1
|
Conway DS, Sullivan AB, Rensel M. Health, Wellness, and the Effect of Comorbidities on the Multiple Sclerosis Disease Course: Tackling the Modifiable. Neurol Clin 2024; 42:229-253. [PMID: 37980117 DOI: 10.1016/j.ncl.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Multiple sclerosis (MS) is a disease of the central nervous system characterized by inflammatory demyelination and neurodegeneration. Numerous disease-modifying therapies for MS exist but are only partially effective, making it essential to optimize all factors that may influence the course of the disease. This includes conscientious management of both mental and physical comorbidities, as well as a comprehensive strategy for promoting wellness in patients with MS. Thoughtful engagement of those living with MS through shared decision making and involvement of a multidisciplinary team that includes primary care, relevant specialists, psychology, and rehabilitation is likely to lead to better outcomes.
Collapse
Affiliation(s)
- Devon S Conway
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Amy B Sullivan
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mary Rensel
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
2
|
Strelnikov D, Alijanpourotaghsara A, Piroska M, Szalontai L, Forgo B, Jokkel Z, Persely A, Hernyes A, Kozak LR, Szabo A, Maurovich-Horvat P, Tarnoki DL, Tarnoki AD. Heritability of Subcortical Grey Matter Structures. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1687. [PMID: 36422226 PMCID: PMC9696305 DOI: 10.3390/medicina58111687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 02/03/2024]
Abstract
Background and Objectives: Subcortical grey matter structures play essential roles in cognitive, affective, social, and motoric functions in humans. Their volume changes with age, and decreased volumes have been linked with many neuropsychiatric disorders. The aim of our study was to examine the heritability of six subcortical brain volumes (the amygdala, caudate nucleus, pallidum, putamen, thalamus, and nucleus accumbens) and four general brain volumes (the total intra-cranial volume and the grey matter, white matter, and cerebrospinal fluid (CSF) volume) in twins. Materials and Methods: A total of 118 healthy adult twins from the Hungarian Twin Registry (86 monozygotic and 32 dizygotic; median age 50 ± 27 years) underwent brain magnetic resonance imaging. Two automated volumetry pipelines, Computational Anatomy Toolbox 12 (CAT12) and volBrain, were used to calculate the subcortical and general brain volumes from three-dimensional T1-weighted images. Age- and sex-adjusted monozygotic and dizygotic intra-pair correlations were calculated, and the univariate ACE model was applied. Pearson's correlation test was used to compare the results obtained by the two pipelines. Results: The age- and sex-adjusted heritability estimates, using CAT12 for the amygdala, caudate nucleus, pallidum, putamen, and nucleus accumbens, were between 0.75 and 0.95. The thalamus volume was more strongly influenced by common environmental factors (C = 0.45-0.73). The heritability estimates, using volBrain, were between 0.69 and 0.92 for the nucleus accumbens, pallidum, putamen, right amygdala, and caudate nucleus. The left amygdala and thalamus were more strongly influenced by common environmental factors (C = 0.72-0.85). A strong correlation between CAT12 and volBrain (r = 0.74-0.94) was obtained for all volumes. Conclusions: The majority of examined subcortical volumes appeared to be strongly heritable. The thalamus was more strongly influenced by common environmental factors when investigated with both segmentation methods. Our results underline the importance of identifying the relevant genes responsible for variations in the subcortical structure volume and associated diseases.
Collapse
Affiliation(s)
- David Strelnikov
- Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary
| | | | - Marton Piroska
- Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary
| | - Laszlo Szalontai
- Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary
| | - Bianka Forgo
- Department of Radiology, Faculty of Medicine and Health, Örebro University, 702 81 Örebro, Sweden
| | - Zsofia Jokkel
- Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary
| | - Alíz Persely
- Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary
| | - Anita Hernyes
- Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary
| | | | - Adam Szabo
- Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary
| | | | | | | |
Collapse
|
3
|
Saeki S, Szabo H, Tomizawa R, Tarnoki AD, Tarnoki DL, Watanabe Y, Honda C. Lobular Difference in Heritability of Brain Atrophy among Elderly Japanese: A Twin Study. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1250. [PMID: 36143927 PMCID: PMC9505910 DOI: 10.3390/medicina58091250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Brain atrophy is related to cognitive decline. However, the heritability of brain atrophy has not been fully investigated in the Eastern Asian population. Materials and Methods: Brain imaging of 74 Japanese twins registered in the Osaka University Twin Registry was conducted with voxel-based morphometry SPM12 and was processed by individual voxel-based morphometry adjusting covariates (iVAC) toolbox. The atrophy of the measured lobes was obtained by comparing the focal volume to the average of healthy subjects. Classical twin analysis was used to measure the heritability of its z-scores. Results: The heritability of brain atrophy ranged from 0.23 to 0.97, depending upon the lobes. When adjusted to age, high heritability was reported in the frontal, frontal-temporal, and parietal lobes, but the heritability in other lobes was lower than 0.70. Conclusions: This study revealed a relatively lower heritability in brain atrophy compared to other ethnicities. This result suggests a significant environmental impact on the susceptibility of brain atrophy the Japanese. Therefore, environmental factors may have more influence on the Japanese than in other populations.
