1
|
Škarabot J, Casolo A, Balshaw TG, Maeo S, Lanza MB, Holobar A, Farina D, Folland JP, Del Vecchio A. Greater motor unit discharge rate during rapid contractions in chronically strength-trained individuals. J Neurophysiol 2024; 132:1896-1906. [PMID: 39527019 DOI: 10.1152/jn.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 10/10/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Though similar motor unit (MU) discharge properties have been observed during slow sustained contractions between chronically strength-trained (ST) and untrained (UT) individuals, it is currently unknown whether differences between these groups exist for when maximal in vivo MU discharge rate is assessed during rapid, maximal rate of force development (RFD) contractions. Therefore, we compared MU discharge characteristics and RFD during rapid contractions in chronic ST and UT individuals. The investigations were performed in two independent cohorts of chronically ST men, with trained elbow flexors (experiment 1, n = 13, 6 ± 4 yr of training experience) or knee extensors (experiment 2, n = 11, 9 ± 4 yr of experience), and compared with those of UT (n = 12 and n = 10, respectively). ST individuals had greater absolute elbow flexion and knee extension RFD throughout the first 150 ms of rapid contractions compared with UT, but this difference was absent for relative RFD. ST exhibited higher initial MU discharge rate in both biceps brachii (74 [68, 80] vs. 56 [50, 63] pulses per second (pps), P < 0.0001) and vastus lateralis (102 [90, 115] vs. 76 [63, 90] pps, P = 0.0025) and a greater average number of MU discharges per second in both trained muscles in the early phase of rapid contractions. We provide novel evidence for a higher maximal MU discharge rate in strength-trained individuals. Interestingly, despite the augmented output of the spinal cord, no differences in relative RFD were observed, which suggests either greater maximal force enhancement of ST compared with UT and/or slowing of the intrinsic contractile properties by prolonged strength training.NEW & NOTEWORTHY Chronically strength-trained and untrained individuals show similar motor unit discharge rates during slow sustained contractions, however, potential differences in motor unit discharge rates during rapid contractions remained unclear. Here, we show greater maximal motor unit discharge rates during rapid contractions of chronically strength-trained individuals. However, the augmented spinal cord output of strength-trained individuals did not lead to greater relative maximal rate of force development compared with untrained men.
Collapse
Affiliation(s)
- Jakob Škarabot
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Andrea Casolo
- Department of Biomedical Sciences, University of Padua, Padova, Italy
| | - Thomas G Balshaw
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
- Versus Arthritis Centre for Sport, Exercise and Osteoarthritis Research, Loughborough University, Leicestershire, United Kingdom
| | - Sumiaki Maeo
- Faculty of Sport and Health Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Marcel Bahia Lanza
- Department of Physical Therapy and Rehabilitation Science, University of Maryland, Baltimore, Maryland, United States
| | - Aleš Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Jonathan P Folland
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
- Versus Arthritis Centre for Sport, Exercise and Osteoarthritis Research, Loughborough University, Leicestershire, United Kingdom
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University, Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Olarogba OB, Lockyer EJ, Antolinez AK, Button DC. Sex-related differences in corticospinal excitability outcome measures of the biceps brachii during a submaximal elbow flexor contraction. Physiol Rep 2024; 12:e16102. [PMID: 39095333 PMCID: PMC11296885 DOI: 10.14814/phy2.16102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 08/04/2024] Open
Abstract
The purpose of this study was to investigate the effects of sex, muscle thickness, and subcutaneous fat thickness (SFT) on corticospinal excitability outcome measures of the biceps brachii. Eighteen participants (10 males and 8 females) completed this study. Ultrasound was used to assess biceps brachii muscle thickness and the overlying SFT. Transcranial magnetic stimulation (TMS) was used to determine corticospinal excitability by inducing motor-evoked potentials (MEPs) at eight different TMS intensities from 90% to 160% of active motor threshold (AMT) from the biceps brachii during an isometric contraction of the elbow flexors at 10% of maximum voluntary contraction (MVC). Biceps brachii maximal compound muscle action potential (Mmax) was also recorded prior to and after TMS. Males had higher (p < 0.001) biceps brachii muscle thickness and lower SFT, produced higher levels of MVC force and had, on average, higher (p < 0.001) MEP amplitudes at lower (p < 0.05) percentages of maximal stimulator output than females during the 10% elbow flexion MVC. Multiple linear regression modeling revealed that sex was not associated with any of the neurophysiological parameters examined, while SFT showed a positive association with the stimulation intensity required at AMT (p = 0.035) and a negative association with biceps brachii pre-stimulus electromyography (EMG) activity (p = 0.021). Additionally, there was a small positive association between muscle thickness and biceps brachii pre-stimulus EMG activity (p = 0.049). Overall, this study suggests that some measures of corticospinal excitability may be different between the sexes and influenced by SFT and muscle thickness.
