1
|
AlQahtani NJ, Al-Naib I, Ateeq IS, Althobaiti M. Hybrid Functional Near-Infrared Spectroscopy System and Electromyography for Prosthetic Knee Control. BIOSENSORS 2024; 14:553. [PMID: 39590012 PMCID: PMC11591744 DOI: 10.3390/bios14110553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
The increasing number of individuals with limb loss worldwide highlights the need for advancements in prosthetic knee technology. To improve control and quality of life, integrating brain-computer communication with motor imagery offers a promising solution. This study introduces a hybrid system that combines electromyography (EMG) and functional near-infrared spectroscopy (fNIRS) to address these limitations and enhance the control of knee movements for individuals with above-knee amputations. The study involved an experiment with nine healthy male participants, consisting of two sessions: real execution and imagined execution using motor imagery. The OpenBCI Cyton board collected EMG signals corresponding to the desired movements, while fNIRS monitored brain activity in the prefrontal and motor cortices. The analysis of the simultaneous measurement of the muscular and hemodynamic responses demonstrated that combining these data sources significantly improved the classification accuracy compared to using each dataset alone. The results showed that integrating both the EMG and fNIRS data consistently achieved a higher classification accuracy. More specifically, the Support Vector Machine performed the best during the motor imagery tasks, with an average accuracy of 49.61%, while the Linear Discriminant Analysis excelled in the real execution tasks, achieving an average accuracy of 89.67%. This research validates the feasibility of using a hybrid approach with EMG and fNIRS to enable prosthetic knee control through motor imagery, representing a significant advancement potential in prosthetic technology.
Collapse
Affiliation(s)
- Nouf Jubran AlQahtani
- Biomedical Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia; (N.J.A.)
| | - Ibraheem Al-Naib
- Bioengineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia;
- Interdisciplinary Research Center for Communication Systems and Sensing, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Ijlal Shahrukh Ateeq
- Biomedical Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia; (N.J.A.)
| | - Murad Althobaiti
- Biomedical Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia; (N.J.A.)
| |
Collapse
|
2
|
Pan J, Zhang S. Dual-Task Effect on Center of Pressure Oscillations and Prefrontal Cortex Activation Between Young and Older Adults. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024:1-11. [PMID: 38986156 DOI: 10.1080/02701367.2024.2365940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/31/2024] [Indexed: 07/12/2024]
Abstract
Purpose: This study aimed to investigate the dual-task effect on conventional center of pressure (CoP) outcomes, CoP oscillations, and prefrontal cortex (PFC) activation between young and older adults. Methods: Fourteen healthy older adults (age: 66.25 ± 3.43 years) and another fourteen gender-matched young adults (age: 19.80 ± 0.75 years) participated in this study. Participants completed single-task and dual-task standing trials in a fixed order. The displacement of CoP and PFC activation were recorded using a Force plate and a functional near-infrared spectroscopy system, respectively. Two-way MANOVAs were used to examine the group and task effects. Additionally, the Pearson correlation analyses were used to investigate the relationship between CoP oscillations and PFC activation. Results: Our results showed a worse balance performance, greater CoP oscillations of 0-0.1 (11.03 ± 8.24 vs. 23.20 ± 12.54 cm2) and 0.1-0.5 (13.62 ± 9.30 vs. 30.00 ± 23.12 cm2) Hz in the medial-lateral direction and higher right (dorsomedial: -0.0003 ± 0.021 vs. 0.021 ± 0.021 & ventrolateral: 0.0087 ± 0.047 vs. 0.025 ± 0.045 mol/ml) and left (dorsomedial: 0.0033 ± 0.024 vs. 0.020 ± 0.025 & ventrolateral: 0.0060 ± 0.037 vs. 0.034 ± 0.037 mol/ml) PFC activation in response to a secondary cognitive task in older adults (p < .05). Older adults also showed significant positive correlations between CoP oscillations in the anterior-posterior direction and PFC activation under the single-task standing. Conclusion: These results suggest that older adults presented a loss of postural automaticity contributing to cognitive dysfunction. Moreover, heightened CoP oscillations at 0-0.5 Hz in response to a secondary cognitive task could provide evidence of a loss of automaticity, which might be associated with a greater reliance on the sensory inputs.
