1
|
Hua A, Wang G, Bai J, Hao Z, Liu J, Meng J, Wang J. Nonlinear dynamics of postural control system under visual-vestibular habituation balance practice: evidence from EEG, EMG and center of pressure signals. Front Hum Neurosci 2024; 18:1371648. [PMID: 38736529 PMCID: PMC11082324 DOI: 10.3389/fnhum.2024.1371648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Human postural control system is inherently complex with nonlinear interaction among multiple subsystems. Accordingly, such postural control system has the flexibility in adaptation to complex environments. Previous studies applied complexity-based methods to analyze center of pressure (COP) to explore nonlinear dynamics of postural sway under changing environments, but direct evidence from central nervous system or muscular system is limited in the existing literature. Therefore, we assessed the fractal dimension of COP, surface electromyographic (sEMG) and electroencephalogram (EEG) signals under visual-vestibular habituation balance practice. We combined a rotating platform and a virtual reality headset to present visual-vestibular congruent or incongruent conditions. We asked participants to undergo repeated exposure to either congruent (n = 14) or incongruent condition (n = 13) five times while maintaining balance. We found repeated practice under both congruent and incongruent conditions increased the complexity of high-frequency (0.5-20 Hz) component of COP data and the complexity of sEMG data from tibialis anterior muscle. In contrast, repeated practice under conflicts decreased the complexity of low-frequency (<0.5 Hz) component of COP data and the complexity of EEG data of parietal and occipital lobes, while repeated practice under congruent environment decreased the complexity of EEG data of parietal and temporal lobes. These results suggested nonlinear dynamics of cortical activity differed after balance practice under congruent and incongruent environments. Also, we found a positive correlation (1) between the complexity of high-frequency component of COP and the complexity of sEMG signals from calf muscles, and (2) between the complexity of low-frequency component of COP and the complexity of EEG signals. These results suggested the low- or high-component of COP might be related to central or muscular adjustment of postural control, respectively.
Collapse
Affiliation(s)
- Anke Hua
- Department of Sports Science, Zhejiang University, Hangzhou, China
- Sciences Cognitives et Sciences Affectives, University of Lille, Lille, France
| | - Guozheng Wang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University, Taizhou, China
| | - Jingyuan Bai
- Department of Sports Science, Zhejiang University, Hangzhou, China
| | - Zengming Hao
- Department of Rehabilitation Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Liu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Jun Meng
- College of Control Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jian Wang
- Department of Sports Science, Zhejiang University, Hangzhou, China
- Center for Psychological Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Krajewski KT, Johnson CC, Ahamed NU, Moir GL, Mi Q, Flanagan SD, Anderst WJ, Connaboy C. Recruit-aged adults may preferentially weight task goals over deleterious cost functions during short duration loaded and imposed gait tasks. Sci Rep 2023; 13:4910. [PMID: 36966216 PMCID: PMC10039906 DOI: 10.1038/s41598-023-31972-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/20/2023] [Indexed: 03/27/2023] Open
Abstract
Optimal motor control that is stable and adaptable to perturbation is reflected in the temporal arrangement and regulation of gait variability. Load carriage and forced-marching are common military relevant perturbations to gait that have been implicated in the high incidence of musculoskeletal injuries in military populations. We investigated the interactive effects of load magnitude and locomotion pattern on motor variability, stride regulation and spatiotemporal complexity during gait in recruit-aged adults. We further investigated the influences of sex and task duration. Healthy adults executed trials of running and forced-marching with and without loads at 10% above their gait transition velocity. Spatiotemporal parameters were analyzed using a goal equivalent manifold approach. With load and forced-marching, individuals used a greater array of motor solutions to execute the task goal (maintain velocity). Stride-to-stride regulation became stricter as the task progressed. Participants exhibited optimal spatiotemporal complexity with significant but not meaningful differences between sexes. With the introduction of load carriage and forced-marching, individuals relied on a strategy that maximizes and regulates motor solutions that achieve the task goal of velocity specifically but compete with other task functions. The appended cost penalties may have deleterious effects during prolonged execution, potentially increasing the risk of musculoskeletal injuries.
