1
|
Spomer AM, Conner BC, Schwartz MH, Lerner ZF, Steele KM. Multi-session adaptation to audiovisual and sensorimotor biofeedback is heterogeneous among adolescents with cerebral palsy. PLoS One 2024; 19:e0313617. [PMID: 39556530 PMCID: PMC11573209 DOI: 10.1371/journal.pone.0313617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND There is growing interest in the use of biofeedback-augmented gait training in cerebral palsy (CP). Audiovisual, sensorimotor, and immersive biofeedback paradigms are commonly used to elicit short-term gait improvements; however, outcomes remain variable. Because biofeedback training requires that individuals have the capacity to both adapt their gait in response to feedback and retain improvements across sessions, changes in either capacity may affect outcomes. Yet, neither has been explored extensively in CP. METHODS In this study, we evaluated the extent to which adolescents with CP (7M/1F; 14 years (12.5,15.26)) could adapt gait and retain improvements across four, 20-minute sessions using combined audiovisual and sensorimotor biofeedback. Both systems were designed to target plantarflexor activity. Audiovisual biofeedback displayed real-time soleus activity and sensorimotor biofeedback was provided using a bilateral resistive ankle exoskeleton. We quantified the time-course of change in muscle activity within and across sessions and overground walking function before and after the four sessions. RESULTS All individuals were able to significantly increase soleus activity from baseline using multimodal biofeedback (p < 0.031) but demonstrated heterogeneous adaptation strategies. In-session soleus adaptation had a moderate positive correlation with short-term retention of the adapted gait patterns (0.40 ≤ ρ ≤ 0.81), but generally weak correlations with baseline walking function (GMFCS Level) and motor control complexity (ρ ≤ 0.43). The latter indicates that adaptation capacity may be a critical and unique metric underlying response to biofeedback. Notably, in-session gains did not correspond to significant improvements in overground walking function (p > 0.11). CONCLUSIONS This work suggests that individuals with CP have the capacity to adapt their gait using biofeedback, but responses are highly variable. Characterizing the factors driving adaptation to biofeedback may be a promising avenue to understand the heterogeneity of existing biofeedback training outcomes and inform future system optimization for integration into clinical care.
Collapse
Affiliation(s)
- Alyssa M. Spomer
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Benjamin C. Conner
- College of Medicine – Phoenix, University of Arizona, Phoenix, Arizona, United States of America
| | - Michael H. Schwartz
- James R. Gage Center for Gait & Motion Analysis, Gillette Children’s, Saint Paul, Minnesota, United States of America
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Zachary F. Lerner
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Katherine M. Steele
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
2
|
Clayton HA, Abbas S, `t Hart BM, Henriques DYP. Visuomotor adaptation across the lifespan. PLoS One 2024; 19:e0306276. [PMID: 38990816 PMCID: PMC11238954 DOI: 10.1371/journal.pone.0306276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Being able to adapt our movements to changing circumstances allows people to maintain performance across a wide range of tasks throughout life, but it is unclear whether visuomotor learning abilities are fully developed in young children and, if so, whether they remain stable in the elderly. There is limited evidence of changes in motor adaptation ability throughout life, and the findings are inconsistent. Therefore, our goal was to compare visuomotor learning abilities throughout the lifespan. We used a shorter, gamified experimental task and collected data from participants in 5 age groups. Young children (M = 7 years), older children (M = 11 years), young adults (M = 20 years), adults (M = 40 years) and older adults (M = 67 years) adapted to a 45° visuomotor rotation in a centre-out reaching task. Across measures of rate of adaptation, extent of learning, rate of unlearning, generalization, and savings, we found that all groups performed similarly. That is, at least for short bouts of gamified learning, children and older adults perform just as well as young adults.