Collapse
|
3
|
Caulier-Cisterna R, Appelgren-Gonzáles JP, Oyarzún JE, Valenzuela F, Sitaram R, Eblen-Zajjur A, Uribe S. Comparison of LED- and LASER-based fNIRS technologies to record the human peri‑spinal cord neurovascular response. Med Eng Phys 2024; 127:104170. [PMID: 38692767 DOI: 10.1016/j.medengphy.2024.104170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 03/13/2024] [Accepted: 04/11/2024] [Indexed: 05/03/2024]
Abstract
Recently, functional Near-Infrared Spectroscopy (fNIRS) was applied to obtain, non-invasively, the human peri‑spinal Neuro-Vascular Response (NVR) under a non-noxious electrical stimulation of a peripheral nerve. This method allowed the measurements of changes in the concentration of oxyhemoglobin (O2Hb) and deoxyhemoglobin (HHb) from the peri‑spinal vascular network. However, there is a lack of clarity about the potential differences in perispinal NVR recorded by the different fNIRS technologies currently available. In this work, the two main noninvasive fNIRS technologies were compared, i.e., LED and LASER-based. The recording of the human peri‑spinal NVR induced by non-noxious electrical stimulation of a peripheral nerve was recorded simultaneously at C7 and T10 vertebral levels. The amplitude, rise time, and full width at half maximum duration of the perispinal NVRs were characterized in healthy volunteers and compared between both systems. The main difference was that the LED-based system shows about one order of magnitude higher values of amplitude than the LASER-based system. No statistical differences were found for rise time and for duration parameters (at thoracic level). The comparison of point-to-point wave patterns did not show significant differences between both systems. In conclusion, the peri‑spinal NRV response obtained by different fNIRS technologies was reproducible, and only the amplitude showed differences, probably due to the power of the system which should be considered when assessing the human peri‑spinal vascular network.
Collapse
Affiliation(s)
- Raúl Caulier-Cisterna
- Department of Informatics and Computing, Faculty of Engineering, Universidad Tecnológica Metropolitana, Santiago, Chile.
| | - Juan-Pablo Appelgren-Gonzáles
- Center for Biomedical Imaging, the Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan-Esteban Oyarzún
- Center for Biomedical Imaging, the Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute for Intelligent Healthcare Engineering, iHEALTH, Santiago, Chile
| | - Felipe Valenzuela
- Center for Biomedical Imaging, the Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ranganatha Sitaram
- Diagnostic Imaging Department, Multimodal Functional Brain Imaging and Neurorehabilitation Hub, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Antonio Eblen-Zajjur
- Translational Neuroscience Laboratory, Facultad de Medicina, Universidad Diego Portales, Santiago, Chile
| | - Sergio Uribe
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia.
| |
Collapse
|
4
|
Kotegawa K, Kuroda N, Sakata J, Teramoto W. Association between visuo-spatial working memory and gait motor imagery. Hum Mov Sci 2024; 94:103185. [PMID: 38320427 DOI: 10.1016/j.humov.2024.103185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/20/2023] [Accepted: 01/31/2024] [Indexed: 02/08/2024]
Abstract
Although motor imagery and working memory (WM) appear to be closely linked, no previous studies have demonstrated direct evidence for the relationship between motor imagery and WM abilities. This study investigated the association between WM and gait motor imagery and focused on the individual differences in young adults. This study included 33 participants (mean age: 22.2 ± 0.9 years). We used two methods to measure the ability of different WM domains: verbal and visuo-spatial WM. Gait motor imagery accuracy was assessed via the mental chronometry paradigm. We measured the times participants took to complete an actual and imagined walk along a 5 m walkway, with three different path widths. The linear mixed effects model analysis revealed that visuo-spatial WM ability was a significant predictor of the accuracy of gait motor imagery, but not of verbal WM ability. Specifically, individuals with lower visuo-spatial WM ability demonstrated more inaccuracies in the difficult path-width conditions. However, gait motor imagery was not as accurate as actual walking even in the easiest path width or in participants with high visuo-spatial WM ability. Further, visuo-spatial WM ability was significantly correlated with mental walking but not with actual walking. These results suggest that visuo-spatial WM is related to motor imagery rather than actual movement.