Collapse
Affiliation(s)
- Olalekan B. Olarogba
- Human Neurophysiology LabSchool of Human Kinetics and RecreationSt. John'sNewfoundlandCanada
| | - Evan J. Lockyer
- Human Neurophysiology LabSchool of Human Kinetics and RecreationSt. John'sNewfoundlandCanada
- Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Angie K. Antolinez
- Human Neurophysiology LabSchool of Human Kinetics and RecreationSt. John'sNewfoundlandCanada
| | - Duane C. Button
- Human Neurophysiology LabSchool of Human Kinetics and RecreationSt. John'sNewfoundlandCanada
- Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| |
Collapse
|
3
|
Akalu Y, Tallent J, Frazer AK, Siddique U, Rostami M, Vallance P, Howatson G, Walker S, Kidgell DJ. Strength-trained adults demonstrate greater corticoreticular activation versus untrained controls. Eur J Neurosci 2024; 59:2336-2352. [PMID: 38419404 DOI: 10.1111/ejn.16297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
The rapid increase in strength following strength-training involves neural adaptations, however, their specific localisation remains elusive. Prior focus on corticospinal responses prompts this study to explore the understudied cortical/subcortical adaptations, particularly cortico-reticulospinal tract responses, comparing healthy strength-trained adults to untrained peers. Fifteen chronically strength-trained individuals (≥2 years of training, mean age: 24 ± 7 years) were compared with 11 age-matched untrained participants (mean age: 26 ± 8 years). Assessments included maximal voluntary force (MVF), corticospinal excitability using transcranial magnetic stimulation (TMS), spinal excitability (cervicomedullary stimulation), voluntary activation (VA) and reticulospinal tract (RST) excitability, utilizing StartReact responses and ipsilateral motor-evoked potentials (iMEPs) for the flexor carpi radialis muscle. Trained participants had higher normalized MVF (6.4 ± 1.1 N/kg) than the untrained participants (4.8 ± 1.3 N/kg) (p = .003). Intracortical facilitation was higher in the strength-trained group (156 ± 49%) (p = .02), along with greater VA (98 ± 3.2%) (p = .002). The strength-trained group displayed reduced short-interval-intracortical inhibition (88 ± 8.0%) compared with the untrained group (69 ± 17.5%) (p < .001). Strength-trained individuals exhibited a greater normalized rate of force development (38.8 ± 10.1 N·s-1/kg) (p < .009), greater reticulospinal gain (2.5 ± 1.4) (p = .02) and higher ipsilateral-to-contralateral MEP ratios compared with the untrained group (p = .03). Strength-trained individuals displayed greater excitability within the intrinsic connections of the primary motor cortex and the RST. These results suggest greater synaptic input from the descending cortico-reticulospinal tract to α-motoneurons in strength-trained individuals, thereby contributing to the observed increase in VA and MVF.
