67 healthy controls and estimated the alterations in grey matter volume (GMV) and functional and effective connectivity (EC) of regions with altered GMV via whole brain analysis. The voluntary activation of the multifidus (MF) and transversus abdominis (TrA) was evaluated by ultrasound imaging in these patients. Results Compared with the HCs, they displayed a significant decrease in GMV in the bilateral thalamus and caudate nucleus, a significant increase in GMV in the left middle frontal gyrus, and increased resting-state functional connectivity between the right caudate nucleus and the bilateral precuneus (voxel-level p < 0.005, Gaussian random field-corrected p < 0.05). The patients also showed increased EC from the right caudate nucleus to the bilateral precuneus, which was significantly correlated with voluntary activation of the bilateral MF and TrA (all p < 0.050). Conclusions Grey matter alterations may be confined to regions responsible for perception, motor control, and emotion regulation in patients with CLBP. The interrupted EC from the basal ganglia to the default mode network might be involved in the impairment of voluntary activation of the core stabilizing muscles.
Collapse
Affiliation(s)
- Chanjuan Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yi Yin
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Dongfeng Xie
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yinan Ai
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Wenfeng Zhan
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Hongjun Kan
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Shuxian Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
11
|
Massé-Alarie H, Hamer GV, Salomoni SE, Hodges PW. Nociceptive withdrawal reflexes of the trunk muscles in chronic low back pain. PLoS One 2023; 18:e0286786. [PMID: 37315085 DOI: 10.1371/journal.pone.0286786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/23/2023] [Indexed: 06/16/2023] Open
Abstract
Individuals with chronic low back pain (CLBP) move their spine differently. Changes in brain motor areas have been observed and suggested as a mechanism underlying spine movement alteration. Nociceptive withdrawal reflex (NWR) might be used to test spinal networks involved in trunk protection and to highlight reorganization. This study aimed to determine whether the organization and excitability of the trunk NWR are modified in CLBP. We hypothesized that individuals with CLBP would have modified NWR patterns and lower NWR thresholds. Noxious electrical stimuli were delivered over S1, L3 and T12, and the 8th Rib to elicit NWR in 12 individuals with and 13 individuals without CLBP. EMG amplitude and occurrence of lumbar multifidus (LM), thoracic erector spinae, rectus abdominus, obliquus internus and obliquus externus motor responses were recorded using surface electrodes. Two different patterns of responses to noxious stimuli were identified in CLBP compared to controls: (i) abdominal muscle NWR responses were generally more frequent following 8th rib stimulation and (ii) occurrence of erector spinae NWR was less frequent. In addition, we observed a subgroup of participants with very high NWR threshold in conjunction with the larger abdominal muscle responses. These results suggest sensitization of NWR is not present in all individuals with CLBP, and a modified organization in the spinal networks controlling the trunk muscles that might explain some changes in spine motor control observed in CLBP.
Collapse
Affiliation(s)
- Hugo Massé-Alarie
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, Brisbane, Qld, Australia
- Université Laval, Cirris, CIUSSS-Capitale Nationale, Quebec City, Qc, Canada
| | - Genevieve V Hamer
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, Brisbane, Qld, Australia
| | - Sauro E Salomoni
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, Brisbane, Qld, Australia
| | - Paul W Hodges
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, Brisbane, Qld, Australia
| |
Collapse
|
12
|
Knox PJ, Simon CB, Pohlig RT, Pugliese JM, Coyle PC, Sions JM, Hicks GE. Movement-Evoked Pain Versus Widespread Pain: A Longitudinal Comparison in Older Adults With Chronic Low Back Pain From the Delaware Spine Studies. THE JOURNAL OF PAIN 2023; 24:980-990. [PMID: 36706887 PMCID: PMC10257757 DOI: 10.1016/j.jpain.2023.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/20/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
It is currently unknown which pain-related factors contribute to long-term disability and poorer perceived health among older adults with chronic low back pain (LBP). This investigation sought to examine the unique influence of movement-evoked pain (MeP) and widespread pain (WP) on longitudinal health outcomes (ie, gait speed, perceived disability, and self-efficacy) in 250 older adults with chronic LBP. MeP was elicited with 3 standardized functional tests, while presence of WP was derived from the McGill Pain Map. Robust regression with HC3 standard errors was used to examine associations between these baseline pain variables and health outcomes at 12-month follow-up. Covariates for these models included age, sex, body mass index, resting and recall LBP intensity, LBP duration, depression, pain catastrophizing, and baseline outcome (eg, baseline gait speed). Greater MeP was independently associated with worse 12-month LBP-related disability (b = .384, t = 2.013, P = .046) and poorer self-efficacy (b = -.562, t = -2.074, P = .039); but not gait speed (P > .05). In contrast, WP and resting and recall LBP intensity were not associated with any prospective health outcome after adjustment (all P > .05). Compared to WP and resting and recall LBP intensity, MeP is most strongly related to longitudinal health outcomes in older adults with chronic LBP. PERSPECTIVE: This article establishes novel independent associations between MeP and worse perceived disability and self-efficacy at 12-months in older adults with chronic LBP. MeP likely has biopsychosocial underpinnings and consequences and may therefore be an important determinant of health outcomes in LBP and other geriatric chronic pain populations.
Collapse
Affiliation(s)
- Patrick J Knox
- Department of Physical Therapy, University of Delaware, Newark, Delaware
| | - Corey B Simon
- Department of Orthopaedic Surgery, Physical Therapy Division, Duke University, Durham, North Carolina
| | - Ryan T Pohlig
- Department of Epidemiology, University of Delaware, Newark, Delaware; Biostatistics Core, University of Delaware, Newark, Delaware
| | - Jenifer M Pugliese
- Department of Physical Therapy, University of Delaware, Newark, Delaware
| | - Peter C Coyle
- Department of Physical Therapy, University of Delaware, Newark, Delaware
| | - Jaclyn M Sions
- Department of Physical Therapy, University of Delaware, Newark, Delaware
| | - Gregory E Hicks
- Department of Physical Therapy, University of Delaware, Newark, Delaware.
| |
Collapse
|
13
|
Desmons M, Theberge M, Mercier C, Massé-Alarie H. Contribution of neural circuits tested by transcranial magnetic stimulation in corticomotor control of low back muscle: a systematic review. Front Neurosci 2023; 17:1180816. [PMID: 37304019 PMCID: PMC10247989 DOI: 10.3389/fnins.2023.1180816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Transcranial magnetic stimulation (TMS) is widely used to investigate central nervous system mechanisms underlying motor control. Despite thousands of TMS studies on neurophysiological underpinnings of corticomotor control, a large majority of studies have focused on distal muscles, and little is known about axial muscles (e.g., low back muscles). Yet, differences between corticomotor control of low back and distal muscles (e.g., gross vs. fine motor control) suggest differences in the neural circuits involved. This systematic review of the literature aims at detailing the organisation and neural circuitry underlying corticomotor control of low back muscles tested with TMS in healthy humans. Methods The literature search was performed in four databases (CINAHL, Embase, Medline (Ovid) and Web of science) up to May 2022. Included studies had to use TMS in combination with EMG recording of paraspinal muscles (between T12 and L5) in healthy participants. Weighted average was used to synthesise quantitative study results. Results Forty-four articles met the selection criteria. TMS studies of low back muscles provided consistent evidence of contralateral and ipsilateral motor evoked potentials (with longer ipsilateral latencies) as well as of short intracortical inhibition/facilitation. However, few or no studies using other paired pulse protocols were found (e.g., long intracortical inhibition, interhemispheric inhibition). In addition, no study explored the interaction between different cortical areas using dual TMS coil protocol (e.g., between primary motor cortex and supplementary motor area). Discussion Corticomotor control of low back muscles are distinct from hand muscles. Our main findings suggest: (i) bilateral projections from each single primary motor cortex, for which contralateral and ipsilateral tracts are probably of different nature (contra: monosynaptic; ipsi: oligo/polysynaptic) and (ii) the presence of intracortical inhibitory and excitatory circuits in M1 influencing the excitability of the contralateral corticospinal cells projecting to low back muscles. Understanding of these mechanisms are important for improving the understanding of neuromuscular function of low back muscles and to improve the management of clinical populations (e.g., low back pain, stroke).
Collapse
Affiliation(s)
- Mikaël Desmons
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- Rehabilitation Department, Université Laval, Quebec, QC, Canada
| | - Michael Theberge
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- Rehabilitation Department, Université Laval, Quebec, QC, Canada
| | - Hugo Massé-Alarie
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- Rehabilitation Department, Université Laval, Quebec, QC, Canada
| |
Collapse
|
14
|
Shraim MA, Massé-Alarie H, Salomoni SE, Hodges PW. The effect of skilled motor training on corticomotor control of back muscles in different presentations of low back pain. J Electromyogr Kinesiol 2023; 71:102782. [PMID: 37290203 DOI: 10.1016/j.jelekin.2023.102782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) has revealed differences in the motor cortex (M1) between people with and without low back pain (LBP). There is potential to reverse these changes using motor skill training, but it remains unclear whether changes can be induced in people with LBP or whether this differs between LBP presentations. This study (1) compared TMS measures of M1 (single and paired-pulse) and performance of a motor task (lumbopelvic tilting) between individuals with LBP of predominant nociceptive (n = 9) or nociplastic presentation (n = 9) and pain-free individuals (n = 16); (2) compared these measures pre- and post-training; and (3) explored correlations between TMS measures, motor performance, and clinical features. TMS measures did not differ between groups at baseline. The nociplastic group undershot the target in the motor task. Despite improved motor performance for all groups, only MEP amplitudes increased across the recruitment curve and only for the pain-free and nociplastic groups. TMS measures did not correlate with motor performance or clinical features. Some elements of motor task performance and changes in corticomotor excitability differed between LBP groups. Absence of changes in intra-cortical TMS measures suggests regions other than M1 are likely to be involved in skill learning of back muscles.