Collapse
Affiliation(s)
- Kohei Kotegawa
- Department of Rehabilitation, Faculty of Health Science, Kumamoto Health Science University, 325 Izumi, Kumamoto 861-5598, Japan.
| | - Naoki Kuroda
- Graduate School of Humanities and Social Sciences, Kumamoto University, 2-40-1 Kurokami, Kumamoto 860-8555, Japan
| | - Junya Sakata
- Department of Rehabilitation, Medical Corporation Tanakakai, Musashigaoka Hospital, 7-15-1 Kusunoki, Kumamoto 861-8003, Japan
| | - Wataru Teramoto
- Graduate School of Humanities and Social Sciences, Kumamoto University, 2-40-1 Kurokami, Kumamoto 860-8555, Japan
| |
Collapse
|
5
|
Yuan X, Zhong X, Wang C, Dai Y, Yang Y, Jiang C. Temporo-Parietal cortex activation during motor imagery in older adults: A case study of Baduanjin. Brain Cogn 2023; 173:106103. [PMID: 37922628 DOI: 10.1016/j.bandc.2023.106103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/03/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
Age-associated cognitive and motor decline is related to central nervous system injury in older adults. Motor imagery training (MIT), as an emerging rehabilitative intervention, can activate neural basis similar to that in actual exercise, so as to promote motor function in older adults. The complex motor skills rely on the functional integration of the cerebral cortex. Understanding the neural mechanisms underlying motor imagery in older adults would support its application in motor rehabilitation and slowing cognitive decline. Based on this, the present study used functional near infrared spectroscopy (fNIRS) to record the changes in oxygen saturation in older adults (20 participants; mean age, 64.8 ± 4.5 years) during Baduanjin motor execution (ME) and motor imagery (MI). ME significantly activated the left postcentral gyrus, while the oxy-hemoglobin concentration in the right middle temporal gyrus increased significantly during motor imagery. These results indicate that advanced ME activates brain regions related to sensorimotor function, and MI increases the activation of the frontal-parietal cortex related to vision. In older adults, MI overactivated the temporo-parietal region associated with vision, and tend to be activated in the right brain.
Collapse
Affiliation(s)
- Xiaoxia Yuan
- Beijing Key Laboratory of Physical Fitness Evaluation and Technical Analysis, Capital University of Physical Education and Sports, Beijing 100191, China; The Center of Neuroscience and Sports, Capital University of Physical Education and Sports, Beijing 100191, China; School of Sport, Exercise and Rehabilitation Sciences, The University of Birmingham, Birmingham B25 2TT, UK.
| | - Xiaoke Zhong
- Beijing Key Laboratory of Physical Fitness Evaluation and Technical Analysis, Capital University of Physical Education and Sports, Beijing 100191, China; The Center of Neuroscience and Sports, Capital University of Physical Education and Sports, Beijing 100191, China.
| | - Chen Wang
- Beijing Key Laboratory of Physical Fitness Evaluation and Technical Analysis, Capital University of Physical Education and Sports, Beijing 100191, China; The Center of Neuroscience and Sports, Capital University of Physical Education and Sports, Beijing 100191, China.
| | - Yuanfu Dai
- Beijing Key Laboratory of Physical Fitness Evaluation and Technical Analysis, Capital University of Physical Education and Sports, Beijing 100191, China; The Center of Neuroscience and Sports, Capital University of Physical Education and Sports, Beijing 100191, China.
| | - Yuan Yang
- Sports Department, Beihang University, Beijing 100191, China.
| | - Changhao Jiang
- Beijing Key Laboratory of Physical Fitness Evaluation and Technical Analysis, Capital University of Physical Education and Sports, Beijing 100191, China; The Center of Neuroscience and Sports, Capital University of Physical Education and Sports, Beijing 100191, China.