Collapse
Affiliation(s)
- Holly A. Clayton
- Department of Psychology, York University, Toronto, Ontario, Canada
- Centre for Vision Research, York University, Toronto, Ontario, Canada
| | - Sahir Abbas
- Department of Psychology, York University, Toronto, Ontario, Canada
| | | | - Denise Y. P. Henriques
- Department of Psychology, York University, Toronto, Ontario, Canada
- Centre for Vision Research, York University, Toronto, Ontario, Canada
- School of Kinesiology and Health Sciences, York University, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Moore RT, Piitz MA, Singh N, Dukelow SP, Cluff T. The independence of impairments in proprioception and visuomotor adaptation after stroke. J Neuroeng Rehabil 2024; 21:81. [PMID: 38762552 PMCID: PMC11102216 DOI: 10.1186/s12984-024-01360-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/18/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Proprioceptive impairments are common after stroke and are associated with worse motor recovery and poor rehabilitation outcomes. Motor learning may also be an important factor in motor recovery, and some evidence in healthy adults suggests that reduced proprioceptive function is associated with reductions in motor learning. It is unclear how impairments in proprioception and motor learning relate after stroke. Here we used robotics and a traditional clinical assessment to examine the link between impairments in proprioception after stroke and a type of motor learning known as visuomotor adaptation. METHODS We recruited participants with first-time unilateral stroke and controls matched for overall age and sex. Proprioceptive impairments in the more affected arm were assessed using robotic arm position- (APM) and movement-matching (AMM) tasks. We also assessed proprioceptive impairments using a clinical scale (Thumb Localization Test; TLT). Visuomotor adaptation was assessed using a task that systematically rotated hand cursor feedback during reaching movements (VMR). We quantified how much participants adapted to the disturbance and how many trials they took to adapt to the same levels as controls. Spearman's rho was used to examine the relationship between proprioception, assessed using robotics and the TLT, and visuomotor adaptation. Data from healthy adults were used to identify participants with stroke who were impaired in proprioception and visuomotor adaptation. The independence of impairments in proprioception and adaptation were examined using Fisher's exact tests. RESULTS Impairments in proprioception (58.3%) and adaptation (52.1%) were common in participants with stroke (n = 48; 2.10% acute, 70.8% subacute, 27.1% chronic stroke). Performance on the APM task, AMM task, and TLT scores correlated weakly with measures of visuomotor adaptation. Fisher's exact tests demonstrated that impairments in proprioception, assessed using robotics and the TLT, were independent from impairments in visuomotor adaptation in our sample. CONCLUSION Our results suggest impairments in proprioception may be independent from impairments in visuomotor adaptation after stroke. Further studies are needed to understand factors that influence the relationship between motor learning, proprioception and other rehabilitation outcomes throughout stroke recovery.
Collapse
Affiliation(s)
- Robert T Moore
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
| | - Mark A Piitz
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
| | - Nishita Singh
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, 2500 University Dr NW, Calgary, AB, Canada
| | - Tyler Cluff
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada.
- Faculty of Kinesiology, University of Calgary, 2500 University Dr NW, Calgary, AB, Canada.
| |
Collapse
|
4
|
Hulstijn W, Cornelis C, Morsel A, Timmers M, Morrens M, Sabbe BGC. Motor learning and performance in schizophrenia and aging: two different patterns of decline. Exp Brain Res 2024:10.1007/s00221-024-06797-9. [PMID: 38459999 DOI: 10.1007/s00221-024-06797-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/27/2024] [Indexed: 03/11/2024]
Abstract
Psychomotor slowing has consistently been observed in schizophrenia, however research on motor learning in schizophrenia is limited. Additionally, motor learning in schizophrenia has never been compared with the waning of motor learning abilities in the elderly. Therefore, in an extensive study, 30 individuals with schizophrenia, 30 healthy age-matched controls and 30 elderly participants were compared on sensorimotor learning tasks including sequence learning and adaptation (both explicit and implicit), as well as tracking and aiming. This paper presents new findings on an explicit motor sequence learning task, an explicit verbal learning task and a simple aiming task and summarizes all previously published findings of this large investigation. Individuals with schizophrenia and elderly had slower Movement Time (MT)s compared with controls in all tasks, however both groups improved over time. Elderly participants learned slower on tracking and explicit sequence learning while individuals with schizophrenia adapted slower and to a lesser extent to movement perturbations in adaptation tasks and performed less well on cognitive tests including the verbal learning task. Results suggest that motor slowing is present in schizophrenia and the elderly, however both groups show significant but different motor skill learning. Cognitive deficits seem to interfere with motor learning and performance in schizophrenia while task complexity and decreased movement precision interferes with motor learning in the elderly, reflecting different underlying patterns of decline in these conditions. In addition, evidence for motor slowing together with impaired implicit adaptation supports the influence of cerebellum and the cerebello-thalamo-cortical-cerebellar (CTCC) circuits in schizophrenia, important for further understanding the pathophysiology of the disorder.