Collapse
Affiliation(s)
- Muath A Shraim
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD 4072, Australia
| | - Hugo Massé-Alarie
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD 4072, Australia; Centre interdisciplinaire de recherche en réadaptation et integration sociale (CIRRIS), Université Laval, Québec, QC G1V 0A6, Canada
| | - Sauro E Salomoni
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD 4072, Australia
| | - Paul W Hodges
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD 4072, Australia.
| |
Collapse
|
15
|
Effect of Cognitive Load on Anticipatory Postural Adjustment Latency and its Relationship with Pain-Related Dysfunction in Non-specific Chronic Low Back Pain: A Cross-Sectional Study. Pain Ther 2023; 12:723-735. [PMID: 36932302 PMCID: PMC10199985 DOI: 10.1007/s40122-023-00495-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
INTRODUCTION This study aimed to investigate the effect of cognitive load on anticipatory postural adjustment (APA) latency in patients with non-specific chronic low back pain (NCLBP) and its relationship with pain-related functional changes. METHODS A cross-sectional study was conducted from December 15, 2022 to January 25, 2023. Participants were divided into a healthy control group (n = 29) and an NCLBP group (n = 29). Each group was assigned a single task of rapid arm raising and a dual task of rapid arm raising combined with a cognitive load. The cognitive load task was conducted using visual conflict. The APA latency for bilateral trunk muscles was observed using electromyography. The duration of electromyography recording in each task cycle was 28 s. Pain related-functional changes were evaluated using Roland-Morris Disability Questionnaire (RMDQ) before all tasks. RESULTS The APA latency for the right multifidus was significantly delayed in the NCLBP group [25.38, 95% confidence interval (CI) 13.41-37.35] than in the healthy control group (- 5.80, 95% CI - 19.28 to 7.68) during dual task (p = 0.0416). The APA latency for the right multifidus (25.38, 95% CI 13.41-37.35) and transverse abdominis/internal oblique (29.15, 95% CI 18.81-39.50) were significantly delayed compared with on the left side in the NCLBP group during dual task (- 3.03, 95% CI - 15.18-9.13, p = 0.0220; 3.69, 95% CI - 6.81 to 14.18, p = 0.0363). The latency delay of the right and left multifidus APA in the NCLBP group under the dual-task was positively correlated with RMDQ scores (r = 0.5560, p = 0.0017; r = 0.4010, p = 0.0311). CONCLUSIONS Cognitive load could induce APA delay in the right trunk muscles and co-activation pattern changes in bilateral trunk muscle APA in patients with NCLBP. The APA onset delay in multifidus is positively related to pain-related daily dysfunction. Trial Registration ChiCTR2300068580 (retrospectively registered in February 23, 2023).
Collapse
|
16
|
Associations between primary motor cortex organization, motor control and sensory tests during the clinical course of low back pain. A protocol for a cross-sectional and longitudinal case-control study. Contemp Clin Trials Commun 2022; 30:101022. [PMID: 36387987 PMCID: PMC9647172 DOI: 10.1016/j.conctc.2022.101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Background In people with low back pain (LBP), altered motor control has been related to reorganization of the primary motor cortex (M1). Sensory impairments in LBP have also been suggested to be associated with reorganization of M1. Little is known about reorganization of M1 over time in people with LBP, and whether it relates to changes in motor control and sensory impairments and recovery. This study aims to investigate 1) differences in organization of M1 of trunk muscles between people with and without LBP, and whether the organization of M1 relates to motor control and sensory impairments (cross-sectional component) and 2) reorganization of M1 over time and its relation with changes in motor control and sensory impairments and experienced recovery (longitudinal component). Methods A case-control study with a cross-sectional and five-week longitudinal component is conducted in participants with LBP (N = 25) and participants without LBP (N = 25). Participants with LBP received usual care physiotherapy. Various tests were administered at baseline and follow-up. Following an anatomical MRI, organization of M1 (Center of Gravity and Area of the cortical representation of trunk muscles) was determined using transcranial magnetic stimulation. Quantitative sensory testing, a spiral-tracking motor control test, graphesthesia, two-point discrimination threshold and various self-reported questionnaires were also assessed. Multivariate multilevel analysis will be used for statistical analysis. Conclusion We will address the gaps in knowledge about the association between reorganization of M1 and motor control and sensory tests during the clinical course of LBP. This study is registered at DOI 10.17605/OSF.IO/5C8ZG. We assess relations between the organization of M1 and motor and sensory tests. This study provides insight in the organization of M1 in LBP in relation to recovery. The organization of M1 is assessed via TMS. We used whole-brain MRI's for high accuracy of representation of muscles on M1. We will use multivariate mixed model analysis to relate M1, motor and sensory tests.
Collapse
|
17
|
Haeri F, Torre D. Application of Feedback Type on Performance of Abdominal Drawing-In Maneuver in Healthy Adults: A Quasi-Experimental Study of Motor Control and Motor Learning. J Manipulative Physiol Ther 2022; 45:671-680. [PMID: 37306649 DOI: 10.1016/j.jmpt.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 06/13/2023]
Abstract
OBJECTIVE The aim of this study was to compare the effects of verbal, tactile-verbal, and visual feedback on muscle activation of the lumbar stabilizers relative to extremity movers during an abdominal drawing-in maneuver when feedback is withheld. METHODS This quasi-experimental study equally divided 54 healthy adults into 3 feedback groups (verbal, tactile-verbal, and visual) who trained twice per week over a 4-week period to perform supine abdominal drawing-in maneuvers. The percentage of maximum voluntary isometric contraction of rectus abdominis, multifidus (MF), erector spinae, and hamstrings (HS) as an outcome measure was acquired using surface electromyography. A 2-way factorial analysis of variance with bootstrapping allowed for comparison of post-pre difference scores across the interaction of feedback and muscle groups. RESULTS Hamstring activation decreased in those receiving tactile-verbal feedback relative to an increase in participants given visual feedback. Furthermore, when using verbal feedback, HS activity increased relative to a decline in rectus abdominis, and when presenting visual feedback, HS activity increased relative to a decrease in MF. However, no post-pre changes were seen across muscles with tactile-verbal feedback. CONCLUSION Although tactile-verbal feedback did not increase MF recruitment, it produced less HS activity than visual feedback. Undesirable HS recruitment may reflect boredom or feedback dependency.
Collapse
Affiliation(s)
- Farhad Haeri
- Physical Therapy Program, School of Health Professions, SUNY Downstate Health Sciences University, Brooklyn, New York.
| | - Dennis Torre
- Physical Therapy Program, School of Health Professions, SUNY Downstate Health Sciences University, Brooklyn, New York
| |
Collapse
|
18
|
Motor control of the spine in pregnancy-related lumbopelvic pain: A systematic review. Clin Biomech (Bristol, Avon) 2022; 98:105716. [PMID: 35843136 DOI: 10.1016/j.clinbiomech.2022.105716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Some studies observed differences in motor control of the spine between women with pregnancy-related lumbopelvic pain and matched controls. Understanding alterations in spine motor control may help optimizing treatment in this population. The objective is to determine if there are differences in motor control of the spine in pregnant and post-partum women with and without pregnancy-related lumbopelvic pain. METHODS Five databases were searched: MEDLINE, Embase, CINAHL, Web of Science and Evidence-Based Medicine Reviews (last search: February 4th 2021). Observational studies that compared motor control of the lumbopelvic spine (in terms of muscle activation [e.g. using EMG or ultrasound imaging] or kinematics) between women with pregnancy-related lumbopelvic pain and matched controls were included. Risk of bias was assessed with a modified version of STROBE statement for cross-sectional studies. No meta-analysis was performed. FINDING Fifteen studies were included. Compared to matched controls, pregnant women with pregnancy-related lumbopelvic pain showed differences in lumbar spine kinematic during walking and lifting, although not consistent between studies. The only consistent results were higher transversus abdominis muscle activation during leg movements in post-partum pregnancy-related lumbopelvic pain. Differences in pelvic floor muscle function was inconsistent. INTERPRETATION This systematic review identified multiple differences in motor control in pregnancy-related lumbopelvic pain population, predominantly in dynamic tasks. However, consistent differences in lumbopelvic spine motor control were rare. More studies are necessary to determine if motor control is different in pregnancy-related lumbopelvic pain to better understand alteration in motor control and to optimize the efficacy of rehabilitation treatments.
Collapse
|
19
|
Li X, Zhang H, Lo WLA, Ge L, Miao P, Liu H, Li L, Wang C. Sling Exercise Can Drive Cortical Representation of the Transversus Abdominis and Multifidus Muscles in Patients With Chronic Low Back Pain. Front Neurol 2022; 13:904002. [PMID: 35903113 PMCID: PMC9315065 DOI: 10.3389/fneur.2022.904002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThe transversus abdominis (TrA) and multifidus (MF) muscles are essential in preventing chronic low back pain (CLBP) recurrence by maintaining segmental stabilization and stiffness. Sling exercise is a high-level core stability training to effectively improve the activities of the TrA and MF muscles. However, the neural mechanism for sling exercise-induced neural plasticity change in the primary motor cortex (M1) remains unclear. This study aimed to investigate the role of sling exercise in the reorganization of the motor cortical representation of the TrA and MF muscles.MethodsTwenty patients with CLBP and 10 healthy individuals were recruited. For map volume, area, the center of gravity (CoG) location (medial-lateral location and anterior-posterior location), and latency, two-way ANOVA was performed to compare the effects of groups (the CLBP-pre, CLBP-post, and healthy groups) and the two muscles (the TrA and MF muscles). The Visual Analog Scale (VAS), the Oswestry Disability Index (ODI), and postural balance stability were assessed at baseline and at the end of 2 weeks of sling exercise. Linear correlations between VAS or ODI and CoG locations were assessed by Pearson's correlation test.Results2 weeks of sling exercise induced both the anterior-medial (P < 0.001) and anterior-posterior (P = 0.025) shifts of the MF muscle representation at the left motor cortex in patients with CLBP. Anterior-medial (P = 0.009) shift of the TrA muscle representation at the right motor cortex was observed in patients with CLBP. The motor cortical representation of the two muscles in patients with CLBP after sling exercise (TrA: 2.88 ± 0.27 cm lateral and 1.53 ± 0.47 cm anterior of vertex; MF: 3.02 ± 0.48 cm lateral and 1.62 ± 0.40 cm anterior of vertex) closely resembled that observed in healthy individuals (TrA: 2.83 ± 0.48 cm lateral and 2.00 ± 0.43 cm anterior of vertex; MF: 2.94 ± 0.43 cm lateral and 1.77 ± 0.48 cm anterior of vertex). The VAS and the ODI were reduced following the sling exercise (VAS: P < 0.001; ODI: P < 0.001).ConclusionThis study provides evidence that sling training can drive plasticity changes in the motor system, which corresponds with the reduction in pain and disability levels in patients with CLBP. This study was registered in the Chinese Clinical Trial Registry (Clinical Trial Registration Number: ChiCTR2100045904, http://www.chictr.org.cn/showproj.aspx?proj=125819).Clinical Trial RegistrationChiCTR2100045904.