| |
Collapse
|
6
|
Shin J. Feasibility of local interpretable model-agnostic explanations (LIME) algorithm as an effective and interpretable feature selection method: comparative fNIRS study. Biomed Eng Lett 2023; 13:689-703. [PMID: 37873000 PMCID: PMC10590353 DOI: 10.1007/s13534-023-00291-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 10/25/2023] Open
Abstract
Many feature selection methods have been evaluated in functional near-infrared spectroscopy (fNIRS)-related studies. The local interpretable model-agnostic explanation (LIME) algorithm is a feature selection method for fNIRS datasets that has not yet been validated; the demand for its validation is increasing. To this end, we assessed the feature selection performance of LIME for fNIRS datasets in terms of classification accuracy. A comparative analysis was conducted for the benchmark (classification accuracy obtained without applying any feature selection method), LIME, two filter-based methods (minimum-redundancy maximum-relevance and t-test), and one wrapper-based method (sequential forward selection). To ensure the fairness and reliability of the performance evaluation, several open-access fNIRS datasets were used. The analysis revealed that LIME greatly outperformed the other feature selection methods in most cases and could achieve a statistically significantly better classification accuracy than that of the benchmark methods. These findings implied the effectiveness of LIME as a feature selection approach for fNIRS datasets.
Collapse
Affiliation(s)
- Jaeyoung Shin
- Department of Electronic Engineering, Wonkwang University, Iksan, 54538 Republic of Korea
| |
Collapse
|
7
|
da Silva Costa AA, Hortobágyi T, den Otter R, Sawers A, Moraes R. Age, Cognitive Task, and Arm Position Differently Affect Muscle Synergy Recruitment but have Similar Effects on Walking Balance. Neuroscience 2023; 527:11-21. [PMID: 37437799 DOI: 10.1016/j.neuroscience.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Age modifies walking balance and neuromuscular control. Cognitive and postural constraints can increase walking balance difficulty and magnify age-related differences. However, how such challenges affect neuromuscular control remains unknown. We determined the effects of age, cognitive task, and arm position on neuromuscular control of walking balance. Young (YA) and older adults (OA) walked on a 6-cm wide beam with and without arm crossing and a cognitive task. Walking balance was quantified by the distance walked on the beam. We also computed step speed, margin of stability, and cognitive errors. Neuromuscular control was determined through muscle synergies extracted from 13 right leg and trunk muscles. We analyzed neuromuscular complexity by the number of synergies and the variance accounted for by the first synergy, coactivity by the number of significantly active muscles in each synergy, and efficiency by the sum of the activation of each significantly active muscle in each synergy. OA vs. YA walked a 14% shorter distance, made 12 times more cognitive errors, and showed less complex and efficient neuromuscular control. Cognitive task reduced walking balance mainly in OA. Decreases in step speed and margin of stability, along with increased muscle synergy coactivity and reduced efficiency were observed in both age groups. Arm-crossing also reduced walking balance mostly in OA, but step speed decreased mainly in YA, in whom the margin of stability increased. Arm-crossing reduced the complexity of synergies. Age, cognitive task, and arm position affect differently muscle synergy recruitment but have similar effects on walking balance.
Collapse
Affiliation(s)
- Andréia Abud da Silva Costa
- Ribeirão Preto Medical School, Graduate Program in Rehabilitation and Functional Performance, University of São Paulo, Brazil; Biomechanics and Motor Control Lab, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Brazil; Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, The Netherlands.
| | - Tibor Hortobágyi
- Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, The Netherlands; Department of Kinesiology, Hungarian University of Sports Science, 1123 Budapest, Hungary; Department of Sport Biology, Institute of Sport Sciences and Physical Education, University of Pécs, Pécs, Hungary; Department of Neurology, Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary; Institute of Sport Research, Sports University of Tirana, Tirana, Albania
| | - Rob den Otter
- Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, The Netherlands
| | - Andrew Sawers
- Department of Kinesiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Renato Moraes
- Ribeirão Preto Medical School, Graduate Program in Rehabilitation and Functional Performance, University of São Paulo, Brazil; Biomechanics and Motor Control Lab, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Brazil
| |
Collapse
|
8
|
Yin J, Deng M, Zhao Z, Bao W, Luo J. Maintaining her image: A social comparative evaluation of the particularity of mothers in the Chinese cultural context. Brain Cogn 2023; 169:105995. [PMID: 37201418 DOI: 10.1016/j.bandc.2023.105995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
In Chinese culture, the mother holds a special meaning in one's self-concept, and is perceived as being stablyincorporated into and consistent with the self. However, it is unclear whether the evaluation of mothers by individuals is affected following the initiation of upward and downward social comparisons (USC and DSC). This experiment manipulated USC and DSC by evaluating positive and negative public figures and used functional near-infrared spectroscopy to record changes in brain activity during the evaluation. It was found that participants' evaluations of their mothers and their brain activity did not differ from the self during USC, verifying the equivalence of the mother and the self. In DSC, participants made significantly more positive social judgments about their mothers, accompanied by greater activation of the left temporal lobe. These results suggest that the mother was not only stably incorporated into the self but was in a position of even greater importance than the self. In DSC in particular, individuals are more likely to maintain a positive image of their mother.