Collapse
Affiliation(s)
- Yonas Akalu
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Frankston, Victoria, Australia
- Department of Human Physiology, School of Medicine, University of Gondar, Gondar, Ethiopia
| | - Jamie Tallent
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Frankston, Victoria, Australia
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
| | - Ashlyn K Frazer
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Frankston, Victoria, Australia
| | - Ummatul Siddique
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Frankston, Victoria, Australia
| | - Mohamad Rostami
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Frankston, Victoria, Australia
| | - Patrick Vallance
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Frankston, Victoria, Australia
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
- Water Research Group, North-West University, Potchefstroom, South Africa
| | - Simon Walker
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Dawson J Kidgell
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Frankston, Victoria, Australia
| |
Collapse
|
4
|
Santos PDG, Vaz JR, Correia J, Neto T, Pezarat-Correia P. Long-Term Neurophysiological Adaptations to Strength Training: A Systematic Review With Cross-Sectional Studies. J Strength Cond Res 2023; 37:2091-2105. [PMID: 37369087 DOI: 10.1519/jsc.0000000000004543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
ABSTRACT Santos, PDG, Vaz, JR, Correia, J, Neto, T, and Pezarat-Correia, P. Long-term neurophysiological adaptations to strength training: a systematic review with cross-sectional studies. J Strength Cond Res 37(10): 2091-2105, 2023-Neuromuscular adaptations to strength training are an extensively studied topic in sports sciences. However, there is scarce information about how neural mechanisms during force production differ between trained and untrained individuals. The purpose of this systematic review is to better understand the differences between highly trained and untrained individuals to establish the long-term neural adaptations to strength training. Three databases were used for the article search (PubMed, Web of Science, and Scopus). Studies were included if they compared groups of resistance-trained with untrained people, aged 18-40 year, and acquired electromyography (EMG) signals during strength tasks. Twenty articles met the eligibility criteria. Generally, strength-trained individuals produced greater maximal voluntary activation, while reducing muscle activity in submaximal tasks, which may affect the acute response to strength training. These individuals also presented lower co-contraction of the antagonist muscles, although it depends on the specific training background. Global intermuscular coordination may be another important mechanism of adaptation in response to long-term strength training; however, further research is necessary to understand how it develops over time. Although these results should be carefully interpreted because of the great disparity of analyzed variables and methods of EMG processing, chronic neural adaptations seem to be decisive to greater force production. It is crucial to know the timings at which these adaptations stagnate and need to be stimulated with advanced training methods. Thus, training programs should be adapted to training status because the same stimulus in different training stages will lead to different responses.
Collapse
Affiliation(s)
- Paulo D G Santos
- Neuromuscular Research Lab, Faculty of Human Kinetics, Lisbon, Portugal
| | - João R Vaz
- Neuromuscular Research Lab, Faculty of Human Kinetics, Lisbon, Portugal
- CIPER, Faculty of Human Kinetics, Lisbon, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz-Cooperativa de Ensino Superior, Monte da Caparica, Portugal; and
| | - Joana Correia
- Neuromuscular Research Lab, Faculty of Human Kinetics, Lisbon, Portugal
| | - Tiago Neto
- Department of Physiotherapy, LUNEX International University of Health, Exercise and Sports, Differdange, Luxembourg
| | - Pedro Pezarat-Correia
- Neuromuscular Research Lab, Faculty of Human Kinetics, Lisbon, Portugal
- CIPER, Faculty of Human Kinetics, Lisbon, Portugal
| |
Collapse
|
5
|