Collapse
Affiliation(s)
- Xin Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haojie Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Le Ge
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ping Miao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Howe Liu
- School of Health Sciences, Allen College, Waterloo, IA, United States
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
- *Correspondence: Le Li
| | - Chuhuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Chuhuai Wang
| |
Collapse
|
20
|
Neuromuscular Consequences of Lumbopelvic Dysfunction: Research and Clinical Perspectives. J Sport Rehabil 2022; 31:742-748. [PMID: 35894966 DOI: 10.1123/jsr.2021-0258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 05/10/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022]
Abstract
Injuries involving the lumbopelvic region (ie, lumbar spine, pelvis, hip) are common across the lifespan and include pathologies such as low back pain, femoroacetabular impingement syndrome, labrum tear, and osteoarthritis. Joint injury is known to result in an arthrogenic muscle response which contributes to muscle weakness and altered movement patterns. The purpose of this manuscript is to summarize the arthrogenic muscle response that occurs across lumbopelvic region pathologies, identify methods to quantify muscle function, and propose suggestions for future research. While each lumbopelvic region pathology is unique, there are a few common impairments and a relative consistent arthrogenic muscle response that occurs across the region. Hip muscle weakness and hip joint range of motion limitations occur with both lumbar spine and hip pathologies, and individuals with low back pain are known to demonstrate inhibition of the transversus abdominis and multifidus. Assessment of muscle inhibition is often limited to research laboratory settings, but dynamometers, ultrasound imaging, and electromyography offer clinical capacity to quantify muscle function and inform treatment pathways. Future studies should systematically determine the arthrogenic muscle response across multiple muscle groups and the timeline for changes in muscle function and determine whether disinhibitory modalities improve functional outcomes beyond traditional treatment approaches.
Collapse
|
21
|
Oliveira DG, Oliveira GM, Kirkwood RN. Clinimetric Properties of the Applied Kinesiology Manual Muscle Test in Adults With and Without Pain: A Methodological Study. J Chiropr Med 2022; 21:260-269. [DOI: 10.1016/j.jcm.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
|
22
|
Chakravarthy K, Lee D, Tram J, Sheth S, Heros R, Manion S, Patel V, Kiesel K, Ghandour Y, Gilligan C. Restorative Neurostimulation: A Clinical Guide for Therapy Adoption. J Pain Res 2022; 15:1759-1774. [PMID: 35756364 PMCID: PMC9231548 DOI: 10.2147/jpr.s364081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/26/2022] [Indexed: 11/23/2022] Open
Abstract
In this review, we present a comprehensive clinical approach to restorative neurostimulation, a novel form of stimulation for refractory chronic mechanical low back pain, targeting impaired neuromuscular control and degeneration of the multifidus muscle. We focus on patient identification, technique guidance, and review of the scientific background and clinical evidence. As our understanding of back pain grows, there is clear evidence that impaired neuromuscular control and consequent degeneration of the multifidus muscle contribute to mechanical low back pain development and maintenance. We provide clinical guidance regarding an implantable restorative neurostimulation system that targets impaired neuromuscular control. Supported by results from a randomized, active-sham-controlled clinical trial with long-term follow-up, we provide clinicians with a comprehensive overview and practical clinical guidance for the adoption of this therapy modality.
Collapse
Affiliation(s)
- Krishnan Chakravarthy
- Department of Anesthesiology and Pain Medicine, University of California San Diego Health Sciences, San Diego, CA, USA.,VA San Diego Healthcare System, San Diego, CA, USA
| | - David Lee
- Fullerton Orthopedic Surgery Medical Group, Fullerton, CA, USA
| | - Jennifer Tram
- Department of Anesthesiology and Pain Medicine, University of California San Diego Health Sciences, San Diego, CA, USA
| | | | | | - Smith Manion
- Advent Health Pain Specialists, Merriam, KS, USA
| | - Vikas Patel
- Department of Orthopedic Surgery, University of Colorado, Denver, CO, USA
| | - Kyle Kiesel
- Department of Physical Therapy, University of Evansville, Evansville, IN, USA
| | - Yousef Ghandour
- Physical Rehabilitation Network (PRN), University of St. Augustine, San Diego, CA, USA
| | - Christopher Gilligan
- Division of Pain Medicine, Brigham & Women's Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Rohel A, Desmons M, Leonard G, Desgagnés A, da Silva R, Simoneau M, Mercier C, Massé-Alarie H. The influence of experimental low back pain on neural networks involved in the control of lumbar erector spinae muscles. J Neurophysiol 2022; 127:1593-1605. [PMID: 35608262 DOI: 10.1152/jn.00030.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Low back pain (LBP) often modifies spine motor control, but the neural origin of these motor control changes remains largely unexplored. This study aimed to determine the impact of experimental low back pain on the excitability of cortical, subcortical, and spinal networks involved in the control of back muscles. METHOD Thirty healthy subjects were recruited and allocated to Pain (capsaicin and heat) or Control (heat) groups. Corticospinal excitability (motor-evoked potential-MEP) and intracortical networks were assessed by single- and paired-pulse transcranial magnetic stimulation, respectively. Electrical vestibular stimulation was applied to assess vestibulospinal excitability (vestibular MEP-VMEP), and the stretch reflex for excitability of the spinal or supraspinal loop (R1 and R2, respectively). Evoked back motor responses were measured before, during and after pain induction. Nonparametric rank-based ANOVA determined if pain modulated motor neural networks. RESULTS A decrease of R1 amplitude was present after the pain disappearance (p=0.01) whereas an increase was observed in the control group (p=0.03) compared to the R1 amplitude measured at pre-pain and pre-heat period, respectively (Group x Time interaction - p<0.001). No difference in MEP and VMEP amplitude was present during and after pain (p>0.05). CONCLUSION During experimental LBP, no change in cortical, subcortical, or spinal networks was observed. After pain disappearance, the reduction of the R1 amplitude without modification of MEP and VMEP amplitude suggest a reduction in spinal excitability potentially combined with an increase in descending drives. The absence of effect during pain needs to be further explored.
Collapse
Affiliation(s)
- Antoine Rohel
- Cirris research centre, Centre intégré universitaire de santé et services sociaux (CIUSSS) de la Capitale-Nationale, Quebec City, Canada.,Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Mikaël Desmons
- Cirris research centre, Centre intégré universitaire de santé et services sociaux (CIUSSS) de la Capitale-Nationale, Quebec City, Canada.,Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Guillaume Leonard
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, Canada
| | - Amélie Desgagnés
- Cirris research centre, Centre intégré universitaire de santé et services sociaux (CIUSSS) de la Capitale-Nationale, Quebec City, Canada.,Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Rubens da Silva
- BioNR Research Lab, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Martin Simoneau
- Cirris research centre, Centre intégré universitaire de santé et services sociaux (CIUSSS) de la Capitale-Nationale, Quebec City, Canada.,Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Catherine Mercier
- Cirris research centre, Centre intégré universitaire de santé et services sociaux (CIUSSS) de la Capitale-Nationale, Quebec City, Canada.,Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Hugo Massé-Alarie
- Cirris research centre, Centre intégré universitaire de santé et services sociaux (CIUSSS) de la Capitale-Nationale, Quebec City, Canada.,Faculty of Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|
24
|
Chung YC, Chen CY, Chang CM, Lin YL, Liao KK, Lin HC, Chen WY, Yang YR, Shih YF. Altered corticospinal excitability of scapular muscles in individuals with shoulder impingement syndrome. PLoS One 2022; 17:e0268533. [PMID: 35576229 PMCID: PMC9109916 DOI: 10.1371/journal.pone.0268533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/02/2022] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study is to assess and compare corticospinal excitability in the upper and lower trapezius and serratus anterior muscles in participants with and without shoulder impingement syndrome (SIS). Fourteen participants with SIS, and 14 without SIS were recruited through convenient sampling in this study. Transcranial magnetic stimulation assessment of the scapular muscles was performed while the participants were holding their arm at 90 degrees scaption. The motor-evoked potential (MEP), active motor threshold (AMT), latency of MEP, cortical silent period (CSP), activated area and center of gravity (COG) of cortical mapping were compared between groups using the Mann-Whitney U tests. The SIS group demonstrated following significances, higher AMTs of the lower trapezius (SIS: 0.60 ± 0.06; Comparison: 0.54 ± 0.07, p = 0.028) and the serratus anterior (SIS: 0.59 ± 0.04; Comparison: 0.54 ± 0.06, p = 0.022), longer CSP of the lower trapezius (SIS: 62.23 ± 22.87 ms; Comparison: 45.22 ± 14.64 ms, p = 0.019), and posteriorly shifted COG in the upper trapezius (SIS: 1.88 ± 1.06; Comparison: 2.76 ± 1.55, p = 0.048) and the serratus anterior (SIS: 2.13 ± 1.02; Comparison: 3.12 ± 1.88, p = 0.043), than the control group. In conclusion, participants with SIS demonstrated different organization of the corticospinal system, including decreased excitability, increased inhibition, and shift in motor representation of the scapular muscles.
Collapse
Affiliation(s)
- Ya-Chu Chung
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chao-Ying Chen
- School of Physical Therapy, Chang Gung University, Tao-Yuan City, Taiwan
| | - Chia-Ming Chang
- Department of Physical Therapy, China Medical University, Taichung, Taiwan
| | - Yin-Liang Lin
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kwong-Kum Liao
- Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiu-Chen Lin
- Department of Physical Therapy, China Medical University, Taichung, Taiwan
| | - Wen-Yin Chen
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yea-Ru Yang
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Fen Shih
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
25
|
Shraim MA, Massé-Alarie H, Salomoni SE, Hodges PW. Can training of a skilled pelvic movement change corticomotor control of back muscles? Comparison of single and paired-pulse transcranial magnetic stimulation. Eur J Neurosci 2022; 56:3705-3719. [PMID: 35501123 PMCID: PMC9540878 DOI: 10.1111/ejn.15683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
Evidence suggests excitability of the motor cortex (M1) changes in response to motor skill learning of the upper limb. Few studies have examined immediate changes in corticospinal excitability and intra‐cortical mechanisms following motor learning in the lower back. Further, it is unknown which transcranial magnetic stimulation (TMS) paradigms are likely to reveal changes in cortical function in this region. This study aimed to (1) compare corticospinal excitability and intra‐cortical mechanisms in the lower back region of M1 before and after a single session of lumbopelvic tilt motor learning task in healthy people and (2) compare these measures between two TMS coils and two methods of recruitment curve (RC) acquisition. Twenty‐eight young participants (23.6 ± 4.6 years) completed a lumbopelvic tilting task involving three 5‐min blocks. Single‐pulse (RC from 70% to 150% of active motor threshold) and paired‐pulse TMS measures (ICF, SICF and SICI) were undertaken before (using 2 coils: figure‐of‐8 and double cone) and after (using double cone coil only) training. RCs were also acquired using a traditional and rapid method. A significant increase in corticospinal excitability was found after training as measured by RC intensities, but this was not related to the RC slope. No significant differences were found for paired‐pulse measures after training. Finally, there was good agreement between RC parameters when measured with the two different TMS coils or different acquisition methods (traditional vs. rapid). Changes in corticospinal excitability after a single session of lumbopelvic motor learning task are seen, but these changes are not explained by changes in intra‐cortical mechanisms.