Collapse
Affiliation(s)
- Junting Yin
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China
| | - Mianlin Deng
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China.
| | - Zhiyi Zhao
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China; Shanghai Songjiang Sanxinsixian Campus, Shanghai 201620, China
| | - Wei Bao
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China
| | - Junlong Luo
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China; The Research Base of Online Education for Shanghai Middle and Primary Schools, Shanghai 200234, China.
| |
Collapse
|
9
|
Bahr N, Ivankovic J, Meckler G, Hansen M, Eriksson C, Guise JM. Measuring cognitively demanding activities in pediatric out-of-hospital cardiac arrest. Adv Simul (Lond) 2023; 8:15. [PMID: 37208778 PMCID: PMC10199511 DOI: 10.1186/s41077-023-00253-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/03/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND This methodological intersection article demonstrates a method to measure cognitive load in clinical simulations. Researchers have hypothesized that high levels of cognitive load reduce performance and increase errors. This phenomenon has been studied primarily by experimental designs that measure responses to predetermined stimuli and self-reports that reduce the experience to a summative value. Our goal was to develop a method to identify clinical activities with high cognitive burden using physiologic measures. METHODS Teams of emergency medical responders were recruited from local fire departments to participate in a scenario with a shockable pediatric out-of-hospital cardiac arrest (POHCA) patient. The scenario was standardized with the patient being resuscitated after receiving high-quality CPR and 3 defibrillations. Each team had a person in charge (PIC) who wore a functional near-infrared spectroscopy (fNIRS) device that recorded changes in oxygenated and deoxygenated hemoglobin concentration in their prefrontal cortex (PFC), which was interpreted as cognitive activity. We developed a data processing pipeline to remove nonneural noise (e.g., motion artifacts, heart rate, respiration, and blood pressure) and detect statistically significant changes in cognitive activity. Two researchers independently watched videos and coded clinical tasks corresponding to detected events. Disagreements were resolved through consensus, and results were validated by clinicians. RESULTS We conducted 18 simulations with 122 participants. Participants arrived in teams of 4 to 7 members, including one PIC. We recorded the PIC's fNIRS signals and identified 173 events associated with increased cognitive activity. [Defibrillation] (N = 34); [medication] dosing (N = 33); and [rhythm checks] (N = 28) coincided most frequently with detected elevations in cognitive activity. [Defibrillations] had affinity with the right PFC, while [medication] dosing and [rhythm checks] had affinity with the left PFC. CONCLUSIONS FNIRS is a promising tool for physiologically measuring cognitive load. We describe a novel approach to scan the signal for statistically significant events with no a priori assumptions of when they occur. The events corresponded to key resuscitation tasks and appeared to be specific to the type of task based on activated regions in the PFC. Identifying and understanding the clinical tasks that require high cognitive load can suggest targets for interventions to decrease cognitive load and errors in care.
