1
|
Orti R, Coello Y, Ruotolo F, Vincent M, Bartolo A, Iachini T, Ruggiero G. Cortical Correlates of Visuospatial Switching Processes Between Egocentric and Allocentric Frames of Reference: A fNIRS Study. Brain Topogr 2024; 37:712-730. [PMID: 38315347 PMCID: PMC11393019 DOI: 10.1007/s10548-023-01032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
Human beings represent spatial information according to egocentric (body-to-object) and allocentric (object-to-object) frames of reference. In everyday life, we constantly switch from one frame of reference to another in order to react effectively to the specific needs of the environment and task demands. However, to the best of our knowledge, no study to date has investigated the cortical activity of switching and non-switching processes between egocentric and allocentric spatial encodings. To this aim, a custom-designed visuo-spatial memory task was administered and the cortical activities underlying switching vs non-switching spatial processes were investigated. Changes in concentrations of oxygenated and deoxygenated haemoglobin were measured using functional near-infrared spectroscopy (fNIRS). Participants were asked to memorize triads of geometric objects and then make two consecutive judgments about the same triad. In the non-switching condition, both spatial judgments considered the same frame of reference: only egocentric or only allocentric. In the switching condition, if the first judgment was egocentric, the second one was allocentric (or vice versa). The results showed a generalized activation of the frontal regions during the switching compared to the non-switching condition. Additionally, increased cortical activity was found in the temporo-parietal junction during the switching condition compared to the non-switching condition. Overall, these results illustrate the cortical activity underlying the processing of switching between body position and environmental stimuli, showing an important role of the temporo-parietal junction and frontal regions in the preparation and switching between egocentric and allocentric reference frames.
Collapse
Affiliation(s)
- Renato Orti
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania L. Vanvitelli, Viale Ellittico, 31, 81100, Caserta, Italy
| | - Yann Coello
- UMR 9193, SCALab, Sciences Cognitives et Sciences Affectives, Université de Lille, 59000, Lille, France
| | - Francesco Ruotolo
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania L. Vanvitelli, Viale Ellittico, 31, 81100, Caserta, Italy
| | - Marion Vincent
- UMR 9193, SCALab, Sciences Cognitives et Sciences Affectives, Université de Lille, 59000, Lille, France
| | - Angela Bartolo
- UMR 9193, SCALab, Sciences Cognitives et Sciences Affectives, Université de Lille, 59000, Lille, France
| | - Tina Iachini
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania L. Vanvitelli, Viale Ellittico, 31, 81100, Caserta, Italy
| | - Gennaro Ruggiero
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania L. Vanvitelli, Viale Ellittico, 31, 81100, Caserta, Italy.
| |
Collapse
|
2
|
Piramide N, De Micco R, Di Nardo F, Caiazzo G, Siciliano M, Cirillo M, Russo A, Tedeschi G, Esposito F, Tessitore A. Altered domain-specific striatal functional connectivity in patients with Parkinson's disease and urinary symptoms. J Neural Transm (Vienna) 2024; 131:917-929. [PMID: 38661818 PMCID: PMC11343795 DOI: 10.1007/s00702-024-02776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND In this study, we aimed at investigating the possible association of urinary symptoms with whole-brain MRI resting-state functional connectivity (FC) alterations from distinct striatal subregions in a large cohort of early PD patients. METHODS Seventy-nine drug-naive PD patients (45 PD-urinary+/34 PD-urinary-) and 38 healthy controls (HCs) were consecutively enrolled. Presence/absence of urinary symptoms were assessed by means of the Nonmotor Symptom Scale - domain 7. Using an a priori connectivity-based domain-specific parcellation, we defined three ROIs (per each hemisphere) for different striatal functional subregions (sensorimotor, limbic and cognitive) from which seed-based FC voxel-wise analyses were conducted over the whole brain. RESULTS Compared to PD-urinary-, PD-urinary+ patients showed increased FC between striatal regions and motor and premotor/supplementary motor areas as well as insula/anterior dorsolateral PFC. Compared to HC, PD-urinary+ patients presented decreased FC between striatal regions and parietal, insular and cingulate cortices. CONCLUSIONS Our findings revealed a specific pattern of striatal FC alteration in PD patients with urinary symptoms, potentially associated to altered stimuli perception and sensorimotor integration even in the early stages. These results may potentially help clinicians to design more effective and tailored rehabilitation and neuromodulation protocols for PD patients.