Collapse
Affiliation(s)
- Muath A Shraim
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD, Australia
| | - Hugo Massé-Alarie
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD, Australia.,Centre interdisciplinaire de recherche en réadaptation et integration sociale (CIRRIS), Université Laval, Québec, QC, Canada
| | - Sauro E Salomoni
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD, Australia
| | - Paul W Hodges
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD, Australia
| |
Collapse
|
26
|
Massé-Alarie H, Shraim MA, Taylor JL, Hodges PW. Effects of different modalities of afferent stimuli of the lumbo-sacral area on control of lumbar paravertebral muscles. Eur J Neurosci 2022; 56:3687-3704. [PMID: 35478204 DOI: 10.1111/ejn.15677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/23/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022]
Abstract
Somatosensory feedback to the central nervous system is essential to plan, perform and refine spine motor control. However, the influence of somatosensory afferent input from the trunk on the motor output to trunk muscles has received little attention. The objective was to compare the effects of distinct modalities of afferent stimulation on the net motoneuron and corticomotor excitability of paravertebral muscles. Fourteen individuals were recruited. Modulation of corticospinal excitability (motor-evoked potential [MEP]) of paravertebral muscles was measured when afferent stimuli (cutaneous noxious and non-noxious, muscle contraction) were delivered to the trunk at 10 intervals prior to transcranial magnetic stimulation. Each peripheral stimulation was applied alone, and subsequent EMG modulation was measured to control for net motoneuron excitability. MEP modulation and MEP/EMG ratio were used as measures of corticospinal excitability with and without control of net motoneuron excitability, respectively. MEP and EMG modulation were smaller after evoked muscle contraction than after cutaneous noxious and non-noxious stimuli. MEP/EMG ratio was not different between stimulation types. Both MEP and EMG amplitudes were reduced after evoked muscle contraction, but not when expressed as MEP/EMG ratio. Noxious and non-noxious stimulation had limited impact on all variables. Distinct modalities of peripheral afferent stimulation of the lumbo-sacral area differently modulated responses of paravertebral muscles, but without an influence on corticospinal excitability with control of net motoneuron excitability. Muscle stimulation reduced paravertebral activity and was best explained by spinal mechanisms. The impact of afferent stimulation on back muscles differs from the effects reported for limb muscles.
Collapse
Affiliation(s)
- Hugo Massé-Alarie
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, Brisbane, Qld, Australia.,Centre interdisciplinaire de recherche en réadaptation et intégration sociale (CIRRIS), Université Laval, Québec, Canada
| | - Muath A Shraim
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, Brisbane, Qld, Australia
| | - Janet L Taylor
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia
| | - Paul W Hodges
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, Brisbane, Qld, Australia
| |
Collapse
|
27
|
Knox PJ, Pohlig RT, Pugliese JM, Coyle PC, Sions JM, Hicks GE. Aberrant Lumbopelvic Movements Predict Prospective Functional Decline in Older Adults with Chronic Low Back Pain. Arch Phys Med Rehabil 2022; 103:473-480.e1. [PMID: 34547273 PMCID: PMC8901446 DOI: 10.1016/j.apmr.2021.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate if clinically observable aberrant lumbopelvic movements are associated with physical function at 12-month follow-up in older adults with chronic low back pain (CLBP), both directly and indirectly through baseline physical function. DESIGN Secondary analysis of a yearlong prospective cohort study. SETTING Clinical Research Laboratory. PARTICIPANTS Community-dwelling older adults with CLBP (N=250). INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Data from 239 participants were analyzed. Participants were screened at baseline for aberrant lumbopelvic movements during active trunk flexion; total observable aberrant movements were recorded and summed (range 0-4). Latent constructs of physical function were developed from an array of perception-based and performance-based outcome measures at baseline and 12 months, respectively. Structural Equation Modeling was used to assess the direct effect of baseline aberrant movement score on the latent construct of 12-month physical function, and its indirect effect through baseline physical function. RESULTS Aberrant movements were present in most participants (64.7%) and had a significant negative total effect on 12-month physical function (γ= -0.278, P<.001). Aberrant movement score's direct effect and indirect effect, through baseline functioning, were significantly negatively associated with physical function at 12-months, after adjusting for covariates (γ=-0.068, P=.038; γ= -0.210, P<.001, respectively). CONCLUSIONS Aberrant lumbopelvic movements are associated with decreased physical function at 12-month follow-up in older adults with CLBP, independent of baseline physical function and covariates. Future studies should evaluate if screening for aberrant movements may inform prognostic and interventional efforts in this patient population.
Collapse
Affiliation(s)
- Patrick J. Knox
- Department of Physical Therapy, University of Delaware, Newark, DE
| | - Ryan T. Pohlig
- Department of Epidemiology, University of Delaware, Newark, DE.,Biostatistics Core, University of Delaware, Newark, DE
| | | | - Peter C. Coyle
- Department of Physical Therapy, University of Delaware, Newark, DE
| | - Jaclyn M. Sions
- Department of Physical Therapy, University of Delaware, Newark, DE
| | - Gregory E. Hicks
- Department of Physical Therapy, University of Delaware, Newark, DE
| |
Collapse
|
28
|
Tieppo Francio V, Westerhaus BD, Rupp A, Sayed D. Non-Spinal Neuromodulation of the Lumbar Medial Branch Nerve for Chronic Axial Low Back Pain: A Narrative Review. FRONTIERS IN PAIN RESEARCH 2022; 3:835519. [PMID: 35295793 PMCID: PMC8915554 DOI: 10.3389/fpain.2022.835519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic low back pain remains highly prevalent, costly, and the leading cause of disability worldwide. Symptoms are complex and treatment involves an interdisciplinary approach. Due to diverse anatomical etiologies, treatment outcomes with interventional options are highly variable. A novel approach to treating chronic axial low back pain entails the use of peripheral nerve stimulation to the lumbar medial branch nerve, and this review examines the clinical data of the two different, commercially available, non-spinal neuromodulation systems. This review provides the clinician a succinct narrative that presents up-to-date data objectively. Our review found ten clinical studies, including one report of two cases, six prospective studies, and three randomized clinical trials published to date. Currently, there are different proposed mechanisms of action to address chronic axial low back pain with different implantation techniques. Evidence suggests that peripheral nerve stimulation of the lumbar medial branch nerve may be effective in improving pain and function in patients with chronic axial low back pain symptoms at short and long term follow up, with good safety profiles. Further long-term data is needed to consider this intervention earlier in the pain treatment algorithm, but initial data are promising.
Collapse
Affiliation(s)
- Vinicius Tieppo Francio
- Department of Rehabilitation Medicine, The University of Kansas Medical Center (KUMC), Kansas City, KS, United States
| | - Benjamin D. Westerhaus
- Cantor Spine Center at the Paley Orthopedic and Spine Institute, Ft. Lauderdale, FL, United States
| | - Adam Rupp
- Department of Rehabilitation Medicine, The University of Kansas Medical Center (KUMC), Kansas City, KS, United States
| | - Dawood Sayed
- Department of Anesthesiology, The University of Kansas Medical Center (KUMC), Kansas City, KS, United States
- *Correspondence: Dawood Sayed
| |
Collapse
|
29
|
Corti EJ, Marinovic W, Nguyen AT, Gasson N, Loftus AM. Motor cortex excitability in chronic low back pain. Exp Brain Res 2022; 240:3249-3257. [PMID: 36289076 PMCID: PMC9678990 DOI: 10.1007/s00221-022-06492-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/17/2022] [Indexed: 01/15/2023]
Abstract
Chronic pain is associated with dysfunctional cortical excitability. Research has identified altered intracortical motor cortex excitability in Chronic Lower Back Pain (CLBP). However, research identifying the specific intracortical changes underlying CLBP has been met with inconsistent findings. In the present case-control study, we examined intracortical excitability of the primary motor cortex using transcranial magnetic stimulation (TMS) in individuals with CLBP. Twenty participants with CLBP (Mage = 54.45 years, SDage = 15.89 years) and 18 age- and gender-matched, pain-free controls (M = 53.83, SD = 16.72) were included in this study. TMS was applied to the hand motor area of the right hemisphere and motor evoked potentials (MEPs) were recorded from the first dorsal interosseous muscle of the contralateral hand. Resting motor threshold (rMT) and MEP amplitude were measured using single-pulse stimulation. Short interval intracortical inhibition (SICI) and intracortical facilitation (ICF) were assessed using paired-pulse stimulation. Individuals with CLBP had significantly higher rMT (decreased corticospinal excitability) and lower ICF compared to controls. No significant differences were found in MEP amplitude and SICI. These findings add to the growing body of evidence that CLBP is associated with deficits in intracortical modulation involving glutamatergic mechanisms.
Collapse
Affiliation(s)
- E. J. Corti
- School of Population Health, Curtin University, GPO Box U1987, Perth, WA 6845 Australia ,Curtin Neuroscience Research Laboratory, Curtin University, Perth, WA Australia
| | - W. Marinovic
- School of Population Health, Curtin University, GPO Box U1987, Perth, WA 6845 Australia ,Curtin Neuroscience Research Laboratory, Curtin University, Perth, WA Australia
| | - A. T. Nguyen
- School of Population Health, Curtin University, GPO Box U1987, Perth, WA 6845 Australia ,Curtin Neuroscience Research Laboratory, Curtin University, Perth, WA Australia
| | - N. Gasson
- School of Population Health, Curtin University, GPO Box U1987, Perth, WA 6845 Australia ,Curtin Neuroscience Research Laboratory, Curtin University, Perth, WA Australia
| | - A. M. Loftus
- School of Population Health, Curtin University, GPO Box U1987, Perth, WA 6845 Australia ,Curtin Neuroscience Research Laboratory, Curtin University, Perth, WA Australia
| |
Collapse
|
30
|
Knox PJ, Simon CB, Pohlig RT, Pugliese JM, Coyle PC, Sions JM, Hicks GE. A Standardized Assessment of Movement-evoked Pain Ratings Is Associated With Functional Outcomes in Older Adults With Chronic Low Back Pain. Clin J Pain 2021; 38:241-249. [PMID: 34954729 PMCID: PMC8917081 DOI: 10.1097/ajp.0000000000001016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Despite high prevalence estimates, chronic low back pain (CLBP) remains poorly understood among older adults. Movement-evoked pain (MeP) is an understudied factor in this population that may importantly contribute to disability. This study investigated whether a novel MeP paradigm contributed to self-reported and performance-based function in older adults with CLBP. MATERIALS AND METHODS This secondary analysis includes baseline data from 230 older adults with CLBP in the context of a prospective cohort study. The Repeated Chair Rise Test, Six Minute Walk Test, and Stair Climbing Test were used to elicit pain posttest LBP ratings were aggregated to yield the MeP variable. Self-reported and performance-based function were measured by the Late Life Function and Disability Index (LLFDI) scaled function score and Timed Up-and-Go Test (TUG), respectively. Robust regression with HC3 standard errors was used to model adjusted associations between MeP and both functional outcomes; age, sex, body mass index, and pain characteristics (ie, intensity, quality, and duration) were utilized as covariates. RESULTS MeP was present in 81.3% of participants, with an average rating of 5.09 (SD=5.4). Greater aggregated posttest MeP was associated with decreased LLFDI scores (b=-0.30, t=-2.81, P=0.005) and poorer TUG performance (b=0.081, t=2.35, P=0.020), independent of covariates. LBP intensity, quality and duration were not associated with the LLFDI or TUG, (all P>0.05). DISCUSSION Aggregated posttest MeP independently contributed to worse self-reported and performance-based function among older adults with CLBP. To understand long-term consequences of MeP, future studies should examine longitudinal associations between MeP and function in this population.