Collapse
Affiliation(s)
- Kellen T Krajewski
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Camille C Johnson
- Biodynamics Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nizam U Ahamed
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gavin L Moir
- Exercise Science Department, East Stroudsburg University, East Stroudsburg, PA, USA
| | - Qi Mi
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shawn D Flanagan
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - William J Anderst
- Biodynamics Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chris Connaboy
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Lower Extremity Ambulatory Research, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
3
|
Brymer E, Schweitzer RD. Learning clinical skills: an ecological perspective. ADVANCES IN HEALTH SCIENCES EDUCATION : THEORY AND PRACTICE 2022; 27:691-707. [PMID: 35748963 PMCID: PMC9374634 DOI: 10.1007/s10459-022-10115-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 04/02/2022] [Indexed: 06/15/2023]
Abstract
The pedagogy underpinning clinical psychology training is often reliant upon the acquisition and transmission of knowledge and the practice of skills. The dominant paradigm in the training of clinical psychologists emphasises competence-based training drawing upon a scientist practitioner model of practice, often underpinned by knowledge of evidence-based interventions. Little has changed over the past 40 years. Training is predicated upon the assumption that effective therapy is attributed to the therapist's skills to implement specific therapeutic processes and her or his capacity to form an effective working alliance with the client or patient. We provide an argument for an alternative paradigm in which ecological principles are privileged with a view to enhancing clinical training of psychologists in health settings responsive to the trainee as well as the broader societal context in which they practice, by adopting a pedagogy which prioritizes the relationship between the person and the environment. The proposed approach brings an ecological set of assumptions to the learning experience in clinical contexts. Key principles, drawn from an ecological perspective includes: affordances, the emergence of self-organisation in clinical learning, constraints and rate limiters. The approach is supported by examples applied to clinical learning contexts. Implications for clinical training are discussed. The ways in which an ecological approach may contribute to more effective learning outcomes through the use of representative learning contexts may inform learning design, how learning is actioned in clinical psychology as well as future research on the pedagogy of clinical training.
Collapse
Affiliation(s)
- Eric Brymer
- Faculty of Health, Southern Cross University, Gold Coast, Australia
| | - Robert D. Schweitzer
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
4
|
Moreno FJ, Caballero C, Barbado D. Postural control strategies are revealed by the complexity of fractional components of COP. J Neurophysiol 2022; 127:1289-1297. [PMID: 35353616 DOI: 10.1152/jn.00426.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The complexity of the center of pressure (COP) provides important information regarding the underlying mechanisms of postural control. The relationships between COP complexity and balance performance are not fully established and might depend on the task constraints and the filtering decomposition of the COP signal. This study assessed COP complexity under different task constraints and it was assessed if emergent dynamics of COP fluctuations differ according to fractional components of COP related to peripheral or central adjustments. One hundred and sixty-two participants performed two sitting balance tasks. Accuracy was required by following a target that moved in the mediolateral (ML) or in the anteroposterior (AP) axis. Complexity dynamics of COP were addressed through Detrended Fluctuation Analysis (DFA) in the axis constrained by accuracy requirements and in the one non-constrained. Decomposition of COP components was applied by low-pass, band-pass and high-pass filters. DFA of low-pass and band-pass components of COP in the constrained axis were small-to-moderately related (r = .190 to .237) to balance performance. DFA of the high-pass component of the COP exhibited the opposite relationship (r = -.283 to -.453) in both axes (constrained and non-constrained). This study evidences that COP complexity is linked to better performance. This positive relationship complexity/performance is observed in the low- and mid-frequency components of the COP. These components might be related to central mechanisms of postural control. The lack of relationships between the different frequencies analyzed in the study suggests that they are capturing different components of postural control.
