1
|
Dorofeikova M, Borkar CD, Weissmuller K, Smith-Osborne L, Basavanhalli S, Bean E, Smith A, Duong A, Resendez A, Fadok JP. Effects of footshock stress on social behavior and neuronal activation in the medial prefrontal cortex and amygdala of male and female mice. PLoS One 2023; 18:e0281388. [PMID: 36757923 PMCID: PMC9910713 DOI: 10.1371/journal.pone.0281388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/21/2023] [Indexed: 02/10/2023] Open
Abstract
Social behavior is complex and fundamental, and its deficits are common pathological features for several psychiatric disorders including anxiety, depression, and posttraumatic stress disorder. Acute stress may have a negative impact on social behavior, and these effects can vary based on sex. The aim of this study was to explore the effect of acute footshock stress, using analogous parameters to those commonly used in fear conditioning assays, on the sociability of male and female C57BL/6J mice in a standard social approach test. Animals were divided into two main groups of footshock stress (22 male, 24 female) and context exposed control (23 male and 22 female). Each group had mice that were treated intraperitoneally with either the benzodiazepine-alprazolam (control: 10 male, 10 female; stress: 11 male, 11 female), or vehicle (control: 13 male, 12 female; stress: 11 male, 13 female). In all groups, neuronal activation during social approach was assessed using immunohistochemistry against the immediate early gene product cFos. Although footshock stress did not significantly alter sociability or latency to approach a social stimulus, it did increase defensive tail-rattling behavior specifically in males (p = 0.0022). This stress-induced increase in tail-rattling was alleviated by alprazolam (p = 0.03), yet alprazolam had no effect on female tail-rattling behavior in the stress group. Alprazolam lowered cFos expression in the medial prefrontal cortex (p = 0.001 infralimbic area, p = 0.02 prelimbic area), and social approach induced sex-dependent differences in cFos activation in the ventromedial intercalated cell clusters (p = 0.04). Social approach following stress-induced cFos expression was positively correlated with latency to approach and negatively correlated with sociability in the prelimbic area and multiple amygdala subregions (all p < 0.05). Collectively, our results suggest that acute footshock stress induces sex-dependent alterations in defensiveness and differential patterns of cFos activation during social approach.
Collapse
Affiliation(s)
- Mariia Dorofeikova
- Department of Psychology, Tulane University, New Orleans, LA, United States of America
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States of America
| | - Chandrashekhar D. Borkar
- Department of Psychology, Tulane University, New Orleans, LA, United States of America
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States of America
| | | | - Lydia Smith-Osborne
- Department of Psychology, Tulane University, New Orleans, LA, United States of America
- Tulane National Primate Research Center, Covington, LA, United States of America
| | - Samhita Basavanhalli
- Neuroscience Program, Tulane University, New Orleans, LA, United States of America
| | - Erin Bean
- Neuroscience Program, Tulane University, New Orleans, LA, United States of America
| | - Avery Smith
- Neuroscience Program, Tulane University, New Orleans, LA, United States of America
| | - Anh Duong
- Department of Psychology, Tulane University, New Orleans, LA, United States of America
- Neuroscience Program, Tulane University, New Orleans, LA, United States of America
| | - Alexis Resendez
- Department of Psychology, Tulane University, New Orleans, LA, United States of America
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States of America
| | - Jonathan P. Fadok
- Department of Psychology, Tulane University, New Orleans, LA, United States of America
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States of America
- * E-mail:
| |
Collapse
|
2
|
Duffy KA, Epperson CN. Evaluating the evidence for sex differences: a scoping review of human neuroimaging in psychopharmacology research. Neuropsychopharmacology 2022; 47:430-443. [PMID: 34732844 PMCID: PMC8674314 DOI: 10.1038/s41386-021-01162-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/12/2021] [Accepted: 08/13/2021] [Indexed: 01/03/2023]
Abstract