Collapse
Affiliation(s)
- Patrick J. Knox
- Department of Physical Therapy, University of Delaware, Newark, DE
| | - Corey B. Simon
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC
| | - Ryan T. Pohlig
- Department of Epidemiology, University of Delaware, Newark, DE
- Biostatistics Core, University of Delaware, Newark, DE
| | | | - Peter C. Coyle
- Department of Physical Therapy, University of Delaware, Newark, DE
| | - Jaclyn M. Sions
- Department of Physical Therapy, University of Delaware, Newark, DE
| | - Gregory E. Hicks
- Department of Physical Therapy, University of Delaware, Newark, DE
| |
Collapse
|
31
|
Hodges PW, Bailey JF, Fortin M, Battié MC. Paraspinal muscle imaging measurements for common spinal disorders: review and consensus-based recommendations from the ISSLS degenerative spinal phenotypes group. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:3428-3441. [PMID: 34542672 DOI: 10.1007/s00586-021-06990-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/12/2021] [Accepted: 09/05/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Paraspinal muscle imaging is of growing interest related to improved phenotyping, prognosis, and treatment of common spinal disorders. We reviewed issues related to paraspinal muscle imaging measurement that contribute to inconsistent findings between studies and impede understanding. METHODS Three key contributors to inconsistencies among studies of paraspinal muscle imaging measurements were reviewed: failure to consider possible mechanisms underlying changes in paraspinal muscles, lack of control of confounding factors, and variations in spinal muscle imaging modalities and measurement protocols. Recommendations are provided to address these issues to improve the quality and coherence of future research. RESULTS Possible pathophysiological responses of paraspinal muscle to various common spinal disorders in acute or chronic phases are often overlooked, yet have important implications for the timing, distribution, and nature of changes in paraspinal muscle. These considerations, as well as adjustment for possible confounding factors, such as sex, age, and physical activity must be considered when planning and interpreting paraspinal muscle measurements in studies of spinal conditions. Adoption of standardised imaging measurement protocols for paraspinal muscle morphology and composition, considering the strengths and limitations of various imaging modalities, is critically important to interpretation and synthesis of research. CONCLUSION Study designs that consider physiological and pathophysiological responses of muscle, adjust for possible confounding factors, and use common, standardised measures are needed to advance knowledge of the determinants of variations or changes in paraspinal muscle and their influence on spinal health.
Collapse
Affiliation(s)
- Paul W Hodges
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Jeannie F Bailey
- Department of Orthopedic Surgery, University of California, San Francisco, CA, USA
| | - Maryse Fortin
- Department of Health, Kinesiology & Applied Physiology, Concordia University, Montreal, QC, Canada
| | - Michele C Battié
- Faculty of Health Sciences and Western's Bone and Joint Institute, Western University, London, ON, Canada
| |
Collapse
|
32
|
Desmons M, Rohel A, Desgagnés A, Mercier C, Massé-Alarie H. Influence of different transcranial magnetic stimulation current directions on the corticomotor control of lumbar erector spinae muscles during a static task. J Neurophysiol 2021; 126:1276-1288. [PMID: 34550037 DOI: 10.1152/jn.00137.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Different directions of transcranial magnetic stimulation (TMS) can activate different neuronal circuits. Whereas posteroanterior current (PA-TMS) depolarizes mainly interneurons in primary motor cortex (M1), an anteroposterior current (AP-TMS) has been suggested to activate different M1 circuits and perhaps axons from the premotor regions. Although M1 is also involved in the control of axial muscles, no study has explored whether different current directions activate different M1 circuits that may have distinct functional roles. The aim of the study was to compare the effect of different current directions (PA- and AP-TMS) on the corticomotor control and spatial cortical organization of the lumbar erector spinae muscle (LES). Thirty-four healthy participants were recruited for two independent experiments, and LES motor-evoked potentials (MEPs) were recorded. In experiment 1 (n = 17), active motor threshold (AMT), MEP latencies, recruitment curve (90% to 160% AMT), and excitatory and inhibitory intracortical mechanisms by paired-pulse TMS (80% followed by 120% AMT stimuli at 2-, 3-, 10-, and 15-ms interstimulus intervals) were tested with a double-cone (n = 12) and a figure-of-eight (n = 5) coil. In experiment 2 (n = 17), LES cortical representations were tested with PA- and AP-TMS. AMT was higher for AP- compared with PA-TMS (P = 0.002). Longer latencies with AP-TMS were present compared with PA-TMS (P = 0.017). AP-TMS produced more inhibition compared with PA-TMS at 2 ms and 3 ms (P = 0.010), but no difference was observed for longer intervals. No difference was found for recruitment curve and mapping. These findings suggest that PA- and AP-TMS may activate different cortical circuits controlling low back muscles, as proposed for hand muscles.NEW & NOTEWORTHY For the first time, anteroposterior and posteroanterior induced electric currents in the brain were compared when targeting back muscle representation with transcranial magnetic stimulation. The use of the anteroposterior current resulted in later response latency, larger inhibition probed by paired-pulse stimulation, and higher motor threshold. These important differences between current directions suggest that each of the current directions may recruit specific cortical circuits involved in the control of back muscles, similar to that for hand muscles.
Collapse
Affiliation(s)
- Mikaël Desmons
- CIRRIS Research Centre, Université Laval, Quebec City, Quebec, Canada
| | - Antoine Rohel
- CIRRIS Research Centre, Université Laval, Quebec City, Quebec, Canada
| | - Amélie Desgagnés
- CIRRIS Research Centre, Université Laval, Quebec City, Quebec, Canada
| | - Catherine Mercier
- CIRRIS Research Centre, Université Laval, Quebec City, Quebec, Canada.,Rehabilitation Unit, Université Laval, Quebec City, Quebec, Canada
| | - Hugo Massé-Alarie
- CIRRIS Research Centre, Université Laval, Quebec City, Quebec, Canada.,Rehabilitation Unit, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
33
|
Desgagnés A, Desmons M, Cyr JP, Simoneau M, Massé-Alarie H. Motor Responses of Lumbar Erector Spinae Induced by Electrical Vestibular Stimulation in Seated Participants. Front Hum Neurosci 2021; 15:690433. [PMID: 34366814 PMCID: PMC8339290 DOI: 10.3389/fnhum.2021.690433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: The study of motor responses induced by electrical vestibular stimulation (EVS) may help clarify the role of the vestibular system in postural control. Although back muscles have an important role in postural control, their EVS-induced motor responses were rarely studied. Moreover, the effects of EVS parameters, head position, and vision on EVS-induced back muscles responses remain little explored. Objectives: To explore the effects of EVS parameters, head position, and vision on lumbar erector spinae muscles EVS-induced responses. Design: Exploratory, cross-sectional study. Materials and Methods: Ten healthy participants were recruited. Three head positions (right, left and no head rotation), 4 intensities (2, 3, 4, 5 mA), and 4 EVS durations (5, 20, 100, 200 ms) were tested in sitting position with eyes open or closed. EVS usually induced a body sway toward the anode (placed on the right mastoid). EMG activity of the right lumbar erector spinae was recorded. Variables of interest were amplitude, occurrence, and latency of the EVS-induced modulation of the EMG activity. Results: The short-latency response was inhibitory and the medium-latency response was excitatory. Increased EVS current intensity augmented the occurrence and the amplitude of the short- and medium-latency responses (more inhibition and more excitation, respectively). EVS duration influenced the medium-latency response differently depending on the position of the head. Right head rotation produced larger responses amplitude and occurrence than left head rotation. Opposite head rotation (left vs. right) did not induce a reversal of the short- and medium-latency responses (i.e., the inhibition did not become an excitation), as typically reported in lower legs muscles. The eyes open condition did not modulate muscle responses. Conclusion: Modulation of EVS parameters (current intensity and duration of EVS) affects the amplitude and occurrence of the lumbar erector spinae responses. In contrast, vision did not influence the responses, suggesting its minimal contribution to vestibulomotor control in sitting. The lack of response reversal in sagittal plane may reflect the biomechanical role of lumbar erector spinae to fine-tune the lumbar lordosis during the induced body sway. This hypothesis remains to be further tested.