Collapse
Affiliation(s)
- Wouter Hulstijn
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| | - Claudia Cornelis
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
- Psychiatric Center Multiversum, Mortsel, Belgium
| | - Anne Morsel
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
| | - Maarten Timmers
- Janssen Pharmaceutica NV, Janssen Research and Development, Beerse, Belgium
| | - Manuel Morrens
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
- University Psychiatric Center Duffel, Duffel, Belgium
| | - Bernard G C Sabbe
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
5
|
Chiyohara S, Furukawa JI, Noda T, Morimoto J, Imamizu H. Proprioceptive short-term memory in passive motor learning. Sci Rep 2023; 13:20826. [PMID: 38012253 PMCID: PMC10682388 DOI: 10.1038/s41598-023-48101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023] Open
Abstract
A physical trainer often physically guides a learner's limbs to teach an ideal movement, giving the learner proprioceptive information about the movement to be reproduced later. This instruction requires the learner to perceive kinesthetic information and store the instructed information temporarily. Therefore, (1) proprioceptive acuity to accurately perceive the taught kinesthetics and (2) short-term memory to store the perceived information are two critical functions for reproducing the taught movement. While the importance of proprioceptive acuity and short-term memory has been suggested for active motor learning, little is known about passive motor learning. Twenty-one healthy adults (mean age 25.6 years, range 19-38 years) participated in this study to investigate whether individual learning efficiency in passively guided learning is related to these two functions. Consequently, learning efficiency was significantly associated with short-term memory capacity. In particular, individuals who could recall older sensory stimuli showed better learning efficiency. However, no significant relationship was observed between learning efficiency and proprioceptive acuity. A causal graph model found a direct influence of memory on learning and an indirect effect of proprioceptive acuity on learning via memory. Our findings suggest the importance of a learner's short-term memory for effective passive motor learning.
Collapse
Affiliation(s)
- Shinya Chiyohara
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International (ATR), Keihanna Science City, Kyoto, 619-0288, Japan
| | - Jun-Ichiro Furukawa
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International (ATR), Keihanna Science City, Kyoto, 619-0288, Japan
- Man-Machine Collaboration Research Team, Guardian Robot Project, RIKEN, Kyoto, Japan
| | - Tomoyuki Noda
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International (ATR), Keihanna Science City, Kyoto, 619-0288, Japan
| | - Jun Morimoto
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International (ATR), Keihanna Science City, Kyoto, 619-0288, Japan.
- Man-Machine Collaboration Research Team, Guardian Robot Project, RIKEN, Kyoto, Japan.