Škarabot J, Folland JP, Forsyth J, Vazoukis A, Holobar A, Del Vecchio A. Motor Unit Discharge Characteristics and Conduction Velocity of the Vastii Muscles in Long-Term Resistance-Trained Men. Med Sci Sports Exerc 2023; 55:824-836. [PMID: 36729054 DOI: 10.1249/mss.0000000000003105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Adjustments in motor unit (MU) discharge properties have been shown after short-term resistance training; however, MU adaptations in long-term resistance-trained (RT) individuals are less clear. Here, we concurrently assessed MU discharge characteristics and MU conduction velocity in long-term RT and untrained (UT) men. METHODS Motor unit discharge characteristics (discharge rate, recruitment, and derecruitment threshold) and MU conduction velocity were assessed after the decomposition of high-density electromyograms recorded from vastus lateralis (VL) and vastus medialis (VM) of RT (>3 yr; n = 14) and UT ( n = 13) during submaximal and maximal isometric knee extension. RESULTS Resistance-trained men were on average 42% stronger (maximal voluntary force [MVF], 976.7 ± 85.4 N vs 685.5 ± 123.1 N; P < 0.0001), but exhibited similar relative MU recruitment (VL, 21.3% ± 4.3% vs 21.0% ± 2.3% MVF; VM, 24.5% ± 4.2% vs 22.7% ± 5.3% MVF) and derecruitment thresholds (VL, 20.3% ± 4.3% vs 19.8% ± 2.9% MVF; VM, 24.2% ± 4.8% vs 22.9% ± 3.7% MVF; P ≥ 0.4543). There were also no differences between groups in MU discharge rate at recruitment and derecruitment or at the plateau phase of submaximal contractions (VL, 10.6 ± 1.2 pps vs 10.3 ± 1.5 pps; VM, 10.7 ± 1.6 pps vs 10.8 ± 1.7 pps; P ≥ 0.3028). During maximal contractions of a subsample population (10 RT, 9 UT), MU discharge rate was also similar in RT compared with UT (VL, 21.1 ± 4.1 pps vs 14.0 ± 4.5 pps; VM, 19.5 ± 5.0 pps vs 17.0 ± 6.3 pps; P = 0.7173). Motor unit conduction velocity was greater in RT compared with UT individuals in both VL (4.9 ± 0.5 m·s -1 vs 4.5 ± 0.3 m·s -1 ; P < 0.0013) and VM (4.8 ± 0.5 m·s -1 vs 4.4 ± 0.3 m·s -1 ; P < 0.0073). CONCLUSIONS Resistance-trained and UT men display similar MU discharge characteristics in the knee extensor muscles during maximal and submaximal contractions. The between-group strength difference is likely explained by superior muscle morphology of RT as suggested by greater MU conduction velocity.
Collapse
Affiliation(s)
- Jakob Škarabot
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | | | - Jules Forsyth
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | - Apostolos Vazoukis
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | - Aleš Holobar
- Systems Software Laboratory, Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, SLOVENIA
| | - Alessandro Del Vecchio
- Department Artificial Intelligence in Biomedical Engineering, Faculty of Engineering, Friedrich Alexander University, Erlangen-Nuremberg, GERMANY
| |
Collapse
|
6
|
Fernandes GL, Orssatto LBR, Shield AJ, Trajano GS. Runners with mid-portion Achilles tendinopathy have greater triceps surae intracortical inhibition than healthy controls. Scand J Med Sci Sports 2021; 32:728-736. [PMID: 34897835 DOI: 10.1111/sms.14111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/25/2021] [Accepted: 12/05/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES This study aimed to investigate short-interval intracortical inhibition (SICI) and muscle function in the triceps surae of runners with mid-portion Achilles tendinopathy (AT). METHODS Runners with (n = 11) and without (n = 13) AT were recruited. Plantar flexor isometric peak torque and rate of torque development (RTD) were measured using an isokinetic dynamometer. Triceps surae endurance was measured as single-leg heel raise (SLHR) to failure test. SICI was assessed using paired-pulse transcranial magnetic stimulation during a sustained contraction at 10% of plantar flexor isometric peak torque. RESULTS Triceps surae SICI was 14.3% (95% CI: -2.1 to 26.4) higher in AT than in the control group (57.9%, 95% CI: 36.2 to 79.6; and 43.6% 95% CI: 16.2 to 71.1, p = 0.032) irrespective of the tested muscle. AT performed 16 (95% CI: 7.9 to 23.3, p < 0.001) fewer SLHR repetitions on the symptomatic side compared with controls, and 14 (95% CI: 5.8 to 22.0, p = 0.004), fewer SLHR repetitions on the non-symptomatic compared with controls. We found no between-groups differences in isometric peak torque (p = 0.971) or RTD (p = 0.815). PERSPECTIVE Our data suggest greater intracortical inhibition for the triceps surae muscles for the AT group accompanied by reduced SLHR endurance, without deficits in isometric peak torque or RTD. The increased SICI observed in the AT group could be negatively influencing triceps surae endurance; thus, rehabilitation aiming to reduce intracortical inhibition should be considered to improve patient outcomes. Furthermore, SLHR is a useful clinical tool to assess plantar flexor function in AT patients.