Collapse
Affiliation(s)
- Nathan Bahr
- Department of Obstetrics and Gynecology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, L-466, Portland, OR 97239 USA
| | - Jonathan Ivankovic
- Department of Obstetrics and Gynecology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, L-466, Portland, OR 97239 USA
| | - Garth Meckler
- Department of Pediatric Emergency Medicine, University of British Columbia, 24-1160 Nicola Street, Vancouver, BC V6G 2E5 Canada
- Department of Pediatrics, University of British Columbia, Vancouver, V6G 2E5 Canada
| | - Matthew Hansen
- Department of Emergency Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, HRC 11D01, Portland, OR 97239 USA
| | - Carl Eriksson
- Department of Pediatrics, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, CDRC 1231, Portland, OR 97239 USA
| | - Jeanne-Marie Guise
- Department of Obstetrics, Gynecology, and Reproductive Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, East Campus, Kirstein 3Rd Floor, OBGYN, 330 Brookline Ave, Boston, MA 02215 USA
| |
Collapse
|
10
|
Yao L, Sun G, Wang J, Hai Y. Effects of Baduanjin imagery and exercise on cognitive function in the elderly: A functional near-infrared spectroscopy study. Front Public Health 2022; 10:968642. [PMID: 36249264 PMCID: PMC9557749 DOI: 10.3389/fpubh.2022.968642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/12/2022] [Indexed: 01/25/2023] Open
Abstract
Objective Cognitive function is essential in ensuring the quality of life of the elderly. This study aimed to investigate the effects of Baduanjin imagery and Baduanjin movement (a traditional Chinese health exercise, TCHE) on cognitive function in the elderly using functional near-infrared spectroscopy (fNIRS). Methods 72 participants with a mean age of 66.92 years (SD = 4.77) were recruited for this study. The participants were randomly assigned to three groups: the Baduanjin imagery, the Baduanjin exercise, and the Control. Stroop task was used to record the accuracy and reaction times, and a near-infrared spectral brain imaging system was used to monitor the brain's oxy-hemoglobin concentration responses. Results (1) For the reaction times of Stroop incongruent tasks, the main effect of the test phase (F = 114.076, p < 0.001) and the interaction effect between test phase and group (F = 10.533, p < 0.001) were all significant. The simple effect analysis further demonstrated that the reaction times of the Baduanjin imagery group and Baduanjin exercise group in the post-test was faster than that in the pre-test (ps < 0.001); (2) Analysis of fNIRS data showed the significant interaction effect (F = 2.554, p = 0.013) between the test phase and group in the left dorsolateral prefrontal cortex. Further analysis showed that, during the post-test incongruent tasks, the oxy-Hb variations were significantly higher in participants of the Baduanjin imagery group (p = 0.005) and Baduanjin exercise group (p = 0.002) than in the control group; For the right inferior frontal gyrus, the interaction between the test phase and group was significant (F = 2.060, p = 0.044). Further analysis showed that, during the post-test incongruent tasks, the oxy-Hb variations were significantly higher in participants of the Baduanjin imagery group than in the control group (p = 0.001). Conclusion Baduanjin imagery and exercise positively affect cognitive performance; Baduanjin imagery and exercise activated the left dorsolateral prefrontal cortex; Baduanjin imagery activated the right inferior frontal gyrus, while Baduanjin exercise could not.
Collapse
|
11
|
Almulla L, Al-Naib I, Ateeq IS, Althobaiti M. Observation and motor imagery balance tasks evaluation: An fNIRS feasibility study. PLoS One 2022; 17:e0265898. [PMID: 35320324 PMCID: PMC8942212 DOI: 10.1371/journal.pone.0265898] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, we aimed at exploring the feasibility of functional near-infrared spectroscopy (fNIRS) for studying the observation and/or motor imagination of various postural tasks. Thirteen healthy adult subjects followed five trials of static and dynamic standing balance tasks, throughout three different experimental setups of action observation (AO), a combination of action observation and motor imagery (AO+MI), and motor imagery (MI). During static and dynamic standing tasks, both the AO+MI and MI experiments revealed that many channels in prefrontal or motor regions are significantly activated while the AO experiment showed almost no significant increase in activations in most of the channels. The contrast between static and dynamic standing tasks showed that with more demanding balance tasks, relative higher activation patterns were observed, particularly during AO and in AO+MI experiments in the frontopolar area. Moreover, the AO+MI experiment revealed a significant difference in premotor and supplementary motor cortices that are related to balance control. Furthermore, it has been observed that the AO+MI experiment induced relatively higher activation patterns in comparison to AO or MI alone. Remarkably, the results of this work match its counterpart from previous functional magnetic resonance imaging studies. Therefore, they may pave the way for using the fNIRS as a diagnostic tool for evaluating the performance of the non-physical balance training during the rehabilitation period of temporally immobilized patients.