Collapse
Affiliation(s)
- Amélie Desgagnés
- Centre Interdisciplinaire de Recherche en Réadaptation et en Intégration Sociale (CIRRIS), Laval University, Quebec City, QC, Canada
| | - Mikaël Desmons
- Centre Interdisciplinaire de Recherche en Réadaptation et en Intégration Sociale (CIRRIS), Laval University, Quebec City, QC, Canada
| | - Jean-Philippe Cyr
- Centre Interdisciplinaire de Recherche en Réadaptation et en Intégration Sociale (CIRRIS), Laval University, Quebec City, QC, Canada
| | - Martin Simoneau
- Centre Interdisciplinaire de Recherche en Réadaptation et en Intégration Sociale (CIRRIS), Laval University, Quebec City, QC, Canada.,Kinesiology Department, Laval University, Quebec City, QC, Canada
| | - Hugo Massé-Alarie
- Centre Interdisciplinaire de Recherche en Réadaptation et en Intégration Sociale (CIRRIS), Laval University, Quebec City, QC, Canada.,Rehabilitation Department, Laval University, Quebec City, QC, Canada
| |
Collapse
|
34
|
Sanderson A, Wang SF, Elgueta-Cancino E, Martinez-Valdes E, Sanchis-Sanchez E, Liew B, Falla D. The effect of experimental and clinical musculoskeletal pain on spinal and supraspinal projections to motoneurons and motor unit properties in humans: A systematic review. Eur J Pain 2021; 25:1668-1701. [PMID: 33964047 DOI: 10.1002/ejp.1789] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/30/2020] [Accepted: 04/24/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND OBJECTIVE Numerous studies have examined the influence of pain on spinal reflex excitability, motor unit behaviour and corticospinal excitability. Nevertheless, there are inconsistencies in the conclusions made. This systematic review sought to understand the effect of pain on spinal and supraspinal projections to motoneurons and motor unit properties by examining the influence of clinical or experimental pain on the following three domains: H-reflex, corticospinal excitability and motor unit properties. DATABASES AND DATA TREATMENT MeSH terms and preselected keywords relating to the H-reflex, motor evoked potentials and motor unit decomposition in chronic and experimental pain were used to perform a systematic literature search using Cumulative Index of Nursing and Allied Health Literature (CINAHL), Excerpta Medica dataBASE (EMBASE), Web of Science, Medline, Google Scholar and Scopus databases. Two independent reviewers screened papers for inclusion and assessed the methodological quality using a modified Downs and Black risk of bias tool; a narrative synthesis and three meta-analyses were performed. RESULTS Sixty-one studies were included, and 17 different outcome variables were assessed across the three domains. Both experimental and clinical pain have no major influence on measures of the H-reflex, whereas experimental and clinical pain appeared to have differing effects on corticospinal excitability. Experimental pain consistently reduced motor unit discharge rate, a finding which was not consistent with data obtained from patients. The results indicate that when in tonic pain, induced via experimental pain models, inhibitory effects on motoneuron behaviour were evident. However, in chronic clinical pain populations, more varied responses were evident likely reflecting individual adaptations to chronic symptoms. SIGNIFICANCE This is a comprehensive systematic review and meta-analysis which synthesizes evidence on the influence of pain on spinal and supraspinal projections to motoneurons and motor unit properties considering measures of the H-reflex, corticospinal excitability and motor unit behaviour. The H-reflex is largely not influenced by the presence of either clinical or experimental pain. Whilst inhibitory effects on corticospinal excitability and motor unit behaviour were evident under experimental pain conditions, more variable responses were observed for people with painful musculoskeletal disorders.
Collapse
Affiliation(s)
- Andy Sanderson
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK.,Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Shuwfen F Wang
- Graduate Institute and School of Physical Therapy, National Taiwan University, Taipei, Taiwan
| | - Edith Elgueta-Cancino
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Eduardo Martinez-Valdes
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Enrique Sanchis-Sanchez
- Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| | - Bernard Liew
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK.,School of Sport, Rehabilitation and Exercise Sciences, Faculty of Physiotherapy, University of Essex, Colchester, UK
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
35
|
Gabel CP, Mokhtarinia HR, Melloh M, Mateo S. Slacklining as therapy to address non-specific low back pain in the presence of multifidus arthrogenic muscle inhibition. World J Orthop 2021; 12:178-196. [PMID: 33959482 PMCID: PMC8082507 DOI: 10.5312/wjo.v12.i4.178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/18/2021] [Accepted: 03/13/2021] [Indexed: 02/06/2023] Open
Abstract
Low back pain (LBP) represents the most prevalent, problematic and painful of musculoskeletal conditions that affects both the individual and society with health and economic concerns. LBP is a heterogeneous condition with multiple diagnoses and causes. In the absence of consensus definitions, partly because of terminology inconsistency, it is further referred to as non-specific LBP (NSLBP). In NSLBP patients, the lumbar multifidus (MF), a key stabilizing muscle, has a depleted role due to recognized myocellular lipid infiltration and wasting, with the potential primary cause hypothesized as arthrogenic muscle inhibition (AMI). This link between AMI and NSLBP continues to gain increasing recognition. To date there is no 'gold standard' or consensus treatment to alleviate symptoms and disability due to NSLBP, though the advocated interventions are numerous, with marked variations in costs and levels of supportive evidence. However, there is consensus that NSLBP management be cost-effective, self-administered, educational, exercise-based, and use multi-modal and multi-disciplinary approaches. An adjuvant therapy fulfilling these consensus criteria is 'slacklining', within an overall rehabilitation program. Slacklining, the neuromechanical action of balance retention on a tightened band, induces strategic indirect-involuntary therapeutic muscle activation exercise incorporating spinal motor control. Though several models have been proposed, understanding slacklining's neuro-motor mechanism of action remains incomplete. Slacklining has demonstrated clinical effects to overcome AMI in peripheral joints, particularly the knee, and is reported in clinical case-studies as showing promising results in reducing NSLBP related to MF deficiency induced through AMI (MF-AMI). Therefore, this paper aims to: rationalize why and how adjuvant, slacklining therapeutic exercise may positively affect patients with NSLBP, due to MF-AMI induced depletion of spinal stabilization; considers current understandings and interventions for NSLBP, including the contributing role of MF-AMI; and details the reasons why slacklining could be considered as a potential adjuvant intervention for NSLBP through its indirect-involuntary action. This action is hypothesized to occur through an over-ride or inhibition of central down-regulatory induced muscle insufficiency, present due to AMI. This subsequently allows neuroplasticity, normal neuro-motor sequencing and muscle re-activation, which facilitates innate advantageous spinal stabilization. This in-turn addresses and reduces NSLBP, its concurrent symptoms and functional disability. This process is hypothesized to occur through four neuro-physiological processing pathways: finite neural delay; movement-control phenotypes; inhibition of action and the innate primordial imperative; and accentuated corticospinal drive. Further research is recommended to investigate these hypotheses and the effect of slacklining as an adjuvant therapy in cohort and control studies of NSLBP populations.
Collapse
Affiliation(s)
- Charles Philip Gabel
- Department of Physiotherapy, Access Physiotherapy, Coolum Beach 4573, QLD, Australia
| | - Hamid Reza Mokhtarinia
- Department of Ergonomics, University of Social Welfare and Rehabilitation Sciences, Tehran 0001, Iran
- Department of Physiotherapy, University of Social Welfare and Rehabilitation Sciences, Tehran 0001, Iran
| | - Markus Melloh
- School of Health Professions, Zurich University of Applied Sciences, Winterthur 8310, Switzerland
| | - Sébastien Mateo
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Université de Lyon, Lyon 69000, France
| |
Collapse
|
36
|
Rohel A, Bouffard J, Patricio P, Mavromatis N, Billot M, Roy J, Bouyer L, Mercier C, Masse‐Alarie H. The effect of experimental pain on the excitability of the corticospinal tract in humans: A systematic review and meta‐analysis. Eur J Pain 2021; 25:1209-1226. [DOI: 10.1002/ejp.1746] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Antoine Rohel
- Center for Interdisciplinary Research in Rehabilitation and Social Integration Quebec City Quebec Canada
| | - Jason Bouffard
- Center for Interdisciplinary Research in Rehabilitation and Social Integration Quebec City Quebec Canada
| | - Philippe Patricio
- Center for Interdisciplinary Research in Rehabilitation and Social Integration Quebec City Quebec Canada
| | - Nicolas Mavromatis
- Center for Interdisciplinary Research in Rehabilitation and Social Integration Quebec City Quebec Canada
| | - Maxime Billot
- Center for Interdisciplinary Research in Rehabilitation and Social Integration Quebec City Quebec Canada
| | - Jean‐Sébastien Roy
- Center for Interdisciplinary Research in Rehabilitation and Social Integration Quebec City Quebec Canada
- Department of Rehabilitation Faculty of Medicine Laval University Quebec City Quebec Canada
| | - Laurent Bouyer
- Center for Interdisciplinary Research in Rehabilitation and Social Integration Quebec City Quebec Canada
- Department of Rehabilitation Faculty of Medicine Laval University Quebec City Quebec Canada
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration Quebec City Quebec Canada
- Department of Rehabilitation Faculty of Medicine Laval University Quebec City Quebec Canada
| | - Hugo Masse‐Alarie
- Center for Interdisciplinary Research in Rehabilitation and Social Integration Quebec City Quebec Canada
- Department of Rehabilitation Faculty of Medicine Laval University Quebec City Quebec Canada
| |
Collapse
|
37
|
Cortical Representations of Transversus Abdominis and Multifidus Muscles Were Discrete in Patients with Chronic Low Back Pain: Evidence Elicited by TMS. Neural Plast 2021; 2021:6666024. [PMID: 33679969 PMCID: PMC7906820 DOI: 10.1155/2021/6666024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction The transversus abdominis (TVA) and multifidus (MF) muscles are the main segmental spinal stabilizers that are controlled by the primary motor cortex of the brain. However, relocations of the muscle representation in the motor cortex may occur after chronic lower back pain (cLBP); it still needs more evidence to be proven. The current study was aimed at applying transcranial magnetic stimulation (TMS) to investigate the changes of representation of TVA and MF muscles at the cortical network in individuals with cLBP. Methods Twenty-four patients with cLBP and 12 age-matched healthy individuals were recruited. Responses of TVA and MF to TMS during muscle contraction were monitored and mapped over the contralateral cortex using a standardized grid cap. Maps of the center of gravity (CoG), area, volume, and latency were analyzed, and the asymmetry index was also computed and compared. Results The locations of MF CoG in cLBP individuals were posterior and lateral to the CoG locations in healthy individuals. In the healthy group, the locations of TVA and MF CoG were closed to each other in both the left and right hemispheres. In the cLBP group, these two locations were next to each other in the right hemisphere but discrete in the left hemisphere. In the cLBP group, the cortical motor map of TVA and MF were mutually symmetric in five out of eleven (45.5%) subjects and leftward asymmetric in four out of ten (40.0%) subjects. Conclusions Neural representations of TVA and MF muscles were closely organized in both the right and left motor cortices in the healthy group but were discretely organized in the left motor cortex in the cLBP group. This provides strong support for the neural basis of pathokinesiology and clinical treatment of cLBP.
Collapse
|
38
|
Effects of a movement control and tactile acuity training in patients with nonspecific chronic low back pain and control impairment - a randomised controlled pilot study. BMC Musculoskelet Disord 2020; 21:794. [PMID: 33256694 PMCID: PMC7702711 DOI: 10.1186/s12891-020-03727-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/16/2020] [Indexed: 12/04/2022] Open
Abstract
Background Nonspecific chronic low back pain (NSCLBP) is a heterogeneous condition that is associated with complex neuromuscular adaptations. Exercise is a widely administered treatment, but its effects are small to moderate. Tailoring patient-specific exercise treatments based on subgroup classification may improve patient outcomes. Objective In this randomised controlled pilot study, our objective was to compare the feasibility and possible effects of a specific sensorimotor treatment (SMT) with those of a general exercise (GE) programme on patients with NSCLBP and control impairment (CI). Methods Patients with NSCLBP and CI were randomised into an SMT or a GE programme spanning 6 sessions each. The feasibility criteria included the study design, assessments, interventions and magnitudes of effects, and costs. Adverse events were documented. Primary (pain, physical function, and quality of life) and secondary outcomes were assessed three times: twice at baseline (t1a and t1b) to estimate parameter stability and once after the intervention (t2). Results Two-hundred and twenty-seven patients were screened to include 34 participants with NSCLBP and CI. Both treatment programmes and the assessments seemed feasible because their durations and contents were perceived as adequate. The total cost per participant was €321. Two adverse events occurred (one not likely related to the SMT, one likely related to the GE intervention). The SMT showed a tendency for superior effects in terms of pain severity (SMT t1a 3.5, t2 1.1; GE t1a 3.0, t2 2.0), pain interference (SMT t1a 1.9, t2 0.4; GE t1a 1.5, t2 0.9), physical component of quality of life (SMT t1a 39, t2 46; GE t1a 45, t2 48), and movement control. Conclusions The SMT approach proposed in this study is feasible and should be tested thoroughly in future studies, possibly as an addition to GE. To ensure the detection of differences in pain severity between SMT and GE in patients with NSCLBP with 80% power, future studies should include 110 patients. If the current results are confirmed, SMT should be considered in interventions for patients with NSCLBP and CI. Trial registration Registered in the German Register for Clinical Trials (Trial registration date: November 11, 2016; Trial registration number: DRKS00011063; URL of trial registry record); retrospectively registered.