- Graduate School of Informatics, Kyoto University, Kyoto, Japan.
| | - Hiroshi Imamizu
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International (ATR), Keihanna Science City, Kyoto, 619-0288, Japan
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Hongo 7-3-1, Bunkyo-Ku, Tokyo, 113-0033, Japan
- Research Into Artifacts, Center for Engineering, School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-Ku, Tokyo, 113-8656, Japan
| |
Collapse
|
6
|
Young BM, Yadav R, Rana S, Kim WS, Liu C, Batth R, Sakthi S, Farahmand E, Han S, Patel D, Luo J, Ramsey C, Feldman M, Cardoso-Ferreira I, Holl C, Nguyen T, Brinkman L, Su M, Chang TY, Cramer SC. Wrist Proprioception in Adults with and without Subacute Stroke. Brain Sci 2022; 13:brainsci13010031. [PMID: 36672014 PMCID: PMC9856542 DOI: 10.3390/brainsci13010031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Proprioception is critical to motor control and functional status but has received limited study early after stroke. Patients admitted to an inpatient rehabilitation facility for stroke (n = 18, mean(±SD) 12.5 ± 6.6 days from stroke) and older healthy controls (n = 19) completed the Wrist Position Sense Test (WPST), a validated, quantitative measure of wrist proprioception, as well as motor and cognitive testing. Patients were serially tested when available (n = 12, mean 11 days between assessments). In controls, mean(±SD) WPST error was 9.7 ± 3.5° in the dominant wrist and 8.8 ± 3.8° in the nondominant wrist (p = 0.31). In patients with stroke, WPST error was 18.6 ± 9° in the more-affected wrist, with abnormal values present in 88.2%; and 11.5 ± 5.6° in the less-affected wrist, with abnormal values present in 72.2%. Error in the more-affected wrist was higher than in the less-affected wrist (p = 0.003) or in the dominant (p = 0.001) and nondominant (p < 0.001) wrist of controls. Age and BBT performance correlated with dominant hand WPST error in controls. WPST error in either wrist after stroke was not related to age, BBT, MoCA, or Fugl-Meyer scores. WPST error did not significantly change in retested patients. Wrist proprioception deficits are common, bilateral, and persistent in subacute stroke and not explained by cognitive or motor deficits.
Collapse
Affiliation(s)
- Brittany M. Young
- Department of Neurology, University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
- California Rehabilitation Institute, 2070 Century Park East Rm 117, Los Angeles, CA 90067, USA
| | - Rishika Yadav
- Department of Neurology, University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
- California Rehabilitation Institute, 2070 Century Park East Rm 117, Los Angeles, CA 90067, USA
| | - Shivam Rana
- Department of Neurology, University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
- California Rehabilitation Institute, 2070 Century Park East Rm 117, Los Angeles, CA 90067, USA
| | - Won-Seok Kim
- California Rehabilitation Institute, 2070 Century Park East Rm 117, Los Angeles, CA 90067, USA
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro 173 beon-gil, Bundang-gu, Seongnam-si 13620, Gyeonggi-do, Republic of Korea
| | - Camellia Liu
- Department of Neurology, University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
- California Rehabilitation Institute, 2070 Century Park East Rm 117, Los Angeles, CA 90067, USA
| | - Rajan Batth
- Department of Neurology, University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
- California Rehabilitation Institute, 2070 Century Park East Rm 117, Los Angeles, CA 90067, USA
| | - Shivani Sakthi
- Department of Neurology, University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
- California Rehabilitation Institute, 2070 Century Park East Rm 117, Los Angeles, CA 90067, USA
| | - Eden Farahmand
- Department of Neurology, University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
- California Rehabilitation Institute, 2070 Century Park East Rm 117, Los Angeles, CA 90067, USA
| | - Simon Han
- Department of Neurology, University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
- California Rehabilitation Institute, 2070 Century Park East Rm 117, Los Angeles, CA 90067, USA
| | - Darshan Patel
- Department of Neurology, University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
- California Rehabilitation Institute, 2070 Century Park East Rm 117, Los Angeles, CA 90067, USA