Collapse
Affiliation(s)
| | - Carla Caballero
- Sport Sciences Department, Miguel Hernandez University, Elche, Spain
| | - David Barbado
- Sport Sciences Department, Miguel Hernandez University, Elche, Spain
| |
Collapse
|
5
|
Michela A, van Peer JM, Brammer JC, Nies A, van Rooij MMJW, Oostenveld R, Dorrestijn W, Smit AS, Roelofs K, Klumpers F, Granic I. Deep-Breathing Biofeedback Trainability in a Virtual-Reality Action Game: A Single-Case Design Study With Police Trainers. Front Psychol 2022; 13:806163. [PMID: 35222194 PMCID: PMC8868154 DOI: 10.3389/fpsyg.2022.806163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
It is widely recognized that police performance may be hindered by psychophysiological state changes during acute stress. To address the need for awareness and control of these physiological changes, police academies in many countries have implemented Heart-Rate Variability (HRV) biofeedback training. Despite these trainings now being widely delivered in classroom setups, they typically lack the arousing action context needed for successful transfer to the operational field, where officers must apply learned skills, particularly when stress levels rise. The study presented here aimed to address this gap by training physiological control skills in an arousing decision-making context. We developed a Virtual-Reality (VR) breathing-based biofeedback training in which police officers perform deep and slow diaphragmatic breathing in an engaging game-like action context. This VR game consisted of a selective shoot/don’t shoot game designed to assess response inhibition, an impaired capacity in high arousal situations. Biofeedback was provided based on adherence to a slow breathing pace: the slower and deeper the breathing, the less constrained peripheral vision became, facilitating accurate responses to the in-game demands. A total of nine male police trainers completed 10 sessions over a 4-week period as part of a single-case experimental ABAB study-design (i.e., alternating sessions with and without biofeedback). Results showed that eight out of nine participants showed improved breathing control in action, with a positive effect on breathing-induced low frequency HRV, while also improving their in-game behavioral performance. Critically, the breathing-based skill learning transferred to subsequent sessions in which biofeedback was not presented. Importantly, all participants remained highly engaged throughout the training. Altogether, our study showed that our VR environment can be used to train breathing regulation in an arousing and active decision-making context.
Collapse
Affiliation(s)
- Abele Michela
- Behavioral Science Institute, Radboud University, Nijmegen, Netherlands
| | | | - Jan C Brammer
- Behavioral Science Institute, Radboud University, Nijmegen, Netherlands
| | - Anique Nies
- Behavioral Science Institute, Radboud University, Nijmegen, Netherlands
| | - Marieke M J W van Rooij
- Faculty of Behavioral, Management and Social Sciences, University of Twente, Twente, Netherlands
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands.,NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Annika S Smit
- Police Academy of the Netherlands, Apeldoorn, Netherlands.,Humanism and Social Resilience, University of Humanistic Studies, Utrecht, Netherlands
| | - Karin Roelofs
- Behavioral Science Institute, Radboud University, Nijmegen, Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - Floris Klumpers
- Behavioral Science Institute, Radboud University, Nijmegen, Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - Isabela Granic
- Behavioral Science Institute, Radboud University, Nijmegen, Netherlands.,Faculty of Social Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
6
|
Caballero C, Barbado D, Hérnandez-Davó H, Hernández-Davó JL, Moreno FJ. Balance dynamics are related to age and levels of expertise. Application in young and adult tennis players. PLoS One 2021; 16:e0249941. [PMID: 33857225 PMCID: PMC8049250 DOI: 10.1371/journal.pone.0249941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/27/2021] [Indexed: 11/18/2022] Open
Abstract
In tennis, coaches consider balance fundamental for the acquisition of skilled motor performance. However, the potential relationship between balance and tennis expertise and performance has not been explored yet. Therefore, this study assessed the relationship between balance and tennis performance using linear and non-linear parameters through 1) the comparison of tennis players of different ages and levels of expertise, and 2) analyzing the relationship between balance and tennis serving speed and accuracy. One hundred and six recreational and expert male tennis players took part in the study (age range 10-35 years old). Temporal dynamics of postural control during a balance task on an unstable surface were analyzed through the mean velocity and the detrended fluctuation analysis (DFAV) of center of pressure (COP). Tennis serve performance was quantified by measuring accuracy and speed. Traditional variables measuring balance performance only showed differences according to age but not to sport performance. COP showed a reduction of auto-correlated variability (reflected by DFAV) with age but mainly in expert players. COP dynamics was the only balance parameter discriminating sport expertise and it was related to age. Balance dynamics exhibited by expert tennis players DFAV results support the idea that, along the years, sport experience induces balance adaptations characterized by a higher ability to perform postural adjustments. These results also reinforce the use of non-linear analysis to reveal subtle balance adaptations produced by sport practice. Finally, the lack of correlations suggests that balance, measured with scattering variables, in a non-specific task is not a main determinant of sport performance in tennis serve.