Collapse
Affiliation(s)
- Gabriel L Fernandes
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - Lucas B R Orssatto
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - Anthony J Shield
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
7
|
Increased short interval intracortical inhibition in participants with previous hamstring strain injury. Eur J Appl Physiol 2021; 122:357-369. [PMID: 34729636 DOI: 10.1007/s00421-021-04839-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Cortical mechanisms may contribute to weakness in participants with previous hamstring strain injury. This study aims to examine intra-cortical inhibition (SICI) and corticospinal excitability in previously injured participants. METHODS In this cross-sectional study, TMS was used to examine SICI, silent period, silent period: MEP ratios and area under the stimulus response curve in the biceps femoris and medial hamstrings. Comparisons were made between participants with (n = 10) and without (n = 10) previous hamstring strain injury. Motor threshold and isometric knee flexor strength were also compared between participants and the relationship between strength and SICI in control and previously injured participants was examined. RESULTS Isometric knee flexor strength was lower in previously injured limbs compared with control limbs (mean difference = - 41 Nm (- 26%) [95% CI = - 80 to - 2 Nm], p = 0.04, Cohen's d = - 1.27) and contralateral uninjured limbs (mean difference = - 23 Nm (- 17%), [95% CI = - 40 to - 6 Nm], p = 0.01, Cohen's d = - 0.57). Previously injured limbs exhibited smaller responses to paired pulse stimulation (i.e. greater levels of SICI) in the biceps femoris compared with control limbs (mean difference = - 19%, [95% CI = - 34 to - 5%], p = 0.007, Cohen's d = - 1.33). Isometric knee flexor strength was associated with the level of SICI recorded in the biceps femoris in previously injured participants (coefficient = 23 Nm [95% CI = 7-40 Nm], adjusted R2 = 0.31, p = 0.01). There were no differences in markers of corticospinal excitability between previously injured and control limbs (all p > 0.24, all Cohen's d < 0.40). CONCLUSION Athletes with previous injury in the biceps femoris exhibit increased SICI in this muscle compared with control participants. Increased SICI is related to lower levels of hamstring strength, and rehabilitation programs targeting the removal of intra-cortical inhibition should be considered.
Collapse
|
8
|
Škarabot J, Balshaw TG, Maeo S, Massey GJ, Lanza MB, Maden-Wilkinson TM, Folland JP. Neural adaptations to long-term resistance training: evidence for the confounding effect of muscle size on the interpretation of surface electromyography. J Appl Physiol (1985) 2021; 131:702-715. [PMID: 34166110 DOI: 10.1152/japplphysiol.00094.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study compared elbow flexor (EF; experiment 1) and knee extensor (KE; experiment 2) maximal compound action potential (Mmax) amplitude between long-term resistance trained (LTRT; n = 15 and n = 14, 6 ± 3 and 4 ± 1 yr of training) and untrained (UT; n = 14 and n = 49) men, and examined the effect of normalizing electromyography (EMG) during maximal voluntary torque (MVT) production to Mmax amplitude on differences between LTRT and UT. EMG was recorded from multiple sites and muscles of EF and KE, Mmax was evoked with percutaneous nerve stimulation, and muscle size was assessed with ultrasonography (thickness, EF) and magnetic resonance imaging (cross-sectional area, KE). Muscle-electrode distance (MED) was measured to account for the effect of adipose tissue on EMG and Mmax. LTRT displayed greater MVT (+66%-71%, P < 0.001), muscle size (+54%-56%, P < 0.001), and Mmax amplitudes (+29%-60%, P ≤ 0.010) even when corrected for MED (P ≤ 0.045). Mmax was associated with the size of both muscle groups (r ≥ 0.466, P ≤ 0.011). Compared with UT, LTRT had higher absolute voluntary EMG amplitude for the KE (P < 0.001), but not the EF (P = 0.195), and these differences/similarities were maintained after correction for MED; however, Mmax normalization resulted in no differences between LTRT and UT for any muscle and/or muscle group (P ≥ 0.652). The positive association between Mmax and muscle size, and no differences when accounting for peripheral electrophysiological properties (EMG/Mmax), indicates the greater absolute voluntary EMG amplitude of LTRT might be confounded by muscle morphology, rather than providing a discrete measure of central neural activity. This study therefore suggests limited agonist neural adaptation after LTRT.NEW & NOTEWORTHY In a large sample of long-term resistance-trained individuals, we showed greater maximal M-wave amplitude of the elbow flexors and knee extensors compared with untrained individuals, which appears to be at least partially mediated by differences in muscle size. The lack of group differences in voluntary EMG amplitude when normalized to maximal M-wave suggests that differences in muscle morphology might impair interpretation of voluntary EMG as an index of central neural activity.
