1
|
de Melo AB, Landeira-Fernandez J, Krahe TE. Women show enhanced proprioceptive target estimation through visual-proprioceptive conflict resolution. Front Psychol 2024; 15:1462934. [PMID: 39737242 PMCID: PMC11684459 DOI: 10.3389/fpsyg.2024.1462934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/20/2024] [Indexed: 01/01/2025] Open
Abstract
To form a unified and coherent perception of the organism's state and its relationship with the surrounding environment, the nervous system combines information from various sensory modalities through multisensory integration processes. Occasionally, data from two or more sensory channels may provide conflicting information. This is particularly evident in experiments using the mirror-guided drawing task and the mirror-box illusion, where there is conflict between positional estimates guided by vision and proprioception. This study combined two experimental protocols (the mirror-box and the mirror-guided drawing tasks) to examine whether the learned resolution of visuo-proprioceptive conflicts in the mirror-guided drawing task would improve proprioceptive target estimation of men and women during the mirror-box test. Our results confirm previous findings of visual reaching bias produced by the mirror-box illusion and show that this effect is progressively reduced by improvement in the mirror drawing task performance. However, this was only observed in women. We discuss these findings in the context of possible gender differences in multisensory integration processes as well as in embodiment.
Collapse
Affiliation(s)
| | | | - Thomas Eichenberg Krahe
- Departamento de Psicologia, Laboratório de Neurociência do Comportamento, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Rosenthal IA, Bashford L, Bjånes D, Pejsa K, Lee B, Liu C, Andersen RA. Visual context affects the perceived timing of tactile sensations elicited through intra-cortical microstimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593529. [PMID: 38798438 PMCID: PMC11118490 DOI: 10.1101/2024.05.13.593529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Intra-cortical microstimulation (ICMS) is a technique to provide tactile sensations for a somatosensory brain-machine interface (BMI). A viable BMI must function within the rich, multisensory environment of the real world, but how ICMS is integrated with other sensory modalities is poorly understood. To investigate how ICMS percepts are integrated with visual information, ICMS and visual stimuli were delivered at varying times relative to one another. Both visual context and ICMS current amplitude were found to bias the qualitative experience of ICMS. In two tetraplegic participants, ICMS and visual stimuli were more likely to be experienced as occurring simultaneously when visual stimuli were more realistic, demonstrating an effect of visual context on the temporal binding window. The peak of the temporal binding window varied but was consistently offset from zero, suggesting that multisensory integration with ICMS can suffer from temporal misalignment. Recordings from primary somatosensory cortex (S1) during catch trials where visual stimuli were delivered without ICMS demonstrated that S1 represents visual information related to ICMS across visual contexts.
Collapse
Affiliation(s)
- Isabelle A Rosenthal
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- T&C Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA
- Lead Contact
| | - Luke Bashford
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- T&C Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA
- Biosciences Institute, Newcastle University, UK
| | - David Bjånes
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- T&C Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kelsie Pejsa
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- T&C Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Brian Lee
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Charles Liu
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
- Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242, USA
| | - Richard A Andersen
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- T&C Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
3
|
Pinardi M, Longo MR, Formica D, Strbac M, Mehring C, Burdet E, Di Pino G. Impact of supplementary sensory feedback on the control and embodiment in human movement augmentation. COMMUNICATIONS ENGINEERING 2023; 2:64. [PMCID: PMC10955865 DOI: 10.1038/s44172-023-00111-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/23/2023] [Indexed: 01/28/2025]
Abstract
In human movement augmentation, the number of controlled degrees of freedom could be enhanced by the simultaneous and independent use of supernumerary robotic limbs (SRL) and natural ones. However, this poses several challenges, that could be mitigated by encoding and relaying the SRL status. Here, we review the impact of supplementary sensory feedback on the control and embodiment of SRLs. We classify the main feedback features and analyse how they improve control performance. We report the feasibility of pushing body representation beyond natural human morphology and suggest that gradual SRL embodiment could make multisensory incongruencies less disruptive. We also highlight shared computational bases between SRL motor control and embodiment and suggest contextualizing them within the same theoretical framework. Finally, we argue that a shift towards long term experimental paradigms is necessary for successfully integrating motor control and embodiment. Supernumerary robotic limbs are robotic devices providing additional limbs to the user. Mattia Pinardi and colleagues review the impact of supplementary sensory feedback on the control performance and embodiment of supernumerary robotic limbs.
