1
|
Flechsenhar A, Levine SM, Müller LE, Herpertz SC, Bertsch K. Oxytocin and social learning in socially anxious men and women. Neuropharmacology 2024; 251:109930. [PMID: 38537867 DOI: 10.1016/j.neuropharm.2024.109930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVE This study extended a classic self-referential learning paradigm by investigating the effects of intranasally-administered oxytocin in high and low socially anxious participants during social learning, as a function of social anxiety levels and sex. METHODS In a randomized double-blinded design, 160 participants were either given intranasal oxytocin (24 I.U.) or placebo. Subsequently, while lying in an MR scanner, participants were shown neutral faces that were paired with positively, neutrally, or negatively valenced self-referential sentences, during which we measured self-reported arousal and sympathy of the facial stimuli, pupil dilation, and changes in the brain-oxygen-level dependent signal. Four-factor mixed analyses of variance with the between-subjects factors group (high socially anxious vs. low socially anxious), substance (oxytocin vs. placebo), and sex (male vs. female) and the within-subjects factor sentence valence (positive vs. neutral vs. negative) were conducted for each measure, respectively. RESULTS Administration of intranasal oxytocin yielded an increase in sympathy ratings in high socially anxious compared to low socially anxious individuals and decreased arousal ratings for positively-conditioned faces in low socially anxious participants. As an objective physiological measure of arousal, pupil dilation mirrored the behavioral results. Oxytocin effects on neural activation in the insula interacted with anxiety levels and sex: low socially anxious individuals yielded lower activation under oxytocin than placebo; the converse was observed in high socially anxious individuals. This interaction also differed between sexes, as men yielded higher activation levels than women. These findings were more prominent for positively- and negatively-conditioned faces. Within the amygdala, high socially anxious men yielded higher activation than high socially anxious women in the left hemisphere, and low socially anxious men yielded higher activation than low socially anxious women from positively- and negatively-conditioned faces, though no influence of oxytocin was detected. CONCLUSION These results suggest oxytocin-induced behavioral, physiological, and neural changes as a function of social learning in socially low and high anxious individuals. These findings challenge the amygdalocentric view of the role of emotions in social learning, instead contributing to the growing body of findings implicating the insula therein, revealing an interaction between oxytocin, sex, and emotional valence. Such discoveries raise an interesting set of questions regarding the computational goals of regions such as the insula in emotional learning and how neural activity can play a diagnostic or prognostic role in social anxiety, potentially leading to new treatment opportunities that may combine oxytocin and neurofeedback differentially for men and women.
Collapse
Affiliation(s)
- Aleya Flechsenhar
- Department of Psychology, Ludwig-Maximilians Universität München, Germany; NeuroImaging Core Unit Munich (NICUM), University Hospital, Ludwig-Maximilians Universität München, Germany
| | - Seth M Levine
- Department of Psychology, Ludwig-Maximilians Universität München, Germany; NeuroImaging Core Unit Munich (NICUM), University Hospital, Ludwig-Maximilians Universität München, Germany
| | - Laura E Müller
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Germany
| | - Sabine C Herpertz
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Germany
| | - Katja Bertsch
- Department of Psychology, Ludwig-Maximilians Universität München, Germany; NeuroImaging Core Unit Munich (NICUM), University Hospital, Ludwig-Maximilians Universität München, Germany; Department of Psychology, Julius-Maximilians-Universität Würzburg, Germany.