Collapse
Affiliation(s)
- Latifah Almulla
- Biomedical Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ibraheem Al-Naib
- Biomedical Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ijlal Shahrukh Ateeq
- Biomedical Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Murad Althobaiti
- Biomedical Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
12
|
Putzolu M, Samogin J, Cosentino C, Mezzarobba S, Bonassi G, Lagravinese G, Vato A, Mantini D, Avanzino L, Pelosin E. Neural oscillations during motor imagery of complex gait: an HdEEG study. Sci Rep 2022; 12:4314. [PMID: 35279682 PMCID: PMC8918338 DOI: 10.1038/s41598-022-07511-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/20/2022] [Indexed: 11/15/2022] Open
Abstract
The aim of this study was to investigate differences between usual and complex gait motor imagery (MI) task in healthy subjects using high-density electroencephalography (hdEEG) with a MI protocol. We characterized the spatial distribution of α- and β-bands oscillations extracted from hdEEG signals recorded during MI of usual walking (UW) and walking by avoiding an obstacle (Dual-Task, DT). We applied a source localization algorithm to brain regions selected from a large cortical-subcortical network, and then we analyzed α and β bands Event-Related Desynchronizations (ERDs). Nineteen healthy subjects visually imagined walking on a path with (DT) and without (UW) obstacles. Results showed in both gait MI tasks, α- and β-band ERDs in a large cortical-subcortical network encompassing mostly frontal and parietal regions. In most of the regions, we found α- and β-band ERDs in the DT compared with the UW condition. Finally, in the β band, significant correlations emerged between ERDs and scores in imagery ability tests. Overall we detected MI gait-related α- and β-band oscillations in cortical and subcortical areas and significant differences between UW and DT MI conditions. A better understanding of gait neural correlates may lead to a better knowledge of pathophysiology of gait disturbances in neurological diseases.
Collapse
|
13
|
Kotegawa K, Teramoto W. Association of executive function capacity with gait motor imagery ability and PFC activity: An fNIRS study. Neurosci Lett 2022; 766:136350. [PMID: 34785311 DOI: 10.1016/j.neulet.2021.136350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022]
Abstract
Individual differences exist in gait motor imagery ability. However, little is known about the underlying neural mechanisms. We previously conducted a study using functional near-infrared spectroscopy (fNIRS), which showed that participants who overestimated mental walking times to a greater degree exhibited greater activation in the right prefrontal cortex (PFC). The PFC is implicated in executive functions (EFs), including working memory (WM). Thus, this study investigated whether individual differences in EF capacity are associated with gait motor imagery ability and PFC activity. Thirty volunteers participated (mean age: 21.7 ± 1.8 years) in the study. Their EF capacity was assessed by the Trail Making Test - Part B (TMT-B). We measured the accuracy of gait motor imagery and PFC activity during mental walking using fNIRS, while changing task difficulty by varying the path width. The results showed that the overestimation of mental walking time over actual walking time and right PFC activity increased with an increase in the TMT-B times. These results suggest that the EF capacity, including WM, is strongly associated with gait motor imagery ability and right PFC activity. The brain network that includes the right PFC may play an important role in the maintenance and manipulation of gait motor imagery.
Collapse
Affiliation(s)
- Kohei Kotegawa
- Department of Rehabilitation, Faculty of Health Science, Kumamoto Health Science University, 325, Izumi, Kumamoto 861-5598, Japan; Graduate School of Social and Cultural Sciences, Kumamoto University, 2-40-1 Kurokami, Kumamoto 860-8555, Japan.
| | - Wataru Teramoto
- Graduate School of Humanities and Social Sciences, Kumamoto University, 2-40-1 Kurokami, Kumamoto 860-8555, Japan.
| |
Collapse
|
14
|
Tsuchiya W, Nagao K, Moriya M. Motor Imagery and Frontal Head Oxygenation: An fNIRS Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1395:81-85. [PMID: 36527618 DOI: 10.1007/978-3-031-14190-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Motor imagery (MI) is a manifestation of mental movements, but it cannot be identified visually. Therefore, to a large extent, MI assessment has not yet been established. The present study aimed to investigate whether frontal oxy-Hb changes and cardiac autonomic nervous system activity during MI are associated with the psychometric scale assessment of MI and clarify the utility of each index in MI assessment. Thirty-one healthy men and women were included in this study, and Pocket NIRS Duo was used to assess frontal oxygenated hemoglobin levels during walking MI. Simultaneously, heart rate and sympathetic index (low and high frequency (LF/HF) during MI were evaluated using Chiryou Meijin, a heart rate frequency analyser. In addition, a psychometric scale evaluation was carried out in MC and VAS, and its correlation with oxy-Hb levels, heart rate (HR), and LF/HF was investigated. HRs and LF/HF during MI were significantly increased compared with those at rest. However, oxy-Hb levels during MI were not increased. There was a significant correlation between right oxy-Hb levels and mental chronometry (MC) during MI (r = -0.3, p < 0.05). HR and LF/HF were not correlated with MC. VAS was not correlated with oxy-Hb levels, HR, or LF/HF. The results of this study confirm an association between MI performance and frontal oxy-Hb changes and that brain activity is not necessarily elevated during MI. HR were significantly increased but did not show any association with MC.