Collapse
Affiliation(s)
- Carla Caballero
- Sports Research Centre, Department of Sport Sciences, Miguel Hernández University of Elche, Elche, Alicante, Spain
| | - David Barbado
- Sports Research Centre, Department of Sport Sciences, Miguel Hernández University of Elche, Elche, Alicante, Spain
| | - Héctor Hérnandez-Davó
- Sports Research Centre, Department of Sport Sciences, Miguel Hernández University of Elche, Elche, Alicante, Spain
| | - José Luis Hernández-Davó
- Sports Research Centre, Department of Sport Sciences, Miguel Hernández University of Elche, Elche, Alicante, Spain
| | - Francisco J. Moreno
- Sports Research Centre, Department of Sport Sciences, Miguel Hernández University of Elche, Elche, Alicante, Spain
- * E-mail:
| |
Collapse
|
7
|
Krajewski KT, Dever DE, Johnson CC, Mi Q, Simpson RJ, Graham SM, Moir GL, Ahamed NU, Flanagan SD, Anderst WJ, Connaboy C. Load Magnitude and Locomotion Pattern Alter Locomotor System Function in Healthy Young Adult Women. Front Bioeng Biotechnol 2020; 8:582219. [PMID: 33042981 PMCID: PMC7525027 DOI: 10.3389/fbioe.2020.582219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/19/2020] [Indexed: 11/24/2022] Open
Abstract
Introduction During cyclical steady state ambulation, such as walking, variability in stride intervals can indicate the state of the system. In order to define locomotor system function, observed variability in motor patterns, stride regulation and gait complexity must be assessed in the presence of a perturbation. Common perturbations, especially for military populations, are load carriage and an imposed locomotion pattern known as forced marching (FM). We examined the interactive effects of load magnitude and locomotion pattern on motor variability, stride regulation and gait complexity during bipedal ambulation in recruit-aged females. Methods Eleven healthy physically active females (18–30 years) completed 1-min trials of running and FM at three load conditions: no additional weight/bodyweight (BW), an additional 25% of BW (BW + 25%), and an additional 45% of BW (BW + 45%). A goal equivalent manifold (GEM) approach was used to assess motor variability yielding relative variability (RV; ratio of “good” to “bad” variability) and detrended fluctuation analysis (DFA) to determine gait complexity on stride length (SL) and stride time (ST) parameters. DFA was also used on GEM outcomes to calculate stride regulation. Results There was a main effect of load (p = 0.01) on RV; as load increased, RV decreased. There was a main effect of locomotion (p = 0.01), with FM exhibiting greater RV than running. Strides were regulated more tightly and corrected quicker at BW + 45% compared (p < 0.05) to BW. Stride regulation was greater for FM compared to running. There was a main effect of load for gait complexity (p = 0.002); as load increased gait complexity decreased, likewise FM had less (p = 0.02) gait complexity than running. Discussion This study is the first to employ a GEM approach and a complexity analysis to gait tasks under load carriage. Reduction in “good” variability as load increases potentially exposes anatomical structures to repetitive site-specific loading. Furthermore, load carriage magnitudes of BW + 45% potentially destabilize the system making individuals less adaptable to additional perturbations. This is further evidenced by the decrease in gait complexity, which all participants demonstrated values similarly observed in neurologically impaired populations during the BW + 45% load condition.