Collapse
|
39
|
Changes in the Organization of the Secondary Somatosensory Cortex While Processing Lumbar Proprioception and the Relationship With Sensorimotor Control in Low Back Pain. Clin J Pain 2020; 35:394-406. [PMID: 30730445 DOI: 10.1097/ajp.0000000000000692] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Patients with nonspecific low back pain (NSLBP) rely more on the ankle compared with the lower back proprioception while standing, perform sit-to-stand-to-sit (STSTS) movements slower, and exhibit perceptual impairments at the lower back. However, no studies investigated whether these sensorimotor impairments relate to a reorganization of the primary and secondary somatosensory cortices (S1 and S2) and primary motor cortex (M1) during proprioceptive processing. MATERIALS AND METHODS Proprioceptive stimuli were applied at the lower back and ankle muscles during functional magnetic resonance imaging in 15 patients with NSLBP and 13 controls. The location of the activation peaks during the processing of proprioception within S1, S2, and M1 were determined and compared between groups. Proprioceptive use during postural control was evaluated, the duration to perform 5 STSTS movements was recorded, and participants completed the Fremantle Back Awareness Questionnaire (FreBAQ) to assess back-specific body perception. RESULTS The activation peak during the processing of lower back proprioception in the right S2 was shifted laterally in the NSLBP group compared with the healthy group (P=0.007). Moreover, patients with NSLSP performed STSTS movements slower (P=0.018), and reported more perceptual impairments at the lower back (P<0.001). Finally, a significant correlation between a more lateral location of the activation peak during back proprioceptive processing and a more disturbed body perception was found across the total group (ρ=0.42, P=0.025). CONCLUSIONS The results suggest that patients with NSLBP show a reorganization of the higher-order processing of lower back proprioception, which could negatively affect spinal control and body perception.
Collapse
|
40
|
Pelletier R, Purcell-Levesque L, Girard MC, Roy PM, Leonard G. Pain Intensity and Functional Outcomes for Activities of Daily Living, Gait and Balance in Older Adults Accessing Outpatient Rehabilitation Services: A Retrospective Study. J Pain Res 2020; 13:2013-2021. [PMID: 32821153 PMCID: PMC7423354 DOI: 10.2147/jpr.s256700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/17/2020] [Indexed: 12/05/2022] Open
Abstract
Purpose Older adults are referred for outpatient physical therapy to improve their functional capacities. The goal of the present study was to determine if pain had an influence on functional outcomes in older adults who took part in an outpatient physical rehabilitation program. Patients and Methods A retrospective study was performed on the medical records of patients aged 65 and over referred for outpatient physical therapy to improve physical functioning (n=178). Pain intensity (11-point numeric pain scale) and results from functional outcome measures (Timed Up and Go [TUG], Berg Balance Scale [BBS], 10-meter walk test, 6-minute walk test and Functional Autonomy Measuring System [SMAF]) were extracted at initial (T1) and final (T2) consultations. Paired t-tests were performed to determine if there were differences in functional outcome measures between T1 and T2 in all the patients. Patients were stratified to those with pain (PAIN, n=136) and those without pain (NO PAIN, n=42). Differences in functional outcome measures between T1 and T2 (delta scores) were compared between groups with independent t-tests with Welch corrections for unequal variances. Pearson correlation coefficients between initial pain intensity and changes in functional outcome measures (T2-T1) were also performed. Correcting for multiple comparisons, a p-value of p≤0.01 was considered as statistically significant. Results The TUG, BBS, 10-meter walk test, 6-minute walk test all demonstrated improvement between T1 and T2 (all p<0.01). There was no difference between groups for delta scores for TUG (p=0.14), BBS (p=0.03), 10-meter walk test (p=0.54), 6-minute walk test (p=0.94) and SMAF (p=0.23). Pearson correlation coefficients were weak between initial pain intensity and changes in functional outcome scores between T1 and T2 (r= −0.16 to 0.15, all p-values >0.10). Conclusion These results suggest that pain is not an impediment to functional improvements in older individuals who participated in an outpatient physical rehabilitation program.
Collapse
Affiliation(s)
- R Pelletier
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - L Purcell-Levesque
- Research Center on Aging, Centre intégré universitaire de santé et de services sociaux de l'Estrie - Centre hospitalier universitaire de Sherbrooke (CIUSSS de l'Estrie - CHUS), Sherbrooke, Quebec, Canada
| | - M-C Girard
- Research Center on Aging, Centre intégré universitaire de santé et de services sociaux de l'Estrie - Centre hospitalier universitaire de Sherbrooke (CIUSSS de l'Estrie - CHUS), Sherbrooke, Quebec, Canada
| | - P-M Roy
- Research Center on Aging, Centre intégré universitaire de santé et de services sociaux de l'Estrie - Centre hospitalier universitaire de Sherbrooke (CIUSSS de l'Estrie - CHUS), Sherbrooke, Quebec, Canada
| | - G Leonard
- Research Center on Aging, Centre intégré universitaire de santé et de services sociaux de l'Estrie - Centre hospitalier universitaire de Sherbrooke (CIUSSS de l'Estrie - CHUS), Sherbrooke, Quebec, Canada.,School of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
41
|
Silfies SP, Beattie P, Jordon M, Vendemia JMC. Assessing sensorimotor control of the lumbopelvic-hip region using task-based functional MRI. J Neurophysiol 2020; 124:192-206. [PMID: 32519579 DOI: 10.1152/jn.00288.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent brain imaging studies have suggested that cortical remodeling within sensorimotor regions are associated with persistent low back pain and may be a driving mechanism for the impaired neuromuscular control associated with this condition. This paper outlines a new approach for investigating cortical sensorimotor integration during the performance of small-amplitude lumbopelvic movements with functional MRI. Fourteen healthy right-handed participants were instructed in the lumbopelvic movement tasks performed during fMRI acquisition. Surface electromyography (EMG) collected on 8 lumbopelvic and thigh muscles captured organized patterns of muscle activation during the movement tasks. fMRI data were collected on 10 of 14 participants. Sensorimotor cortical activation across the tasks was identified using a whole brain analysis and further explored with regional analyses of key components of the cortical sensorimotor network. Head motion had low correlation to the tasks (r = -0.101 to 0.004) and head translation averaged 0.98 (0.59 mm) before motion correction. Patterns of activation of the key lumbopelvic and thigh musculature (average amplitude normalized 2-17%) were significantly different across tasks (P > 0.001). Neuroimaging demonstrated activation in key sensorimotor cortical regions that were consistent with motor planning and sensory feedback needed for performing the different tasks. This approach captures the specificity of lumbopelvic sensorimotor control using goal-based tasks (e.g., "lift your hip" vs. "contract your lumbar multifidus to 20% of maximum") performed within the confines of the scanner. Specific patterns of sensorimotor cortex activation appear to capture differences between bilateral and unilateral tasks during voluntary control of multisegmental movement in the lumbopelvic region.NEW & NOTEWORTHY We demonstrated the feasibility of using task-based functional magnetic resonance imaging (fMRI) protocols for acquiring the blood oxygen level-dependent (BOLD) response of key sensorimotor cortex regions during voluntary lumbopelvic movements. Our approach activated lumbopelvic muscles during small-amplitude movements while participants were lying supine in the scanner. Our data supports these tasks can be done with limited head motion and low correlation of head motion to the task. The approach provides opportunities for assessing the role of brain changes in persistent low back pain.
Collapse
Affiliation(s)
- Sheri P Silfies
- Doctoral Program in Physical Therapy, Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina.,McCausland Brain Imaging Center, University of South Carolina, Columbia, South Carolina
| | - Paul Beattie
- Doctoral Program in Physical Therapy, Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina
| | - Max Jordon
- Doctoral Program in Physical Therapy, Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina
| | - Jennifer M C Vendemia
- McCausland Brain Imaging Center, University of South Carolina, Columbia, South Carolina.,Institute for Mind and Brain, Department of Psychology, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
42
|
Hofste A, Soer R, Hermens HJ, Wagner H, Oosterveld FGJ, Wolff AP, Groen GJ. Inconsistent descriptions of lumbar multifidus morphology: A scoping review. BMC Musculoskelet Disord 2020; 21:312. [PMID: 32429944 PMCID: PMC7236939 DOI: 10.1186/s12891-020-03257-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/31/2020] [Indexed: 12/18/2022] Open
Abstract
Background Lumbar multifidus (LM) is regarded as the major stabilizing muscle of the spine. The effects of exercise therapy in low back pain (LBP) are attributed to this muscle. A current literature review is warranted, however, given the complexity of LM morphology and the inconsistency of anatomical descriptions in the literature. Methods Scoping review of studies on LM morphology including major anatomy atlases. All relevant studies were searched in PubMed (Medline) and EMBASE until June 2019. Anatomy atlases were retrieved from multiple university libraries and online. All studies and atlases were screened for the following LM parameters: location, imaging methods, spine levels, muscle trajectory, muscle thickness, cross-sectional area, and diameter. The quality of the studies and atlases was also assessed using a five-item evaluation system. Results In all, 303 studies and 19 anatomy atlases were included in this review. In most studies, LM morphology was determined by MRI, ultrasound imaging, or drawings – particularly for levels L4–S1. In 153 studies, LM is described as a superficial muscle only, in 72 studies as a deep muscle only, and in 35 studies as both superficial and deep. Anatomy atlases predominantly depict LM as a deep muscle covered by the erector spinae and thoracolumbar fascia. About 42% of the studies had high quality scores, with 39% having moderate scores and 19% having low scores. The quality of figures in anatomy atlases was ranked as high in one atlas, moderate in 15 atlases, and low in 3 atlases. Discussion Anatomical studies of LM exhibit inconsistent findings, describing its location as superficial (50%), deep (25%), or both (12%). This is in sharp contrast to anatomy atlases, which depict LM predominantly as deep muscle. Within the limitations of the self-developed quality-assessment tool, high-quality scores were identified in a majority of studies (42%), but in only one anatomy atlas. Conclusions We identified a lack of standardization in the depiction and description of LM morphology. This could affect the precise understanding of its role in background and therapy in LBP patients. Standardization of research methodology on LM morphology is recommended. Anatomy atlases should be updated on LM morphology.