| |
Collapse
|
2
|
Grzybowski SJ, Wyczesany M. Hemispheric engagement during the processing of affective adjectives-an ERP divided visual field study. Laterality 2024; 29:223-245. [PMID: 38507594 DOI: 10.1080/1357650x.2024.2331278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
The study looked into the hemispheres' involvement in emotional word encoding. It combined brain activity measures (ERPs) with behavioural data during the affective categorization task in the divided visual field presentation paradigm. Forty healthy right-handed student volunteers took part in the study, in which they viewed and evaluated 33 positive and 33 negative emotional adjectives presented to either the left or right visual field. We observed a marginally significant effect on the earlier time window (220-250 ms, the P2 component) with higher mean amplitudes evoked to the words presented to the right hemisphere, and then a strong effect on the 340-400 ms (the P3) with a reversed pattern (higher amplitudes for words presented to the left hemisphere). The latter effect was also visible in the error rates and RTs, with better overall performance for adjectives presented to the left hemisphere. There was also an effect on behavioural data of positive words only (higher error rates, shorter RTs). Thus, the study showed a particular "progression" pattern of hemispheric engagement: dependence of the initial stages of affective lexico-semantic processing on the right hemisphere, replaced by the left-hemispheric dominance for content evaluation and response programming stages.
Collapse
Affiliation(s)
- Szczepan J Grzybowski
- Institute of Applied Psychology, Faculty of Management and Social Communication, Jagiellonian University, Kraków, Poland
| | - Miroslaw Wyczesany
- Institute of Psychology, Faculty of Philosophy, Jagiellonian University, Kraków, Poland
| |
Collapse
|
3
|
Stanković M, Allenmark F, Shi Z. High task demand in dual-target paradigm redirects experimentally increased anxiety to uphold goal-directed attention. Perception 2024; 53:263-275. [PMID: 38517398 PMCID: PMC10960321 DOI: 10.1177/03010066241232593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/30/2024] [Indexed: 03/23/2024]
Abstract
Previous research has shown that state anxiety facilitates stimulus-driven attentional capture and impairs goal-directed attentional control by increasing sensitivity to salient distractors or threat cues or narrowing spatial attention. However, recent findings in this area have been mixed, and less is known about how state-dependent anxiety may affect attentional performance. Here, we employed a novel dual-target search paradigm to investigate this relationship. This paradigm allowed us to investigate attentional control and how focus narrows under different anxiety states. Participants watched a short movie-either anxiety-inducing or neutral-before engaging in the dual-target visual search task. We found that they performed faster and more accurately in trials without the salient distractor compared to those with distractors, and they performed better in tasks presented on the center than the periphery. However, despite a significant increase in self-reported anxiety in the anxiety-inducing session, participants' performance in terms of speed and accuracy remain comparable across both anxious and neutral sessions. This resilience is likely due to compensatory mechanisms that offset anxiety, a result of the high demands and working memory load inherent in the dual-target task.
Collapse
Affiliation(s)
- Miloš Stanković
- University of Regensburg, Germany; Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | |
Collapse
|
4
|
Mouri FI, Valderrama CE, Camorlinga SG. Identifying relevant asymmetry features of EEG for emotion processing. Front Psychol 2023; 14:1217178. [PMID: 37663334 PMCID: PMC10469865 DOI: 10.3389/fpsyg.2023.1217178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/21/2023] [Indexed: 09/05/2023] Open
Abstract
The left and right hemispheres of the brain process emotion differently. Neuroscientists have proposed two models to explain this difference. The first model states that the right hemisphere is dominant over the left to process all emotions. In contrast, the second model states that the left hemisphere processes positive emotions, whereas the right hemisphere processes negative emotions. Previous studies have used these asymmetry models to enhance the classification of emotions in machine learning models. However, little research has been conducted to explore how machine learning models can help identify associations between hemisphere asymmetries and emotion processing. To address this gap, we conducted two experiments using a subject-independent approach to explore how the asymmetry of the brain hemispheres is involved in processing happiness, sadness, fear, and neutral emotions. We analyzed electroencephalogram (EEG) signals from 15 subjects collected while they watched video clips evoking these four emotions. We derived asymmetry features from the recorded EEG signals by calculating the log ratio between the relative energy of symmetrical left and right nodes. Using the asymmetry features, we trained four binary logistic regressions, one for each emotion, to identify which features were more relevant to the predictions. The average AUC-ROC across the 15 subjects was 56.2, 54.6, 51.6, and 58.4% for neutral, sad, fear, and happy, respectively. We validated these results with an independent dataset, achieving comparable AUC-ROC values. Our results showed that brain lateralization was observed primarily in the alpha frequency bands, whereas for the other frequency bands, both hemispheres were involved in emotion processing. Furthermore, the logistic regression analysis indicated that the gamma and alpha bands were the most relevant for predicting emotional states, particularly for the lateral frontal, parietal, and temporal EEG pairs, such as FT7-FT8, T7-T8, and TP7-TP8. These findings provide valuable insights into which brain areas and frequency bands need to be considered when developing predictive models for emotion recognition.