Collapse
Affiliation(s)
- Kellen T Krajewski
- Neuromuscular Research Laboratory and Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dennis E Dever
- Neuromuscular Research Laboratory and Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Camille C Johnson
- Biodynamics Laboratory, Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qi Mi
- Neuromuscular Research Laboratory and Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Richard J Simpson
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Scott M Graham
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Gavin L Moir
- Exercise Science Department, East Stroudsburg University, East Stroudsburg, PA, United States
| | - Nizam U Ahamed
- Neuromuscular Research Laboratory and Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shawn D Flanagan
- Neuromuscular Research Laboratory and Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| | - William J Anderst
- Biodynamics Laboratory, Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chris Connaboy
- Neuromuscular Research Laboratory and Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Effects of Enriched Physical Activity Environments on Balance and Fall Prevention in Older Adults: A Scoping Review. J Aging Phys Act 2020; 29:178-191. [PMID: 32732456 DOI: 10.1123/japa.2019-0395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/07/2020] [Accepted: 05/17/2020] [Indexed: 11/18/2022]
Abstract
The incidence of falling, due to aging, is related to both personal and environmental factors. There is a clear need to understand the nature of the major risk factors and design features of a safe and navigable living environment for potential fallers. The aim of this scoping review was to identify studies that have examined the effectiveness of environments, which promote physical activity and have an impact on falls prevention. Selected studies were identified and categorized into four main topics: built environment, environment modifications, enriched environments, and task constraints. The results of this analysis showed that there are a limited number of studies aiming to enhance dynamic postural stability and fall prevention through designing more functional environments. This scoping review study suggests that the design of interventions and the evaluation of an environment to support fall prevention are topics for future research.
Collapse
|
9
|
Caballero C, Barbado D, Urbán T, García-Herrero JA, Moreno FJ. Functional Variability in Team-Handball Players during Balance Is Revealed by Non-Linear Measures and Is Related to Age and Expertise Level. ENTROPY 2020; 22:e22080822. [PMID: 33286592 PMCID: PMC7517406 DOI: 10.3390/e22080822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 02/02/2023]
Abstract
Postural control is considered a key variable in team sports, such as handball, which require abilities strongly related to balance. However, postural control and its relationship to the performance of handball skills according to the players’ skill level and age has not been evaluated to date. This study analyzes the relationship between balance ability and team-handball performance according to age and expertise, applying a non-linear approach to balance assessment. Postural control from 114 male team-handball players was analyzed through the center of pressure (COP) during a balance task. Sport performance was measured by the accuracy and speed in throwing. Expert players threw faster, but not more accurately than recreational players. Balance performance was better for 18+ players (older than 18 years old) than those U12 (under 12 years old), but no differences were found according to their skill level. Players who threw with less accuracy showed slower COP velocity during the balance task and their moves were less irregular. Players who threw faster displayed more irregular and less auto-correlated COP movements. In conclusion, experienced team-handball players exhibited better balance performance, and this seems to be related to the maturation of the motor system more than to sport performance level. Nevertheless, non-linear measures of COP excursion revealed an exploratory behavior during balance in expert players, exhibiting more motion adjustments to reduce motor output error. Traditional variables measuring balance performance did not show sensitivity to this motor control process. A non-linear approach to balance assessment revealed functional variability during balance as an intrinsic characteristic of individuals’ motor control according to age and skill level.
Collapse
Affiliation(s)
- Carla Caballero
- Department of Sport Sciences, Sport Research Center, Miguel Hernandez University of Elche, 03202 Elche, Spain; (C.C.); (D.B.); (T.U.)
| | - David Barbado
- Department of Sport Sciences, Sport Research Center, Miguel Hernandez University of Elche, 03202 Elche, Spain; (C.C.); (D.B.); (T.U.)
| | - Tomás Urbán
- Department of Sport Sciences, Sport Research Center, Miguel Hernandez University of Elche, 03202 Elche, Spain; (C.C.); (D.B.); (T.U.)
| | - Juan Antonio García-Herrero
- Department of Didactics of Musical, Plastic and Corporal Expression, Faculty of Education, University of Salamanca, 37008 Salamanca, Spain;
| | - Francisco J. Moreno
- Department of Sport Sciences, Sport Research Center, Miguel Hernandez University of Elche, 03202 Elche, Spain; (C.C.); (D.B.); (T.U.)