Collapse
Affiliation(s)
- Jakob Škarabot
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom
| | - Thomas G Balshaw
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom.,Versus Arthritis Centre for Sport, Exercise and Osteoarthritis Research, Loughborough University, Leicestershire, United Kingdom
| | - Sumiaki Maeo
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom.,Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Garry J Massey
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom.,School of Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Marcel B Lanza
- Department of Physical Therapy and Rehabilitation, University of Maryland, Baltimore, Maryland
| | - Thomas M Maden-Wilkinson
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom.,Academy of Sport and Physical Activity, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| | - Jonathan P Folland
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom.,Versus Arthritis Centre for Sport, Exercise and Osteoarthritis Research, Loughborough University, Leicestershire, United Kingdom
| |
Collapse
|
9
|
Lockyer EJ, Compton CT, Forman DA, Pearcey GE, Button DC, Power KE. Moving forward: methodological considerations for assessing corticospinal excitability during rhythmic motor output in humans. J Neurophysiol 2021; 126:181-194. [PMID: 34133230 DOI: 10.1152/jn.00027.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The use of transcranial magnetic stimulation to assess the excitability of the central nervous system to further understand the neural control of human movement is expansive. The majority of the work performed to-date has assessed corticospinal excitability either at rest or during relatively simple isometric contractions. The results from this work are not easily extrapolated to rhythmic, dynamic motor outputs, given that corticospinal excitability is task-, phase-, intensity-, direction-, and muscle-dependent (Power KE, Lockyer EJ, Forman DA, Button DC. Appl Physiol Nutr Metab 43: 1176-1185, 2018). Assessing corticospinal excitability during rhythmic motor output, however, involves technical challenges that are to be overcome, or at the minimum considered, when attempting to design experiments and interpret the physiological relevance of the results. The purpose of this narrative review is to highlight the research examining corticospinal excitability during a rhythmic motor output and, importantly, to provide recommendations regarding the many factors that must be considered when designing and interpreting findings from studies that involve limb movement. To do so, the majority of work described herein refers to work performed using arm cycling (arm pedaling or arm cranking) as a model of a rhythmic motor output used to examine the neural control of human locomotion.
Collapse
Affiliation(s)
- Evan J Lockyer
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Chris T Compton
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Davis A Forman
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Gregory E Pearcey
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Shirley Ryan Ability Lab, Chicago, Illinois
| | - Duane C Button
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Kevin E Power
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
10
|
Chronic resistance training: is it time to rethink the time course of neural contributions to strength gain? Eur J Appl Physiol 2021; 121:2413-2422. [PMID: 34052876 DOI: 10.1007/s00421-021-04730-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/22/2021] [Indexed: 10/20/2022]
Abstract
Resistance training enhances muscular force due to a combination of neural plasticity and muscle hypertrophy. It has been well documented that the increase in strength over the first few weeks of resistance training (i.e. acute) has a strong underlying neural component and further enhancement in strength with long-term (i.e. chronic) resistance training is due to muscle hypertrophy. For obvious reasons, collecting long-term data on how chronic-resistance training affects the nervous system not feasible. As a result, the effect of chronic-resistance training on neural plasticity is less understood and has not received systematic exploration. Thus, the aim of this review is to provide rationale for investigating neural plasticity beyond acute-resistance training. We use cross-sectional work to highlight neural plasticity that occurs with chronic-resistance training at sites from the brain to spinal cord. Specifically, intra-cortical circuitry and the spinal motoneuron seem to be key sites for this plasticity. We then urge the need to further investigate the differential effects of acute versus chronic-resistance training on neural plasticity, and the role of this plasticity in increased strength. Such investigations may help in providing a clearer definition of the continuum of acute and chronic-resistance training, how the nervous system is altered during this continuum and the causative role of neural plasticity in changes in strength over the continuum of resistance training.