Collapse
|
5
|
Testing of Behavioural Asymmetries as Markers for Brain Lateralization of Emotional States in Pet Dogs: A Critical Review. Neurosci Biobehav Rev 2022; 143:104950. [DOI: 10.1016/j.neubiorev.2022.104950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
|
6
|
Jospe K, Genzer S, Mansano L, Ong D, Zaki J, Soroker N, Perry A. Impaired empathic accuracy following damage to the left hemisphere. Biol Psychol 2022; 172:108380. [PMID: 35714840 DOI: 10.1016/j.biopsycho.2022.108380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/25/2022] [Accepted: 06/10/2022] [Indexed: 01/10/2023]
Abstract
Failing to understand others accurately can be extremely costly. Unfortunately, events such as strokes can lead to a decline in emotional understanding. Such impairments have been documented in stroke patients and are widely hypothesized to be related to right-hemisphere lesions, as well as to the amygdala, and are thought to be driven in part by attentional biases, for example, less fixation on the eyes. Notably, most of the previous research relied on measurements of emotional understanding from simplified cues, such as facial expressions or prosody. We hypothesize that chronic damage to the left hemisphere could hinder empathic accuracy and emotion recognition in naturalistic social settings that require complex language comprehension, even after a patient regains core language capacities. To assess this notion, we use an empathic accuracy task and eye-tracking measurements with chronic stroke patients with either right (N = 13) or left (N = 11) hemispheric damage-together with aged-matched controls (N = 15)-to explore the patients' understanding of others' affect inferred from stimuli that separates audio and visual cues. While we find that patients with right-hemisphere lesions showed visual attention bias compared to the other two groups, we uncover a disadvantage for patients with left-hemisphere lesions in empathic accuracy, especially when only auditory cues are present. These results suggest that patients with left-hemisphere damage have long-lasting difficulties comprehending real-world complex emotional situations.
Collapse
Affiliation(s)
- Karine Jospe
- Department of Psychology, the Hebrew University of Jerusalem, Israel.
| | - Shir Genzer
- Department of Psychology, the Hebrew University of Jerusalem, Israel
| | - Lihi Mansano
- Loewenstein Rehabilitation Medical Center, Raanana, Israel
| | - Desmond Ong
- Department of Information Systems and Analytics, National University of Singapore, Singapore
| | - Jamil Zaki
- Department of Psychology, Stanford University, California, USA
| | - Nachum Soroker
- Loewenstein Rehabilitation Medical Center, Raanana, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Anat Perry
- Department of Psychology, the Hebrew University of Jerusalem, Israel
| |
Collapse
|
7
|
Bak S, Shin J, Jeong J. Subdividing Stress Groups into Eustress and Distress Groups Using Laterality Index Calculated from Brain Hemodynamic Response. BIOSENSORS 2022; 12:bios12010033. [PMID: 35049661 PMCID: PMC8773747 DOI: 10.3390/bios12010033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 12/28/2022]
Abstract
A stress group should be subdivided into eustress (low-stress) and distress (high-stress) groups to better evaluate personal cognitive abilities and mental/physical health. However, it is challenging because of the inconsistent pattern in brain activation. We aimed to ascertain the necessity of subdividing the stress groups. The stress group was screened by salivary alpha-amylase (sAA) and then, the brain’s hemodynamic reactions were measured by functional near-infrared spectroscopy (fNIRS) based on the near-infrared biosensor. We compared the two stress subgroups categorized by sAA using a newly designed emotional stimulus-response paradigm with an international affective picture system (IAPS) to enhance hemodynamic signals induced by the target effect. We calculated the laterality index for stress (LIS) from the measured signals to identify the dominantly activated cortex in both the subgroups. Both the stress groups exhibited brain activity in the right frontal cortex. Specifically, the eustress group exhibited the largest brain activity, whereas the distress group exhibited recessive brain activity, regardless of positive or negative stimuli. LIS values were larger in the order of the eustress, control, and distress groups; this indicates that the stress group can be divided into eustress and distress groups. We built a foundation for subdividing stress groups into eustress and distress groups using fNIRS.