Collapse
Affiliation(s)
- Noemi Piramide
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Rosa De Micco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Federica Di Nardo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Giuseppina Caiazzo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Mattia Siciliano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
- Neuropsychology Laboratory, Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Antonio Russo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Alessandro Tessitore
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy.
| |
Collapse
|
3
|
Musa L, Yan X, Crawford JD. Instruction alters the influence of allocentric landmarks in a reach task. J Vis 2024; 24:17. [PMID: 39073800 PMCID: PMC11290568 DOI: 10.1167/jov.24.7.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/06/2024] [Indexed: 07/30/2024] Open
Abstract
Allocentric landmarks have an implicit influence on aiming movements, but it is not clear how an explicit instruction (to aim relative to a landmark) influences reach accuracy and precision. Here, 12 participants performed a task with two instruction conditions (egocentric vs. allocentric) but with similar sensory and motor conditions. Participants fixated gaze near the center of a display aligned with their right shoulder while a target stimulus briefly appeared alongside a visual landmark in one visual field. After a brief mask/memory delay the landmark then reappeared at a different location (same or opposite visual field), creating an ego/allocentric conflict. In the egocentric condition, participants were instructed to ignore the landmark and point toward the remembered location of the target. In the allocentric condition, participants were instructed to remember the initial target location relative to the landmark and then reach relative to the shifted landmark (same or opposite visual field). To equalize motor execution between tasks, participants were instructed to anti-point (point to the visual field opposite to the remembered target) on 50% of the egocentric trials. Participants were more accurate and precise and quicker to react in the allocentric condition, especially when pointing to the opposite field. We also observed a visual field effect, where performance was worse overall in the right visual field. These results suggest that, when egocentric and allocentric cues conflict, explicit use of the visual landmark provides better reach performance than reliance on noisy egocentric signals. Such instructions might aid rehabilitation when the egocentric system is compromised by disease or injury.
Collapse
Affiliation(s)
- Lina Musa
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
- Department of Psychology, York University, Toronto, ON, Canada
| | - Xiaogang Yan
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
| | - J Douglas Crawford
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
- Department of Psychology, York University, Toronto, ON, Canada
- Departments of Biology and Kinesiology & Health Sciences, York University, Toronto, ON, Canada
| |
Collapse
|
4
|
Coutinho BDMC, Pariz CG, Krahe TE, Mograbi DC. Are you how you eat? Aspects of self-awareness in eating disorders. PERSONALITY NEUROSCIENCE 2024; 7:e9. [PMID: 38826820 PMCID: PMC11140494 DOI: 10.1017/pen.2024.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/15/2024] [Accepted: 04/13/2024] [Indexed: 06/04/2024]
Abstract
Eating disorders (ED) are severe psychiatric disorders characterized by dysfunctional behaviors related to eating or weight control, with profound impacts on health, quality of life, and the financial burden of affected individuals and society at large. Given that these disorders involve disturbances in self-perception, it is crucial to comprehend the role of self-awareness in their prevalence and maintenance. This literature review presents different self-awareness processes, discussing their functioning across different levels of complexity. By deconstructing this concept, we can gain a better understanding of how each facet of self and personality relates to the symptoms of these disorders. Understanding the absence or impairment of self-awareness in ED holds significant implications for diagnosis, treatment, and overall management. By recognizing and comprehending the characteristics of self-awareness, clinicians can develop tailored interventions and evidence-based treatments for individuals with ED. Furthermore, this narrative review underscores the importance of considering temperament and personality factors in the context of ED, as temperament traits and personality characteristics may interact with self-awareness processes, influencing the development and maintenance of ED. Ultimately, the results highlight the pressing need for further research on the development of effective interventions and support strategies grounded in the aspects of self-awareness mechanisms for individuals affected by these disorders.
Collapse
Affiliation(s)
- Bruna de Moura Cortes Coutinho
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro. Rua Marquês de São Vicente 225 Gávea, Rio de Janeiro, RJ CEP 22451-900, Brazil
| | - Caio Gomes Pariz
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro. Rua Marquês de São Vicente 225 Gávea, Rio de Janeiro, RJ CEP 22451-900, Brazil
| | - Thomas E. Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro. Rua Marquês de São Vicente 225 Gávea, Rio de Janeiro, RJ CEP 22451-900, Brazil
| | - Daniel C. Mograbi
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro. Rua Marquês de São Vicente 225 Gávea, Rio de Janeiro, RJ CEP 22451-900, Brazil
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, Psychology & Neuroscience, KCL, PO Box 078, De Crespigny Park, SE5 8AF, London, UK
| |
Collapse
|
5
|
Taghizadeh B, Fortmann O, Gail A. Position- and scale-invariant object-centered spatial localization in monkey frontoparietal cortex dynamically adapts to cognitive demand. Nat Commun 2024; 15:3357. [PMID: 38637493 PMCID: PMC11026390 DOI: 10.1038/s41467-024-47554-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
Egocentric encoding is a well-known property of brain areas along the dorsal pathway. Different to previous experiments, which typically only demanded egocentric spatial processing during movement preparation, we designed a task where two male rhesus monkeys memorized an on-the-object target position and then planned a reach to this position after the object re-occurred at variable location with potentially different size. We found allocentric (in addition to egocentric) encoding in the dorsal stream reach planning areas, parietal reach region and dorsal premotor cortex, which is invariant with respect to the position, and, remarkably, also the size of the object. The dynamic adjustment from predominantly allocentric encoding during visual memory to predominantly egocentric during reach planning in the same brain areas and often the same neurons, suggests that the prevailing frame of reference is less a question of brain area or processing stream, but more of the cognitive demands.