| | - Jason Luo
- Department of Neurology, University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
- California Rehabilitation Institute, 2070 Century Park East Rm 117, Los Angeles, CA 90067, USA
| | - Christina Ramsey
- Department of Neurology, University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
- California Rehabilitation Institute, 2070 Century Park East Rm 117, Los Angeles, CA 90067, USA
| | - Marc Feldman
- California Rehabilitation Institute, 2070 Century Park East Rm 117, Los Angeles, CA 90067, USA
| | - Isabel Cardoso-Ferreira
- California Rehabilitation Institute, 2070 Century Park East Rm 117, Los Angeles, CA 90067, USA
| | - Christina Holl
- Department of Neurology, University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
- California Rehabilitation Institute, 2070 Century Park East Rm 117, Los Angeles, CA 90067, USA
| | - Tiffany Nguyen
- Department of Neurology, University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
- California Rehabilitation Institute, 2070 Century Park East Rm 117, Los Angeles, CA 90067, USA
| | - Lorie Brinkman
- Department of Neurology, University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
- California Rehabilitation Institute, 2070 Century Park East Rm 117, Los Angeles, CA 90067, USA
| | - Michael Su
- Department of Neurology, University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
- California Rehabilitation Institute, 2070 Century Park East Rm 117, Los Angeles, CA 90067, USA
| | - Tracy Y. Chang
- Department of Neurology, University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
- California Rehabilitation Institute, 2070 Century Park East Rm 117, Los Angeles, CA 90067, USA
| | - Steven C. Cramer
- Department of Neurology, University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
- California Rehabilitation Institute, 2070 Century Park East Rm 117, Los Angeles, CA 90067, USA
- Correspondence:
| |
Collapse
|
7
|
Bao S, Lei Y, Keenan KG, Wang J. Generalization of visuomotor adaptation associated with use-dependent learning across different movement workspaces and limb postures. Hum Mov Sci 2022; 86:103017. [DOI: 10.1016/j.humov.2022.103017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/03/2022] [Accepted: 10/03/2022] [Indexed: 11/04/2022]
|
8
|
Bao S, Lei Y. Memory decay and generalization following distinct motor learning mechanisms. J Neurophysiol 2022; 128:1534-1545. [PMID: 36321731 DOI: 10.1152/jn.00105.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Motor skill learning is considered to arise out of contributions from multiple learning mechanisms, including error-based learning (EBL), use-dependent learning (UDL), and reinforcement learning (RL). These learning mechanisms exhibit dissociable roles and engage different neural circuits during skill acquisition. However, it remains largely unknown how a newly formed motor memory acquired through each learning mechanism decays over time and whether distinct learning mechanisms produce different generalization patterns. Here, we used variants of reaching paradigms that dissociated these learning mechanisms to examine the time course of memory decay following each learning and the generalization patterns of each learning. We found that motor memories acquired through these learning mechanisms decayed as a function of time. Notably, 15 min, 6 h, and 24 h after acquisition, the memory of EBL decayed much greater than that of RL. The memory acquired through UDL faded away within a few minutes. Motor memories formed through EBL and RL for given movement directions generalized to untrained movement directions, with the generalization of EBL being greater than that of RL. In contrast, motor memory of UDL could not generalize to untrained movement directions. These results suggest that distinct learning mechanisms exhibit different patterns of memory decay and generalization.NEW & NOTEWORTHY Motor skill learning is likely to involve error-based learning, use-dependent plasticity, and operant reinforcement. Here, we showed that these dissociable learning mechanisms exhibited distinct patterns of memory decay and generalization. With a better understanding of the characteristics of these learning mechanisms, it becomes possible to regulate each learning process separately to improve neurological rehabilitation.