- Correspondence:
| |
Collapse
|
10
|
Leal del Ojo P, Floría P, Harrison AJ, Gómez-Landero LA. Effects of task difficulty on centre of pressure excursion and its inter-trial variability in acrobatic gymnastics pyramid performance. Sports Biomech 2020:1-16. [DOI: 10.1080/14763141.2020.1770322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Pablo Floría
- Physical Performance & Sports Research Center, Pablo de Olavide University, Seville, Spain
| | - Andrew J Harrison
- Biomechanics Research Unit, University of Limerick, Limerick, Ireland
| | | |
Collapse
|
11
|
Caballero C, Davids K, Heller B, Wheat J, Moreno FJ. Movement variability emerges in gait as adaptation to task constraints in dynamic environments. Gait Posture 2019; 70:1-5. [PMID: 30771594 DOI: 10.1016/j.gaitpost.2019.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 01/27/2019] [Accepted: 02/02/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Motor variability has been related to motor control playing a functional role in human adaptive behaviours. However, the direction of the relationship between variability and motor control can be unclear. The specific relations that exist between task constraints and movement (re)organization could explain some of this controversy. RESEARCH QUESTION This study sought to understand whether manipulation of task constraints result in changes in the magnitude or structure of motor system variability observed in a basic walking task. We also investigated the relationship between performance in achieving task goals and the structure of motor variability. METHODS Twenty volunteers walked around a circular track with binary combinations of 3 task constraints, providing 8 conditions. The manipulated task constraints were: 1) track width; 2) surface stiffness; and 3), walking direction. Performance was analysed using standard deviation (SD) of sacral displacement and its mean velocity (MV). Fuzzy Entropy (FE) and Detrended Fluctuation Analysis (DFA) were used to assess the kinematic variability structure. RESULTS Individuals showed lower SD and MV walking on the narrower track. These changes were also followed by higher DFA values, indicating a more auto-correlated structure of variability. The foam surface was also associated with an increase in amplitude, velocity and irregularity (FE) of movement. SIGNIFICANCE Results of this study describe how specific task constraints, such as the width of the walking track and the surface stiffness, shape emergent movement coordination patterns as participants search for functional information from the environment to regulate performance behaviors. Changes in variability structure could reveal the search for adaptive strategies during walking. Smaller movement fluctuations and higher velocity in gait patterns are related to greater irregularity and lower autocorrelation in the kinematic variability structure, demonstrating that a specific relationship emerges between system variability and movement performance, which is driven by task constraints.
Collapse
Affiliation(s)
- Carla Caballero
- Department of Sport Sciences. Sport Research Center, Miguel Hernández University of Elche, Av. de la Universidad s/n., CP: 03202, Elche, Alicante, Spain.
| | - Keith Davids
- Centre of Sports Engineering Research, Sheffield Hallam University, Collegiate Hall, Collegiate Campus, Sheffield, S1 1WB, United Kingdom.
| | - Ben Heller
- Centre of Sports Engineering Research, Sheffield Hallam University, Collegiate Hall, Collegiate Campus, Sheffield, S1 1WB, United Kingdom.
| | - Jonathan Wheat
- Academy of Sport and Physical Activity. Sheffield Hallam University, Collegiate Hall, Collegiate Campus, Sheffield, S1 1WB, United Kingdom.
| | - Francisco J Moreno
- Department of Sport Sciences. Sport Research Center, Miguel Hernández University of Elche, Av. de la Universidad s/n., CP: 03202, Elche, Alicante, Spain.
| |
Collapse
|
12
|
Do intentionality constraints shape the relationship between motor variability and performance? PLoS One 2019; 14:e0214237. [PMID: 30995243 PMCID: PMC6469761 DOI: 10.1371/journal.pone.0214237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/08/2019] [Indexed: 11/19/2022] Open
Abstract
The aim of this experiment was to assess if the previously supported relationship between the structure of motor variability and performance changes when the task or organismic constraints encourage individuals to adjust their movement to achieve a goal. Forty-two healthy volunteers (aged 26.05 ± 5.02 years) performed three sets of cyclic pointing movements, 600 cycles each. Every set was performed under different conditions: 1) without a target; 2) with a target; 3) with a target and a financial reward. The amount of performance variability was analysed using the standard deviation of the medial-lateral (ML) and anterior-posterior (AP) axes and the bivariate variable error. The structure of the variability was assessed by Detrended Fluctuation Analysis (DFA) of the following time series: the coordinate values of the endpoint in ML, AP axes and resultant distance (RD), the hand orientation and the movement time. The performance of the task constrained with a target, or a target and reward, required higher implication to adjust an individual’s movements to achieve the task goal, showing a decrease in dispersions and lower autocorrelation. Under the condition without a target, variability dispersion was positively related to autocorrelation of the movement values from ML axis and RD time series, and negatively related to the values from the hand orientation time series. There was a loss of the relationship between variability structure and performance when the task was constrained by the target and the reward. That could indicate different strategies of the participants to achieve the objective. Considering the results and previous studies, the relationship between variability structure and performance could depend on task constraints such as feedback, difficulty or the skill level of participants and it is mediated by individual constraints such as implication or intentionality.