Although sex differences in psychiatric disorders abound, few neuropsychopharmacology (NPP) studies consider sex as a biological variable (SABV). We conducted a scoping review of this literature in humans by systematically searching PubMed to identify peer-reviewed journal articles published before March 2020 that (1) studied FDA-approved medications used to treat psychiatric disorders (or related symptoms) and (2) adequately evaluated sex differences using in vivo neuroimaging methodologies. Of the 251 NPP studies that included both sexes and considered SABV in analyses, 80% used methodologies that eliminated the effect of sex (e.g., by including sex as a covariate to control for its effect). Only 20% (50 studies) adequately evaluated sex differences either by testing for an interaction involving sex or by stratifying analyses by sex. Of these 50 studies, 72% found statistically significant sex differences in at least one outcome. Sex differences in neural and behavioral outcomes were studied more often in drugs indicated for conditions with known sex differences. Likewise, the majority of studies conducted in those drug classes noted sex differences: antidepressants (13 of 16), antipsychotics (10 of 12), sedative-hypnotics (6 of 10), and stimulants (6 of 10). In contrast, only two studies of mood stabilizers evaluated SABV, with one noting a sex difference. By mapping this literature, we bring into sharp relief how few studies adequately evaluate sex differences in NPP studies. Currently, all NIH-funded studies are required to consider SABV. We urge scientific journals, peer reviewers, and regulatory agencies to require researchers to consider SABV in their research. Continuing to ignore SABV in NPP research has ramifications both in terms of rigor and reproducibility of research, potentially leading to costly consequences and unrealized benefits.
Collapse
Affiliation(s)
- Korrina A Duffy
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - C Neill Epperson
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA.
- Department of Family Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
3
|
Weidacker K, Johnston SJ, Mullins PG, Boy F, Dymond S. Neurochemistry of response inhibition and interference in gambling disorder: a preliminary study of γ-aminobutyric acid (GABA+) and glutamate-glutamine (Glx). CNS Spectr 2021:1-11. [PMID: 33752778 DOI: 10.1017/s1092852921000316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Neurobehavioral research on the role of impulsivity in gambling disorder (GD) has produced heterogeneous findings. Impulsivity is multifaceted with different experimental tasks measuring different subprocesses, such as response inhibition and distractor interference. Little is known about the neurochemistry of inhibition and interference in GD. METHODS We investigated inhibition with the stop signal task (SST) and interference with the Eriksen Flanker task, and related performance to metabolite levels in individuals with and without GD. We employed magnetic resonance spectroscopy (MRS) to record glutamate-glutamine (Glx/Cr) and inhibitory, γ-aminobutyric acid (GABA+/Cr) levels in the dorsal ACC (dACC), right dorsolateral prefrontal cortex (dlPFC), and an occipital control voxel. RESULTS We found slower processing of complex stimuli in the Flanker task in GD (P < .001, η2p = 0.78), and no group differences in SST performance. Levels of dACC Glx/Cr and frequency of incongruent errors were correlated positively in GD only (r = 0.92, P = .001). Larger positive correlations were found for those with GD between dACC GABA+/Cr and SST Go error response times (z = 2.83, P = .004), as well as between dACC Glx/Cr and frequency of Go errors (z = 2.23, P = .03), indicating general Glx-related error processing deficits. Both groups expressed equivalent positive correlations between posterror slowing and Glx/Cr in the right dlPFC (GD: r = 0.74, P = .02; non-GD: r = .71, P = .01). CONCLUSION Inhibition and interference impairments are reflected in dACC baseline metabolite levels and error processing deficits in GD.
Collapse
Affiliation(s)
| | | | - Paul G Mullins
- School of Psychology, Bangor University, Bangor, United Kingdom
| | - Frederic Boy
- School of Psychology, Swansea University, Swansea, United Kingdom
- School of Management, Swansea University, Swansea, United Kingdom
| | - Simon Dymond
- School of Psychology, Swansea University, Swansea, United Kingdom
- Department of Psychology, Reykjavík University, Reykjavík, Iceland
| |
Collapse
|