Collapse
Affiliation(s)
- Shancheng Bao
- Department of Kinesiology & Sport Management, Texas A&M University, College Station, Texas
| | - Yuming Lei
- Department of Kinesiology & Sport Management, Texas A&M University, College Station, Texas
| |
Collapse
|
9
|
Cornelis C, De Picker LJ, Coppens V, Morsel A, Timmers M, Dumont G, Sabbe BGC, Morrens M, Hulstijn W. Impaired Sensorimotor Adaption in Schizophrenia in Comparison to Age-Matched and Elderly Controls. Neuropsychobiology 2022; 81:127-140. [PMID: 34731860 DOI: 10.1159/000518867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 08/02/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The "cognitive dysmetria hypothesis" of schizophrenia proposes a disrupted communication between the cerebellum and cerebral cortex, resulting in sensorimotor and cognitive symptoms. Sensorimotor adaptation relies strongly on the function of the cerebellum. OBJECTIVES This study investigated whether sensorimotor adaptation is reduced in schizophrenia compared with age-matched and elderly healthy controls. METHODS Twenty-nine stably treated patients with schizophrenia, 30 age-matched, and 30 elderly controls were tested in three motor adaptation tasks in which visual movement feedback was unexpectedly altered. In the "rotation adaptation task" the perturbation consisted of a rotation (30° clockwise), in the "gain adaptation task" the extent of the movement feedback was reduced (by a factor of 0.7) and in the "vertical reversal task," up- and downward pen movements were reversed by 180°. RESULTS Patients with schizophrenia adapted to the perturbations, but their movement times and errors were substantially larger than controls. Unexpectedly, the magnitude of adaptation was significantly smaller in schizophrenia than elderly participants. The impairment already occurred during the first adaptation trials, pointing to a decline in explicit strategy use. Additionally, post-adaptation aftereffects provided strong evidence for impaired implicit adaptation learning. Both negative and positive schizophrenia symptom severities were correlated with indices of the amount of adaptation and its aftereffects. CONCLUSIONS Both explicit and implicit components of sensorimotor adaptation learning were reduced in patients with schizophrenia, adding to the evidence for a role of the cerebellum in the pathophysiology of schizophrenia. Elderly individuals outperformed schizophrenia patients in the adaptation learning tasks.
Collapse
Affiliation(s)
- Claudia Cornelis
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.,Psychiatric Center Multiversum, Mortsel, Belgium
| | - Livia J De Picker
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.,University Psychiatric Center Duffel, Duffel, Belgium
| | - Violette Coppens
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
| | - Anne Morsel
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
| | - Maarten Timmers
- Janssen Pharmaceutica N.V, Janssen Research and Development, Beerse, Belgium
| | - Glenn Dumont
- AMC, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bernard G C Sabbe
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.,University Psychiatric Center Duffel, Duffel, Belgium
| | - Manuel Morrens
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.,University Psychiatric Center Duffel, Duffel, Belgium
| | - Wouter Hulstijn
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.,Psychiatric Center Multiversum, Mortsel, Belgium.,Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Spitzley KA, Karduna AR. Joint Position Accuracy Is Influenced by Visuoproprioceptive Congruency in Virtual Reality. J Mot Behav 2021; 54:92-101. [PMID: 34121630 DOI: 10.1080/00222895.2021.1916425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Weighted integration of visual and proprioceptive information is important in movement planning and execution. The present study used a virtual reality system to determine how upper limb movement consistency and accuracy are altered when (a) vision of the limb is removed and (b) proprioception and vision of the limb are misaligned. A one degree of freedom upper limb movement task was performed under three visual conditions of the limb; accurate vision, no vision, and offset vision. Movement consistency was unaltered by the change in visual condition. Compared to the accurate vision condition, movement accuracy was unchanged in the no vision condition but decreased with a visual offset. When available, vision was relied upon more heavily than proprioception for task completion.