Collapse
|
15
|
Dans PW, Foglia SD, Nelson AJ. Data Processing in Functional Near-Infrared Spectroscopy (fNIRS) Motor Control Research. Brain Sci 2021; 11:606. [PMID: 34065136 PMCID: PMC8151801 DOI: 10.3390/brainsci11050606] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/26/2022] Open
Abstract
FNIRS pre-processing and processing methodologies are very important-how a researcher chooses to process their data can change the outcome of an experiment. The purpose of this review is to provide a guide on fNIRS pre-processing and processing techniques pertinent to the field of human motor control research. One hundred and twenty-three articles were selected from the motor control field and were examined on the basis of their fNIRS pre-processing and processing methodologies. Information was gathered about the most frequently used techniques in the field, which included frequency cutoff filters, wavelet filters, smoothing filters, and the general linear model (GLM). We discuss the methodologies of and considerations for these frequently used techniques, as well as those for some alternative techniques. Additionally, general considerations for processing are discussed.
Collapse
Affiliation(s)
- Patrick W. Dans
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Stevie D. Foglia
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada;
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada;
| |
Collapse
|
16
|
Kotegawa K, Yasumura A, Teramoto W. Changes in prefrontal cortical activation during motor imagery of precision gait with age and task difficulty. Behav Brain Res 2020; 399:113046. [PMID: 33279636 DOI: 10.1016/j.bbr.2020.113046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 12/30/2022]
Abstract
Previous studies have shown that imagined walking ability decreases with age in a similar manner as actual walking ability; however, little is known about the neural mechanisms underlying this aging effect. The present study investigates this issue, focusing on the effect of task difficulty and the involvement of the prefrontal cortex (PFC). Twenty healthy right-handed older adults (mean age 74.5 ± 3.3 years) participated in two experiments. In Experiment 1, the time participants took for actual and imagined walking along a 5-m walkway of three different path widths (15, 25, and 50 cm) were compared. In Experiment 2, the participants imagined walking along the aforementioned paths while PFC activity was measured using functional near-infrared spectroscopy. At the behavioral level, older adults exhibited longer mental and actual walking times for narrower paths and tended to overestimate their imagined walking times over their actual ones. However, overall, the magnitude of the overestimation did not differ by task difficulty. Regarding brain activity, older adults who overestimated mental walking times to a greater degree in the narrowest path exhibited decreased activation in the bilateral PFC. Moreover, compared with young adults in our previous study (Kotegawa et al., 2020), older adults with higher gait ability exhibited the same or smaller mental/actual walking times as well as decreased bilateral PFC activation in the most difficult condition. These results suggest that older adults, especially those with higher gait ability, can utilize neural mechanisms that are different from those of young adults when generating gait motor imagery.
Collapse
Affiliation(s)
- Kohei Kotegawa
- Department of Rehabilitation, Faculty of Health Science, Kumamoto Health Science University, 325, Izumi Kumamoto, 861-5598 Japan; Graduate School of Social and Cultural Sciences, Kumamoto University, 2-40-1 Kurokami, Kumamoto, 860-8555 Japan.
| | - Akira Yasumura
- Graduate School of Humanities and Social Sciences, Kumamoto University, 2-40-1 Kurokami, Kumamoto, 860-8555 Japan
| | - Wataru Teramoto
- Graduate School of Humanities and Social Sciences, Kumamoto University, 2-40-1 Kurokami, Kumamoto, 860-8555 Japan
| |
Collapse
|