Collapse
Affiliation(s)
- SuJin Bak
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea;
| | - Jaeyoung Shin
- Department of Electronic Engineering, Wonkwang University, Iksan 54538, Korea;
| | - Jichai Jeong
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea;
- Correspondence:
| |
Collapse
|
8
|
Berretz G, Packheiser J, Höffken O, Wolf OT, Ocklenburg S. Dichotic listening performance and interhemispheric integration after administration of hydrocortisone. Sci Rep 2021; 11:21581. [PMID: 34732775 PMCID: PMC8566584 DOI: 10.1038/s41598-021-00896-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/08/2021] [Indexed: 11/09/2022] Open
Abstract
Chronic stress has been shown to have long-term effects on functional hemispheric asymmetries in both humans and non-human species. The short-term effects of acute stress exposure on functional hemispheric asymmetries are less well investigated. It has been suggested that acute stress can affect functional hemispheric asymmetries by modulating inhibitory function of the corpus callosum, the white matter pathway that connects the two hemispheres. On the molecular level, this modulation may be caused by a stress-related increase in cortisol, a major stress hormone. Therefore, it was the aim of the present study to investigate the acute effects of cortisol on functional hemispheric asymmetries. Overall, 60 participants were tested after administration of 20 mg hydrocortisone or a placebo tablet in a cross-over design. Both times, a verbal and an emotional dichotic listening task to assess language and emotional lateralization, as well as a Banich-Belger task to assess interhemispheric integration were applied. Lateralization quotients were determined for both reaction times and correctly identified syllables in both dichotic listening tasks. In the Banich-Belger task, across-field advantages were determined to quantify interhemispheric integration. While we could replicate previously reported findings for these tasks in the placebo session, we could not detect any differences in asymmetry between hydrocortisone and placebo treatment. This partially corroborates the results of a previous study we performed using social stress to induce cortisol increases. This suggests that an increase in cortisol does not influence dichotic listening performance on a behavioral level. As other studies reported an effect of stress hormones on functional hemispheric asymmetries on a neuro-functional level, future research using neuronal imaging methods would be helpful in the characterization of the relation of hemispheric asymmetries and stress hormones.
Collapse
Affiliation(s)
- Gesa Berretz
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Universitätsstraße 150, IB 6-109, Bochum, Germany.