Collapse
Affiliation(s)
- Kate A Spitzley
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Andrew R Karduna
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
11
|
Tsay JS, Kim HE, Parvin DE, Stover AR, Ivry RB. Individual differences in proprioception predict the extent of implicit sensorimotor adaptation. J Neurophysiol 2021; 125:1307-1321. [PMID: 33656948 DOI: 10.1152/jn.00585.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies have revealed an upper bound in motor adaptation, beyond which other learning systems may be recruited. The factors determining this upper bound are poorly understood. The multisensory integration hypothesis states that this limit arises from opposing responses to visual and proprioceptive feedback. As individuals adapt to a visual perturbation, they experience an increasing proprioceptive error in the opposite direction, and the upper bound is the point where these two error signals reach an equilibrium. Assuming that visual and proprioceptive feedback are weighted according to their variability, there should be a correlation between proprioceptive variability and the limits of adaptation. Alternatively, the proprioceptive realignment hypothesis states that the upper bound arises when the (visually biased) sensed hand position realigns with the expected sensed position (target). When a visuo-proprioceptive discrepancy is introduced, the sensed hand position is biased toward the visual cursor, and the adaptive system counteracts this discrepancy by driving the hand away from the target. This hypothesis predicts a correlation between the size of the proprioceptive shift and the upper bound of adaptation. We tested these two hypotheses by considering natural variation in proprioception and motor adaptation across individuals. We observed a modest, yet reliable correlation between the upper bound of adaptation with both proprioceptive measures (variability and shift). Although the results do not clearly favor one hypothesis over the other, they underscore the critical role of proprioception in sensorimotor adaptation.NEW & NOTEWORTHY Although the sensorimotor system uses sensory feedback to remain calibrated, this learning process is constrained, limited by the maximum degree of plasticity. The factors determining this limit remain elusive. Guided by two hypotheses, we show that individual differences in the upper bound of adaptation in response to a visual perturbation can be predicted by the bias and variability in proprioception. These results underscore the critical, but often neglected role of proprioception in human motor learning.
Collapse
Affiliation(s)
- Jonathan S Tsay
- Department of Psychology, University of California, Berkeley, California.,Helen Wills Neuroscience Institute, University of California, Berkeley, California
| | - Hyosub E Kim
- Department of Physical Therapy, University of Delaware, Newark, Delaware
| | - Darius E Parvin
- Department of Psychology, University of California, Berkeley, California.,Helen Wills Neuroscience Institute, University of California, Berkeley, California
| | - Alissa R Stover
- Department of Psychology, University of California, Berkeley, California
| | - Richard B Ivry
- Department of Psychology, University of California, Berkeley, California.,Department of Physical Therapy, University of Delaware, Newark, Delaware
| |
Collapse
|
12
|
Kitchen NM, Miall RC. Adaptation of reach action to a novel force-field is not predicted by acuity of dynamic proprioception in either older or younger adults. Exp Brain Res 2020; 239:557-574. [PMID: 33315127 PMCID: PMC7936968 DOI: 10.1007/s00221-020-05997-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/24/2020] [Indexed: 11/25/2022]
Abstract
Healthy ageing involves degeneration of the neuromuscular system which impacts movement control and proprioception. Yet the relationship between these sensory and motor deficits in upper limb reaching has not been examined in detail. Recently, we reported that age-related proprioceptive deficits were unrelated to accuracy in rapid arm movements, but whether this applied in motor tasks more heavily dependent on proprioceptive feedback was not clear. To address this, we have tested groups of younger and older adults on a force-field adaptation task under either full or limited visual feedback conditions and examined how performance was related to dynamic proprioceptive acuity. Adaptive performance was similar between the age groups, regardless of visual feedback condition, although older adults showed increased after-effects. Physically inactive individuals made larger systematic (but not variable) proprioceptive errors, irrespective of age. However, dynamic proprioceptive acuity was unrelated to adaptation and there was no consistent evidence of proprioceptive recalibration with adaptation to the force-field for any group. Finally, in spite of clear age-dependent loss of spatial working memory capacity, we found no relationship between memory capacity and adaptive performance or proprioceptive acuity. Thus, non-clinical levels of deficit in dynamic proprioception, due to age or physical inactivity, do not affect force-field adaptation, even under conditions of limited visual feedback that might require greater proprioceptive control.
Collapse
Affiliation(s)
- Nick M Kitchen
- School of Psychology, University of Birmingham, Birmingham, UK.