Collapse
Affiliation(s)
- Mattia Pinardi
- NEXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Matthew R. Longo
- Department of Psychological Sciences, Birkbeck, University of London, London, UK
| | - Domenico Formica
- NEXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Matija Strbac
- Tecnalia Serbia Ltd, Belgrade, Serbia. University of Belgrade-School of Electrical Engineering, Belgrade, Serbia
| | - Carsten Mehring
- Bernstein Center and Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Etienne Burdet
- Department of Bioengineering, Imperial College of Science, Technology and Medicine, London, UK
| | - Giovanni Di Pino
- NEXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
4
|
Pinardi M, Di Stefano N, Di Pino G, Spence C. Exploring crossmodal correspondences for future research in human movement augmentation. Front Psychol 2023; 14:1190103. [PMID: 37397340 PMCID: PMC10308310 DOI: 10.3389/fpsyg.2023.1190103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
"Crossmodal correspondences" are the consistent mappings between perceptual dimensions or stimuli from different sensory domains, which have been widely observed in the general population and investigated by experimental psychologists in recent years. At the same time, the emerging field of human movement augmentation (i.e., the enhancement of an individual's motor abilities by means of artificial devices) has been struggling with the question of how to relay supplementary information concerning the state of the artificial device and its interaction with the environment to the user, which may help the latter to control the device more effectively. To date, this challenge has not been explicitly addressed by capitalizing on our emerging knowledge concerning crossmodal correspondences, despite these being tightly related to multisensory integration. In this perspective paper, we introduce some of the latest research findings on the crossmodal correspondences and their potential role in human augmentation. We then consider three ways in which the former might impact the latter, and the feasibility of this process. First, crossmodal correspondences, given the documented effect on attentional processing, might facilitate the integration of device status information (e.g., concerning position) coming from different sensory modalities (e.g., haptic and visual), thus increasing their usefulness for motor control and embodiment. Second, by capitalizing on their widespread and seemingly spontaneous nature, crossmodal correspondences might be exploited to reduce the cognitive burden caused by additional sensory inputs and the time required for the human brain to adapt the representation of the body to the presence of the artificial device. Third, to accomplish the first two points, the benefits of crossmodal correspondences should be maintained even after sensory substitution, a strategy commonly used when implementing supplementary feedback.
Collapse
Affiliation(s)
- Mattia Pinardi
- NeXT Lab, Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Nicola Di Stefano
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Giovanni Di Pino
- NeXT Lab, Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Charles Spence
- Crossmodal Research Laboratory, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Rosenthal IA, Bashford L, Kellis S, Pejsa K, Lee B, Liu C, Andersen RA. S1 represents multisensory contexts and somatotopic locations within and outside the bounds of the cortical homunculus. Cell Rep 2023; 42:112312. [PMID: 37002922 PMCID: PMC10544688 DOI: 10.1016/j.celrep.2023.112312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/06/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Recent literature suggests that tactile events are represented in the primary somatosensory cortex (S1) beyond its long-established topography; in addition, the extent to which S1 is modulated by vision remains unclear. To better characterize S1, human electrophysiological data were recorded during touches to the forearm or finger. Conditions included visually observed physical touches, physical touches without vision, and visual touches without physical contact. Two major findings emerge from this dataset. First, vision strongly modulates S1 area 1, but only if there is a physical element to the touch, suggesting that passive touch observation is insufficient to elicit neural responses. Second, despite recording in a putative arm area of S1, neural activity represents both arm and finger stimuli during physical touches. Arm touches are encoded more strongly and specifically, supporting the idea that S1 encodes tactile events primarily through its topographic organization but also more generally, encompassing other areas of the body.