Collapse
|
13
|
Complexity, Regularity and Non-Linear Behavior in Human Eye Movements: Analyzing the Dynamics of Gaze in Virtual Sailing Programs. Symmetry (Basel) 2018. [DOI: 10.3390/sym10100528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The non-linear analysis of the behavior of biological signals in humans is studied from different scientific disciplines. The aim of this study was to analyze the possible non-linear behavior present in eye movements during eye-tracking tasks in simulated sailing. Thirty young sailors were selected. Fuzzy entropy and detrended fluctuation analyses were applied to quantify the regularity and complexity of eye movements. The results show that neither experience nor ranking affect the regularity or the complexity of eye movement positions or velocities. Younger age is related to more regular visual behavior. At younger ages, eye positions present more complex behavior. Eye positions show more complex behavior than eye velocities. This complexity would allow for a more functional exploration of the environment by sailors. Eye movement velocity presents the greatest irregularity, with significantly higher values than eye movement position. This irregularity would facilitate the visual perception of the environment. All these findings could be related to the sailors’ functional behavior, based on complexity and stability, which has been associated with the ability of human beings to adapt to the environment.
Collapse
|
14
|
Multifractality, Interactivity, and the Adaptive Capacity of the Human Movement System: A Perspective for Advancing the Conceptual Basis of Neurologic Physical Therapy. J Neurol Phys Ther 2018; 41:245-251. [PMID: 28834791 DOI: 10.1097/npt.0000000000000199] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND PURPOSE Physical therapists seek to optimize movement as a means of reducing disability and improving health. The short-term effects of interventions designed to optimize movement ultimately are intended to be adapted for use across various future patterns of behavior, in potentially unpredictable ways, with varying frequency, and in the context of multiple tasks and environmental conditions. In this perspective article, we review and discuss the implications of recent evidence that optimal movement variability, which previously had been associated with adaptable motor behavior, contains a specific complex nonlinear feature known as "multifractality." SUMMARY OF KEY POINTS Multifractal movement fluctuation patterns reflect robust physiologic interactivity occurring within the movement system across multiple time scales. Such patterns provide conceptual support for the idea that patterns of motor behavior occurring in the moment are inextricably linked in complex, physiologic ways to patterns of motor behavior occurring over much longer periods. The human movement system appears to be particularly tuned to multifractal fluctuation patterns and exhibits the ability to reorganize its output in response to external stimulation embedded with multifractal features. RECOMMENDATIONS FOR CLINICAL PRACTICE As a fundamental feature of human movement, multifractality opens new avenues for conceptualizing the link between physiologic interactivity and adaptive capacity. Preliminary evidence supporting the positive influence of multifractal rhythmic auditory stimulation on the gait patterns of individuals with Parkinson disease is used to illustrate how physical therapy interventions might be devised to specifically target the adaptive capacity of the human movement system.Video Abstract available for more insights from the authors (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A183).