- Department of Speech and Hearing Science, University of Washington, Seattle, WA, USA.
| | - R Chris Miall
- School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
13
|
Vachon CM, Modchalingam S, ‘t Hart BM, Henriques DYP. The effect of age on visuomotor learning processes. PLoS One 2020; 15:e0239032. [PMID: 32925937 PMCID: PMC7489529 DOI: 10.1371/journal.pone.0239032] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/31/2020] [Indexed: 11/19/2022] Open
Abstract
Knowing where our limbs are in space is essential for moving and for adapting movements to various changes in our environments and bodies. The ability to adapt movements declines with age, and age-related cognitive decline can explain a decreased ability to adopt and deploy explicit, cognitive strategies in motor learning. Age-related sensory decline could also lead to a reduced fidelity of sensory position signals and error signals, each of which can affect implicit motor adaptation. Here we investigate two estimates of limb position; one based on proprioception, the other on predicted sensory consequences of movements. Each is considered a measure of an implicit adaptation process and may be affected by both age and cognitive strategies. Both older (n = 38) and younger (n = 42) adults adapted to a 30° visuomotor rotation in a centre-out reaching task. We make an explicit, cognitive strategy available to half of participants in each age group with a detailed instruction. After training, we first quantify the explicit learning elicited by instruction. Instructed older adults initially use the provided strategy slightly less than younger adults but show a similar ability to evoke it after training. This indicates that cognitive explanations for age-related decline in motor learning are limited. In contrast, training induced much larger shifts of state estimates of hand location in older adults compared to younger adults. This is not modulated by strategy instructions, and appears driven by recalibrated proprioception, which is almost twice as large in older adults, while predictions might not be updated in older adults. This means that in healthy aging, some implicit processes may be compensating for other changes to maintain motor capabilities, while others also show age-related decline (data: https://osf.io/qzhmy).
Collapse
Affiliation(s)
- Chad Michael Vachon
- Centre for Vision Research, York University, Toronto, Ontario, Canada
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - Shanaathanan Modchalingam
- Centre for Vision Research, York University, Toronto, Ontario, Canada
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | | | - Denise Y. P. Henriques
- Centre for Vision Research, York University, Toronto, Ontario, Canada
- Department of Psychology, York University, Toronto, Ontario, Canada
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Kitchen NM, Miall RC. Proprioceptive deficits in inactive older adults are not reflected in fast targeted reaching movements. Exp Brain Res 2019; 237:531-545. [PMID: 30478636 PMCID: PMC6373199 DOI: 10.1007/s00221-018-5440-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/18/2018] [Indexed: 12/11/2022]
Abstract
During normal healthy ageing there is a decline in the ability to control simple movements, characterised by increased reaction times, movement durations and variability. There is also growing evidence of age-related proprioceptive loss which may contribute to these impairments. However, this relationship has not been studied in detail for the upper limb. We recruited 20 younger adults (YAs) and 31 older adults (OAs) who each performed 2 tasks on a 2D robotic manipulandum. The first assessed dynamic proprioceptive acuity using active, multi-joint movements constrained by the robot to a pre-defined path. Participants made perceptual judgements of the lateral position of the unseen arm. The second task required fast, accurate and discrete movements to the same targets in the absence of visual feedback of the hand, and without robotic intervention. We predicted that the variable proprioceptive error (uncertainty range) assessed in Task 1 would be increased in physically inactive OAs and would predict increased movement variability in Task 2. Instead we found that physically inactive OAs had larger systematic proprioceptive errors (bias) than YAs (t[33] = 2.8, p = 0.009), and neither proprioceptive uncertainty nor bias was related to motor performance in either age group (all regression model R2 ≤ 0.06). We suggest that previously reported estimates of proprioceptive decline with ageing may be exaggerated by task demands and that the extent of these deficits is unrelated to control of discrete, rapid movement. The relationship between dynamic proprioceptive acuity and movement control in other tasks with greater emphasis on online feedback is still unclear and warrants further investigation.
Collapse
Affiliation(s)
- Nick M Kitchen
- School of Psychology, University of Birmingham, Birmingham, UK.
- Department of Speech and Hearing Science, University of Washington, Seattle, WA, USA.
| | - R Chris Miall
- School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|