Collapse
Affiliation(s)
- Isabelle A Rosenthal
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; T&C Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Luke Bashford
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; T&C Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Spencer Kellis
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; T&C Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA; Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Kelsie Pejsa
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; T&C Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Brian Lee
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Charles Liu
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242, USA
| | - Richard A Andersen
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; T&C Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
6
|
Cregg JM, Mirdamadi JL, Fortunato C, Okorokova EV, Kuper C, Nayeem R, Byun AJ, Avraham C, Buonocore A, Winner TS, Mildren RL. Highlights from the 31st Annual Meeting of the Society for the Neural Control of Movement. J Neurophysiol 2023; 129:220-234. [PMID: 36541602 PMCID: PMC9844973 DOI: 10.1152/jn.00500.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jared M Cregg
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jasmine L Mirdamadi
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Cátia Fortunato
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | | | - Clara Kuper
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rashida Nayeem
- Department of Electrical Engineering, Northeastern University, Boston, Massachusetts
| | - Andrew J Byun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Chen Avraham
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Antimo Buonocore
- Werner Reichardt Centre for Integrative Neuroscience, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Educational, Psychological and Communication Sciences, Suor Orsola Benincasa University, Naples, Italy
| | - Taniel S Winner
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia
| | - Robyn L Mildren
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
7
|
Chauhan ISJ, Cole JD, Berthoz A, Sarlegna FR. Dissociation between dreams and wakefulness: Insights from body and action representations of rare individuals with massive somatosensory deafferentation. Conscious Cogn 2022; 106:103415. [PMID: 36252519 DOI: 10.1016/j.concog.2022.103415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 06/27/2022] [Accepted: 09/17/2022] [Indexed: 01/27/2023]
Abstract
The realism of body and actions in dreams is thought to be induced by simulations based on internal representations used during wakefulness. As somatosensory signals contribute to the updating of body and action representations, these are impaired when somatosensory signals are lacking. Here, we tested the hypothesis that individuals with somatosensory deafferentation have impaired body and actions in their dreams, as in wakefulness. We questioned three individuals with a severe, acquired sensory neuropathy on their dreams. While deafferented participants were impaired in daily life, they could dream of themselves as able-bodied, with some sensations (touch, proprioception) and actions (such as running or jumping) which had not been experienced in physical life since deafferentation. We speculate that simulation in dreams could be based on former, "healthy" body and action representations. Our findings are consistent with the idea that distinct body and action representations may be used during dreams and wakefulness.
Collapse
Affiliation(s)
- Ishan-Singh J Chauhan
- Aix Marseille Univ, CNRS, ISM, Marseille, France; Université Paris Nanterre, Nanterre, France.
| | - Jonathan D Cole
- Centre of Postgraduate Research and Education, Bournemouth University, Bournemouth, UK
| | | | | |
Collapse
|
8
|
Weber B, Proske U. Limb position sense and sensorimotor performance under conditions of weightlessness. LIFE SCIENCES IN SPACE RESEARCH 2022; 32:63-69. [PMID: 35065762 DOI: 10.1016/j.lssr.2021.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
This is a review of the current state of knowledge of the effects of weightlessness on human proprioception. Two aspects have been highlighted: the sense of limb position and performance in sensorimotor tasks. For the sense of position, an important consideration is that there probably exists more than one sense: one measured in a blindfolded, two-limb position matching task, the other, by pointing to the perceived position of a hidden limb. There is evidence that these two senses are supported by distinct central projection pathways. When assessing the effects of weightlessness this must be considered. Whether there is a role for vestibular influences on position sense during changes in gravitational forces is an issue for future experiments. A consideration that has proved helpful for the study of sensorimotor tasks under conditions of weightlessness is to examine the performance of subjects who have lost their proprioceptive senses, either congenitally, or later in life, as a result of disease. In weightlessness, normal subjects appear to have particular difficulties with feedback-controlled tasks. A major factor is the influence of vision on performance. In addition, the stress of working in a weightless environment leads to additional cognitive load, making the execution of even simple everyday tasks difficult.
Collapse
Affiliation(s)
- Bernhard Weber
- Institute of Robotics and Mechatronics, German Aerospace Center, Oberpfaffenhofen, 82234 Wessling, Germany.
| | - Uwe Proske
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|