Collapse
Affiliation(s)
- Anke Hofste
- Anesthesiology Pain Center, University of Groningen, University Medical Center Groningen, Location Beatrixoord, Dilgtweg 5, Haren, the Netherlands. .,Faculty of Physical Activity and Health, Saxion University of Applied Sciences, Enschede, the Netherlands.
| | - Remko Soer
- Anesthesiology Pain Center, University of Groningen, University Medical Center Groningen, Location Beatrixoord, Dilgtweg 5, Haren, the Netherlands.,Faculty of Physical Activity and Health, Saxion University of Applied Sciences, Enschede, the Netherlands
| | - Hermie J Hermens
- Department of Biomedical Signals & Systems, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Enschede, the Netherlands.,Telemedicine Group, Roessingh Research and Development, Enschede, the Netherlands
| | - Heiko Wagner
- Department of Movement Science, Institute of Sport and Exercise Sciences, Münster, Germany
| | - Frits G J Oosterveld
- Faculty of Physical Activity and Health, Saxion University of Applied Sciences, Enschede, the Netherlands
| | - André P Wolff
- Anesthesiology Pain Center, University of Groningen, University Medical Center Groningen, Location Beatrixoord, Dilgtweg 5, Haren, the Netherlands
| | - Gerbrand J Groen
- Anesthesiology Pain Center, University of Groningen, University Medical Center Groningen, Location Beatrixoord, Dilgtweg 5, Haren, the Netherlands
| |
Collapse
|
43
|
Electromyographic Biofeedback in Motor Function Recovery After Peripheral Nerve Injury: An Integrative Review of the Literature. Appl Psychophysiol Biofeedback 2019; 43:247-257. [PMID: 30168003 DOI: 10.1007/s10484-018-9403-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Electromyographic biofeedback (EMG-BF) has been applied to treat different types of peripheral nerve injuries (PNI). However, despite the clinical practice widespread use its evidence is controversial. With the objective of summarize the available evidence on the electromyographic biofeedback effectiveness and efficacy to help motor function recovery after PNI an integrative review was performed. A secondary objective was to identify the conceptual framework and strategies of EMG-BF intervention, and the quality of technical description of EMG-BF procedures. To conduct this integrative review a systematic search of the literature was performed between October 2013 and July 2018, in PUBMED, ISI and COCHRANE databases for EMG-BF original studies in PNI patients of any etiology, in English, Portuguese, Spanish or French, published after 1990. Exclusion criteria were poor description of EMG-BF treatment, associated treatment that could impair EMG-BF effect, inclusion of non-PNI individuals and case studies design. The PEDro scale was used to evaluate study quality of randomized clinical trials (RCTs) included. This resulted in 71 potential articles enrolled to full reading, although only nine matched the inclusion criteria. PNI included facial paralysis, acute sciatic inflammation and carpal tunnel syndrome. The average quality score of the included RCTs was five, corresponding to low methodological quality. Due to the small number of included articles, low quality studies and heterogeneity of interventions, outcomes and population we concluded that there is limited evidence of EMG-BF effectiveness and efficacy for motor function recovery in PNI patients.
Collapse
|
44
|
Decreased supraspinal control and neuromuscular function controlling the ankle joint in athletes with chronic ankle instability. Eur J Appl Physiol 2019; 119:2041-2052. [DOI: 10.1007/s00421-019-04191-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 07/13/2019] [Indexed: 12/26/2022]
|
45
|
Is the Organization of the Primary Motor Cortex in Low Back Pain Related to Pain, Movement, and/or Sensation? Clin J Pain 2019; 34:207-216. [PMID: 28719508 DOI: 10.1097/ajp.0000000000000535] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIM/BACKGROUND Primary motor cortex (M1) organization differs between individuals with and without chronic low back pain (CLBP), in parallel with motor and sensory impairments. This study investigated whether movement behaviour and tactile/pain sensation are related to M1 organisation in CLBP. METHODS Transcranial magnetic stimulation (TMS) was used to map the M1 representation of the erector spinae and multifidus muscles in 20 participants with and without CLBP. Cortical organisation was quantified by: map volume; center of gravity (CoG); number of peaks; and primary and secondary peak location. Movement behaviour was assessed as the ability to dissociate lumbar from thorax motion and sensory function as two-point discrimination, pressure pain thresholds, and pain intensity (visual analogue scale). RESULTS People with CLBP showed more anterior location of the CoG than controls. Map peaks were more numerous in CLBP participants who performed the movement task good than those with poor performance. In CLBP, smaller map volume correlated with greater pain during the movement task. Movement behaviour was not linearly correlated with M1 features. CONCLUSIONS This study confirms that M1 maps differ between people with and without CLBP, but these changes are variable within the CLBP group and are not related to motor and sensory features in a simple manner.
Collapse
|
46
|
Functional and Morphological Changes in the Deep Lumbar Multifidus Using Electromyography and Ultrasound. Sci Rep 2018; 8:6539. [PMID: 29695727 PMCID: PMC5916921 DOI: 10.1038/s41598-018-24550-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
Surface electromyography (sEMG) studies have indicated that chronic low back pain (cLBP) involves altered electromyographic activity and morphological structure of the lumbar multifidus (LM) beyond pain perception; however, most studies have evaluated the superficial lumbar multifidus. It is difficult to record electromyography (EMG) signals from the deep multifidus (DM) to determine the neuromuscular activation patterns, making it difficult to determine the relationship between functional and structural changes in cLBP. We developed a novel method to record intramuscular EMG signals in the DM based on the sEMG system and fine-wire electrodes. We measured EMG signals of the DM in 24 cLBP patients and 26 pain-free healthy controls to identify changes in neuromuscular activation. We also used ultrasound to measure DM muscle thickness, cross-sectional area, and contraction activity to identify potential relationships between EMG activity and structural damage. cLBP patients had decreased average EMG and root mean square, but increased median frequency and mean power frequency. Average EMG was positively correlated with contractile activity, but not statistically correlated with noncontractile anatomical abnormalities. Our results suggest that cLBP alters the neuromuscular activation patterns and morphological structure of the contractile activity of the DM, providing insights into the mechanisms underlying pain perception.
Collapse
|
47
|
Chang WJ, O'Connell NE, Beckenkamp PR, Alhassani G, Liston MB, Schabrun SM. Altered Primary Motor Cortex Structure, Organization, and Function in Chronic Pain: A Systematic Review and Meta-Analysis. THE JOURNAL OF PAIN 2018; 19:341-359. [DOI: 10.1016/j.jpain.2017.10.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/15/2017] [Accepted: 10/19/2017] [Indexed: 01/14/2023]
|
48
|
Gait in patients with adolescent idiopathic scoliosis. Effect of surgery at 10 years of follow-up. Gait Posture 2018; 61:141-148. [PMID: 29353740 DOI: 10.1016/j.gaitpost.2018.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 11/22/2017] [Accepted: 01/11/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE To assess radiological and gait biomechanical changes before, at one and 10 years after surgery in AIS patients. METHODS This clinical prospective study included fifteen adult women (mean[SD] age: 26 [1] years) diagnosed with thoraco-lumbar/lumbar AIS and operated 10 years ago. Clinical, radiological and gait variables, including kinematics, electromyography (EMG), mechanics and energetics were compared between presurgery (S0), 1 year (S1) and 10 years (S2) postsurgery period using a one way repeated measure ANOVA. RESULTS The Cobb angle of the scoliosis curve was reduced by 55% at 1 year postsugery but only by 37% at 10 years postsurgery suggesting a loss of 32% over time. Frontal plumb line C7-S1 distance was significantly improved by surgery (-44%) and remained stable at 10 years postsurgery. Lower limb kinematics was not affected by the surgery at long term. Excessive bilateral activation of lombo-pelvic muscles, observed before surgery, decreased significantly at S1 and S2 period. Mechanical energy increased significantly between S0, S1 and S2 session, without any change for the energetic variables. CONCLUSIONS Between 1 and 10 years post-surgery, thoraco-lumbar/lumbar AIS women showed a few decompensation of the curve without any change of the improved frontal body balance. Lower limbs and pelvic motion, during gait, was not affected by the surgery. But presurgical excessive EMG activity of the lumbo-pelvic muscle and reduced mechanical energy produced to walk get similar to normal patterns. Only the oxygen consumption remained excessive probably due to physical deconditioning or postural instability.
Collapse
|
49
|
Coles A, Suri P, Rundell S, Nishio I, Shah L, Standaert C, Friedly J. Radiofrequency Ablation for Facet-Mediated Low Back Pain: Current Knowledge and Limitations of the Evidence. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2018. [DOI: 10.1007/s40141-018-0170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Disruption of cortical synaptic homeostasis in individuals with chronic low back pain. Clin Neurophysiol 2018; 129:1090-1096. [PMID: 29472134 DOI: 10.1016/j.clinph.2018.01.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/24/2017] [Accepted: 01/08/2018] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Homeostatic plasticity mechanisms regulate synaptic plasticity in the human brain. Impaired homeostatic plasticity may contribute to maladaptive synaptic plasticity and symptom persistence in chronic musculoskeletal pain. METHODS We examined homeostatic plasticity in fifty individuals with chronic low back pain (cLBP) and twenty-five pain-free controls. A single block (7-min) of anodal transcranial direct current stimulation ('single tDCS'), or two subsequent blocks (7-min and 5-min separated by 3-min rest; 'double tDCS'), were randomised across two experimental sessions to confirm an excitatory response to tDCS applied alone, and evaluate homeostatic plasticity, respectively. Corticomotor excitability was assessed in the corticomotor representation of the first dorsal interosseous muscle by transcranial magnetic stimulation-induced motor evoked potentials (MEPs) recorded before and 0, 10, 20, and 30-min following each tDCS protocol. RESULTS Compared with baseline, MEP amplitudes increased at all time points in both groups following the single tDCS protocol (P < 0.003). Following the double tDCS protocol, MEP amplitudes decreased in pain-free controls at all time points compared with baseline (P < 0.01), and were unchanged in the cLBP group. CONCLUSION These data indicate impaired homeostatic plasticity in the primary motor cortex of individuals with cLBP. SIGNIFICANCE Impaired homeostatic plasticity could explain maladaptive synaptic plasticity and symptom persistence in cLBP.
Collapse
|