Collapse
|
11
|
Hortobágyi T, Granacher U, Fernandez-Del-Olmo M, Howatson G, Manca A, Deriu F, Taube W, Gruber M, Márquez G, Lundbye-Jensen J, Colomer-Poveda D. Functional relevance of resistance training-induced neuroplasticity in health and disease. Neurosci Biobehav Rev 2020; 122:79-91. [PMID: 33383071 DOI: 10.1016/j.neubiorev.2020.12.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 01/13/2023]
Abstract
Repetitive, monotonic, and effortful voluntary muscle contractions performed for just a few weeks, i.e., resistance training, can substantially increase maximal voluntary force in the practiced task and can also increase gross motor performance. The increase in motor performance is often accompanied by neuroplastic adaptations in the central nervous system. While historical data assigned functional relevance to such adaptations induced by resistance training, this claim has not yet been systematically and critically examined in the context of motor performance across the lifespan in health and disease. A review of muscle activation, brain and peripheral nerve stimulation, and imaging data revealed that increases in motor performance and neuroplasticity tend to be uncoupled, making a mechanistic link between neuroplasticity and motor performance inconclusive. We recommend new approaches, including causal mediation analytical and hypothesis-driven models to substantiate the functional relevance of resistance training-induced neuroplasticity in the improvements of gross motor function across the lifespan in health and disease.
Collapse
Affiliation(s)
- Tibor Hortobágyi
- Center for Human Movement Sciences, University of Groningen, University Medical CenterGroningen, Groningen, Netherlands.
| | - Urs Granacher
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany
| | - Miguel Fernandez-Del-Olmo
- Area of Sport Sciences, Faculty of Sports Sciences and Physical Education, Center for Sport Studies, King Juan Carlos University, Madrid, Spain
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, UK; Water Research Group, North West University, Potchefstroom, South Africa
| | - Andrea Manca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Wolfgang Taube
- Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland
| | - Markus Gruber
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Gonzalo Márquez
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruña, A Coruña, Spain
| | - Jesper Lundbye-Jensen
- Movement & Neuroscience, Department of Nutrition, Exercise & Sports Department of Neuroscience, University of Copenhagenk, Faculty of Health Science, Universidad Isabel I, Burgos, Spain
| | | |
Collapse
|
12
|
Soligon SD, da Silva DG, Bergamasco JGA, Angleri V, Júnior RAM, Dias NF, Nóbrega SR, de Castro Cesar M, Libardi CA. Suspension training vs. traditional resistance training: effects on muscle mass, strength and functional performance in older adults. Eur J Appl Physiol 2020; 120:2223-2232. [PMID: 32700098 DOI: 10.1007/s00421-020-04446-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE We compared the effects of suspension training (ST) with traditional resistance training (TRT) on muscle mass, strength and functional performance in older adults. METHODS Forty-two untrained older adults were randomized in TRT, ST (both performed 3 sets of whole body exercises to muscle failure) or control group (CON). Muscle thickness (MT) of biceps brachii (MTBB) and vastus lateralis (MTVL), maximal dynamic strength test (1RM) for biceps curl (1RMBC) and leg extension exercises (1RMLE), and functional performance tests (chair stand [CS], timed up and go [TUG] and maximal gait speed [MGS]) were performed before and after 12 weeks of training. RESULTS MTBB increased significantly and similarly for all training groups (TRT 23.35%; ST 21.56%). MTVL increased significantly and similarly for all training groups (TRT 13.03%; ST 14.07%). 1RMBC increased significantly and similarly for all training groups (TRT 16.06%; ST 14.33%). 1RMLE increased significantly and similarly for all training groups (TRT 14.89%; ST 18.06%). MGS increased significantly and similarly for all groups (TRT 6.26%; ST 5.99%; CON 2.87%). CS decreased significantly and similarly for all training groups (TRT - 20.80%; ST - 15.73%). TUG decreased significantly and similarly for all training groups (TRT - 8.66%; ST - 9.16%). CONCLUSION Suspension training (ST) promotes similar muscle mass, strength and functional performance improvements compared to TRT in older adults.