Collapse
|
15
|
Luo H, Wang X, Fan M, Deng L, Jian C, Wei M, Luo J. The Effect of Visual Stimuli on Stability and Complexity of Postural Control. Front Neurol 2018; 9:48. [PMID: 29472888 PMCID: PMC5809403 DOI: 10.3389/fneur.2018.00048] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/18/2018] [Indexed: 11/26/2022] Open
Abstract
Visual input could benefit balance control or increase postural sway, and it is far from fully understanding the effect of visual stimuli on postural stability and its underlying mechanism. In this study, the effect of different visual inputs on stability and complexity of postural control was examined by analyzing the mean velocity (MV), SD, and fuzzy approximate entropy (fApEn) of the center of pressure (COP) signal during quiet upright standing. We designed five visual exposure conditions: eyes-closed, eyes-open (EO), and three virtual reality (VR) scenes (VR1–VR3). The VR scenes were a limited field view of an optokinetic drum rotating around yaw (VR1), pitch (VR2), and roll (VR3) axes, respectively. Sixteen healthy subjects were involved in the experiment, and their COP trajectories were assessed from the force plate data. MV, SD, and fApEn of the COP in anterior–posterior (AP), medial–lateral (ML) directions were calculated. Two-way analysis of variance with repeated measures was conducted to test the statistical significance. We found that all the three parameters obtained the lowest values in the EO condition, and highest in the VR3 condition. We also found that the active neuromuscular intervention, indicated by fApEn, in response to changing the visual exposure conditions were more adaptive in AP direction, and the stability, indicated by SD, in ML direction reflected the changes of visual scenes. MV was found to capture both instability and active neuromuscular control dynamics. It seemed that the three parameters provided compensatory information about the postural control in the immersive virtual environment.
Collapse
Affiliation(s)
- Haizhen Luo
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Engineering, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyun Wang
- Guangdong Work Injury Rehabilitation Center, Guangzhou, China
| | - Mengying Fan
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Engineering, Sun Yat-sen University, Guangzhou, China
| | - Lingyun Deng
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Engineering, Sun Yat-sen University, Guangzhou, China
| | - Chuyao Jian
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Engineering, Sun Yat-sen University, Guangzhou, China
| | - Miaoluan Wei
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jie Luo
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Engineering, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Shafizadeh M, Wheat J, Davids K, Ansari NN, Ali A, Garmabi S. Constraints on perception of information from obstacles during foot clearance in people with chronic stroke. Exp Brain Res 2017; 235:1665-1676. [PMID: 28271220 DOI: 10.1007/s00221-017-4920-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 02/16/2017] [Indexed: 02/08/2023]
Abstract
The aim of this study was to examine effects of different types of task constraints on coupling of perception and action in people with chronic stroke when crossing obstacles during a walking task. Ten participants with hemiplegic chronic stroke volunteered to walk over a static obstacle under two distinct task constraints: simple and dual tasks. Under simple task constraints, without specific instructions, participants walked at their preferred speed and crossed over an obstacle. Under dual task constraints, the same individuals were required to subtract numbers whilst walking. Under both distinct task constraints, we examined emergent values of foot distance when clearing a static obstacle in both affected and unaffected legs, measured by a 3D motion tracking system. Principal component analysis was used to quantify task performance, and discriminant analysis was used to compare gait performance between task constraints. Results suggested that patients, regardless of affected body side, demonstrated differences in perception of distance information from the obstacle, which constrained gait differences in initial swing, mid-swing, and crossing phases. Furthermore, dual task constraints, rather than hemiplegic body side, were a significant discriminator in patients' perceptions of distance and height information to the obstacle. These findings suggested how performance of additional cognitive tasks might constrain perception of information from an obstacle in people with chronic stroke during different phases of obstacle crossing, and thus may impair their adaptive ability to successfully manoeuvre around objects.
Collapse
Affiliation(s)
- Mohsen Shafizadeh
- Faculty of Health and Wellbeing, Academy of Sport and Physical Activity, Sheffield Hallam University, Sheffield, S10 2BP, UK.
| | - Jonathan Wheat
- Faculty of Health and Wellbeing, Centre for Sport Engineering Research, Sheffield Hallam University, Sheffield, S10 2BP, UK
| | - Keith Davids
- Faculty of Health and Wellbeing, Centre for Sport Engineering Research, Sheffield Hallam University, Sheffield, S10 2BP, UK
| | - Noureddin Nakhostin Ansari
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Ali
- Department of Geriatrics and Stroke Medicine, Sheffield Teaching Hospitals, Royal Hallamshire Hospital, Glossop Road, Sheffield, S10 2JF, UK
| | - Samira Garmabi
- University of Social Welfare and Rehabilitation Sciences, Kodakyar Ave, Daneshjo Blvd, Evin, Tehran, 1985713834, Iran
| |
Collapse
|