Collapse
Affiliation(s)
- Soichiro Saeki
- Center Hospital of the National Center for Global Health and Medicine, Tokyo 162-8655, Japan
- Department of Global and Innovative Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Helga Szabo
- Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary
| | - Rie Tomizawa
- Center for Twin Research, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- School of Nursing, Graduate School of Nursing, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Adam D. Tarnoki
- Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary
- Center for Twin Research, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - David L. Tarnoki
- Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary
- Center for Twin Research, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yoshiyuki Watanabe
- Department of Radiology, Shiga University of Medical Science, Shiga 520-2192, Japan
| | | | - Chika Honda
- Center for Twin Research, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Department of Public Health Nursing, Shiga University of Medical Science, Shiga 520-2192, Japan
| |
Collapse
|
4
|
Bustamante D, Amstadter AB, Pritikin JN, Brick TR, Neale MC. Associations Between Traumatic Stress, Brain Volumes and Post-traumatic Stress Disorder Symptoms in Children: Data from the ABCD Study. Behav Genet 2022; 52:75-91. [PMID: 34860306 PMCID: PMC8860798 DOI: 10.1007/s10519-021-10092-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 11/07/2021] [Indexed: 11/26/2022]
Abstract
Reduced volumes in brain regions of interest (ROIs), primarily from adult samples, are associated with posttraumatic stress disorder (PTSD). We extended this work to children using data from the Adolescent Brain Cognitive Development (ABCD) Study® (N = 11,848; Mage = 9.92). Structural equation modeling and an elastic-net (EN) machine-learning approach were used to identify potential effects of traumatic events (TEs) on PTSD symptoms (PTSDsx) directly, and indirectly via the volumes 300 subcortical and cortical ROIs. We then estimated the genetic and environmental variation in the phenotypes. TEs were directly associated with PTSDsx (r = 0.92) in children, but their indirect effects (r < 0.0004)-via the volumes of EN-identified subcortical and cortical ROIs-were negligible at this age. Additive genetic factors explained a modest proportion of the variance in TEs (23.4%) and PTSDsx (21.3%), and accounted for most of the variance of EN-identified volumes of four of the five subcortical (52.4-61.8%) three of the nine cortical ROIs (46.4-53.3%) and cerebral white matter in the left hemisphere (57.4%). Environmental factors explained most of the variance in TEs (C = 61.6%, E = 15.1%), PTSDsx (residual-C = 18.4%, residual-E = 21.8%), right lateral ventricle (C = 15.2%, E = 43.1%) and six of the nine EN-identified cortical ROIs (C = 4.0-13.6%, E = 56.7-74.8%). There is negligible evidence that the volumes of brain ROIs are associated with the indirect effects of TEs on PTSDsx at this age. Overall, environmental factors accounted for more of the variation in TEs and PTSDsx. Whereas additive genetic factors accounted for most of the variability in the volumes of a minority of cortical and in most of subcortical ROIs.
Collapse
Affiliation(s)
- Daniel Bustamante
- Virginia Institute for Psychiatric and Behavioral Genetics, 800 E Leigh Street, Biotech One, Box 980126, Richmond, VA, 23298, USA.
- Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, VA, USA.
| | - Ananda B Amstadter
- Virginia Institute for Psychiatric and Behavioral Genetics, 800 E Leigh Street, Biotech One, Box 980126, Richmond, VA, 23298, USA
- Department of Psychiatry, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Joshua N Pritikin
- Virginia Institute for Psychiatric and Behavioral Genetics, 800 E Leigh Street, Biotech One, Box 980126, Richmond, VA, 23298, USA
- Department of Psychiatry, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Timothy R Brick
- Department of Human Development and Family Studies, and Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Michael C Neale
- Virginia Institute for Psychiatric and Behavioral Genetics, 800 E Leigh Street, Biotech One, Box 980126, Richmond, VA, 23298, USA
- Department of Psychiatry, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|