| | - Julian Packheiser
- Netherlands Institute for Neuroscience, Social Brain Lab, Amsterdam, The Netherlands
| | - Oliver Höffken
- Department of Neurology, BG-University Clinic Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Oliver T Wolf
- Department of Cognitive Psychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
9
|
Burgund ED. Left Hemisphere Dominance for Negative Facial Expressions: The Influence of Task. Front Hum Neurosci 2021; 15:742018. [PMID: 34602999 PMCID: PMC8484516 DOI: 10.3389/fnhum.2021.742018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/30/2021] [Indexed: 11/28/2022] Open
Abstract
Major theories of hemisphere asymmetries in facial expression processing predict right hemisphere dominance for negative facial expressions of disgust, fear, and sadness, however, some studies observe left hemisphere dominance for one or more of these expressions. Research suggests that tasks requiring the identification of six basic emotional facial expressions (angry, disgusted, fearful, happy, sad, and surprised) are more likely to produce left hemisphere involvement than tasks that do not require expression identification. The present research investigated this possibility in two experiments that presented six basic emotional facial expressions to the right or left hemisphere using a divided-visual field paradigm. In Experiment 1, participants identified emotional expressions by pushing a key corresponding to one of six labels. In Experiment 2, participants detected emotional expressions by pushing a key corresponding to whether an expression was emotional or not. In line with predictions, fearful facial expressions exhibited a left hemisphere advantage during the identification task but not during the detection task. In contrast to predictions, sad expressions exhibited a left hemisphere advantage during both identification and detection tasks. In addition, happy facial expressions exhibited a left hemisphere advantage during the detection task but not during the identification task. Only angry facial expressions exhibited a right hemisphere advantage, and this was only observed when data from both experiments were combined. Together, results highlight the influence of task demands on hemisphere asymmetries in facial expression processing and suggest a greater role for the left hemisphere in negative expressions than predicted by previous theories.
Collapse
Affiliation(s)
- E. Darcy Burgund
- Department of Psychology, Macalester College, Saint Paul, MN, United States
| |
Collapse
|
10
|
Does Double Biofeedback Affect Functional Hemispheric Asymmetry and Activity? A Pilot Study. Symmetry (Basel) 2021. [DOI: 10.3390/sym13060937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the current pilot study, we attempt to find out how double neurofeedback influences functional hemispheric asymmetry and activity. We examined 30 healthy participants (8 males; 22 females, mean age = 29; SD = 8). To measure functional hemispheric asymmetry and activity, we used computer laterometry in the ‘two-source’ lead-lag dichotic paradigm. Double biofeedback included 8 min of EEG oscillation recording with five minutes of basic mode. During the basic mode, the current amplitude of the EEG oscillator gets transformed into feedback sounds while the current amplitude of alpha EEG oscillator is used to modulate the intensity of light signals. Double neurofeedback did not directly influence the asymmetry itself but accelerated individual sound perception characteristics during dichotic listening in the preceding effect paradigm. Further research is needed to investigate the effect of double neurofeedback training on functional brain activity and asymmetry, taking into account participants’ age, gender, and motivation.
Collapse
|
11
|
Berretz G, Packheiser J, Wolf OT, Ocklenburg S. Dichotic listening performance and interhemispheric integration after stress exposure. Sci Rep 2020; 10:20804. [PMID: 33257757 PMCID: PMC7705688 DOI: 10.1038/s41598-020-77708-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022] Open
Abstract
Functional hemispheric asymmetries (FHAs) have been thought to be relatively stable over time. However, past research has shown that FHAs are more plastic than initially thought. Endocrinological processes have been demonstrated to alter FHAs. As the product of the stress-activated hypothalamus–pituitary–adrenal axis, cortisol influences information processing at every level from stimulus perception to decision making and action. To investigate the influence of acute stress on FHAs, 60 participants performed a Banich–Belger task, as well as a verbal and an emotional dichotic listening task in two sessions. One session included a stress induction via the Trier Social Stress Test, the other session included a control procedure. We calculated across-field advantages (AFAs) in the Banich–Belger task and lateralization quotients for reaction times and responses per side in both dichotic listening tasks. There were no significant differences between the stress and control session in the dichotic listening tasks. In contrast, there was evidence for an influence of cortisol and sympathetic activation indicated by salivary alpha amylase changes on AFAs in the Banich–Belger task. This indicates that acute stress and the related increase in cortisol do not influence dichotic listening performance. However, stress does seem to affect interhemispheric integration of information. Future research using EEG, fMRI and pharmacological interventions is needed to further characterize the relation of hemispheric asymmetries and acute stress.
Collapse
Affiliation(s)
- Gesa Berretz
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| | - Julian Packheiser
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Oliver T Wolf
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Sebastian Ocklenburg
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.,Department of Psychology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|