Collapse
Affiliation(s)
- Samuel Domingos Soligon
- MUSCULAB, Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, UFSCar, Rod. Washington Luiz, km 235-SP 310, São Carlos, SP, 13565-905, Brazil
| | - Deivid Gomes da Silva
- MUSCULAB, Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, UFSCar, Rod. Washington Luiz, km 235-SP 310, São Carlos, SP, 13565-905, Brazil
| | - João Guilherme Almeida Bergamasco
- MUSCULAB, Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, UFSCar, Rod. Washington Luiz, km 235-SP 310, São Carlos, SP, 13565-905, Brazil
| | - Vitor Angleri
- MUSCULAB, Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, UFSCar, Rod. Washington Luiz, km 235-SP 310, São Carlos, SP, 13565-905, Brazil
| | - Ricardo Alessandro Medalha Júnior
- MUSCULAB, Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, UFSCar, Rod. Washington Luiz, km 235-SP 310, São Carlos, SP, 13565-905, Brazil
| | - Nathalia Fernanda Dias
- MUSCULAB, Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, UFSCar, Rod. Washington Luiz, km 235-SP 310, São Carlos, SP, 13565-905, Brazil
| | - Sanmy Rocha Nóbrega
- MUSCULAB, Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, UFSCar, Rod. Washington Luiz, km 235-SP 310, São Carlos, SP, 13565-905, Brazil
| | - Marcelo de Castro Cesar
- Department of Medicine, Federal University of São Carlos, UFSCar, Rod. Washington Luiz, km 235-SP 310, São Carlos, SP, 13565-905, Brazil.,Human Performance Research Laboratory, Methodist University of Piracicaba, UNIMEP, Rod. do Açúcar, km 156, Piracicaba, SP, 13400-911, Brazil
| | - Cleiton Augusto Libardi
- MUSCULAB, Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, UFSCar, Rod. Washington Luiz, km 235-SP 310, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
13
|
Neuromuscular Mechanisms Underlying Changes in Force Production during an Attentional Focus Task. Brain Sci 2020; 10:brainsci10010033. [PMID: 31936030 PMCID: PMC7016702 DOI: 10.3390/brainsci10010033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 11/18/2022] Open
Abstract
We examined the effects of attentional focus cues on maximal voluntary force output of the elbow flexors and the underlying physiological mechanisms. Eleven males participated in two randomized experimental sessions. In each session, four randomized blocks of three maximal voluntary contractions (MVC) were performed. The blocks consisted of two externally and two internally attentional focus cued blocks. In one of the sessions, corticospinal excitability (CSE) was measured. During the stimulation session transcranial magnetic, transmastoid and Erb’s point stimulations were used to induce motor evoked potentials (MEPs), cervicomedullary MEP (CMEPs) and maximal muscle action potential (Mmax), respectively in the biceps brachii. Across both sessions forces were lower (p = 0.024) under the internal (282.4 ± 60.3 N) compared to the external condition (310.7 ± 11.3 N). Muscle co-activation was greater (p = 0.016) under the internal (26.3 ± 11.5%) compared with the external condition (21.5 ± 9.4%). There was no change in CSE. Across both sessions, force measurements were lower (p = 0.033) during the stimulation (279.0 ± 47.1 N) compared with the no-stimulation session (314.1 ± 57.5 N). In conclusion, external focus increased force, likely due to reduced co-activation. Stimulating the corticospinal pathway may confound attentional focus. The stimulations may distract participants from the cues and/or disrupt areas of the cortex responsible for attention and focus.
Collapse
|