Collapse
Affiliation(s)
- Bahareh Taghizadeh
- Sensorimotor Group, German Primate Center, Göttingen, Germany
- School of Cognitive Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran
| | - Ole Fortmann
- Sensorimotor Group, German Primate Center, Göttingen, Germany
- Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany
| | - Alexander Gail
- Sensorimotor Group, German Primate Center, Göttingen, Germany.
- Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany.
- Bernstein Center for Computational Neuroscience, Göttingen, Germany.
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany.
| |
Collapse
|
6
|
Fairchild GT, Holler DE, Fabbri S, Gomez MA, Walsh-Snow JC. Naturalistic Object Representations Depend on Distance and Size Cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.16.585308. [PMID: 38559105 PMCID: PMC10980039 DOI: 10.1101/2024.03.16.585308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Egocentric distance and real-world size are important cues for object perception and action. Nevertheless, most studies of human vision rely on two-dimensional pictorial stimuli that convey ambiguous distance and size information. Here, we use fMRI to test whether pictures are represented differently in the human brain from real, tangible objects that convey unambiguous distance and size cues. Participants directly viewed stimuli in two display formats (real objects and matched printed pictures of those objects) presented at different egocentric distances (near and far). We measured the effects of format and distance on fMRI response amplitudes and response patterns. We found that fMRI response amplitudes in the lateral occipital and posterior parietal cortices were stronger overall for real objects than for pictures. In these areas and many others, including regions involved in action guidance, responses to real objects were stronger for near vs. far stimuli, whereas distance had little effect on responses to pictures-suggesting that distance determines relevance to action for real objects, but not for pictures. Although stimulus distance especially influenced response patterns in dorsal areas that operate in the service of visually guided action, distance also modulated representations in ventral cortex, where object responses are thought to remain invariant across contextual changes. We observed object size representations for both stimulus formats in ventral cortex but predominantly only for real objects in dorsal cortex. Together, these results demonstrate that whether brain responses reflect physical object characteristics depends on whether the experimental stimuli convey unambiguous information about those characteristics. Significance Statement Classic frameworks of vision attribute perception of inherent object characteristics, such as size, to the ventral visual pathway, and processing of spatial characteristics relevant to action, such as distance, to the dorsal visual pathway. However, these frameworks are based on studies that used projected images of objects whose actual size and distance from the observer were ambiguous. Here, we find that when object size and distance information in the stimulus is less ambiguous, these characteristics are widely represented in both visual pathways. Our results provide valuable new insights into the brain representations of objects and their various physical attributes in the context of naturalistic vision.
Collapse
|
7
|
Ruggiero G, Ruotolo F, Nunziata S, Abagnale S, Iachini T, Bartolo A. Spatial representations of objects used away and towards the body: The effect of near and far space. Q J Exp Psychol (Hove) 2024:17470218241235161. [PMID: 38356182 DOI: 10.1177/17470218241235161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
An action with an object can be accomplished only if we encode the position of the object with respect to our body (i.e., egocentrically) and/or to another element in the environment (i.e., allocentrically). However, some actions with the objects are directed towards our body, such as brushing our teeth, and others away from the body, such as writing. Objects can be near the body, that is within arm reaching, or far from the body, that is outside arm reaching. The aim of this study was to verify if the direction of use of the objects influences the way we represent their position in both near and far space. Objects typically used towards (TB) or away from the body (AB) were presented in near or far space and participants had to judge whether an object was closer to them (i.e., egocentric judgement) or closer to another object (i.e., allocentric judgement). Results showed that egocentric judgements on TB objects were more accurate in near than in far space. Moreover, allocentric judgements on AB objects were less accurate than egocentric judgements in near space but not in far space. These results are discussed with respect to the different roles that visuo-motor and visuo-spatial mechanisms play in near space and far space, respectively.
Collapse
Affiliation(s)
- Gennaro Ruggiero
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Francesco Ruotolo
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Scila Nunziata
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Univ. Lille, CNRS, UMR 9193-SCALab-Sciences Cognitives et Sciences Affectives, Lille, France
| | - Simona Abagnale
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Univ. Lille, CNRS, UMR 9193-SCALab-Sciences Cognitives et Sciences Affectives, Lille, France
| | - Tina Iachini
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Angela Bartolo
- Univ. Lille, CNRS, UMR 9193-SCALab-Sciences Cognitives et Sciences Affectives, Lille, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
8
|
Saj A, Honoré J, Borel L. Ego- and Geo-Centered References: A Functional Neuroimagery Study. Eur Neurol 2024; 87:36-42. [PMID: 38228099 DOI: 10.1159/000535725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/30/2023] [Indexed: 01/18/2024]
Abstract
INTRODUCTION The integration of vestibular, visual, and somatosensory cues allows the perception of space through the orientation of our body and surrounding objects with respect to gravity. The main goal of this study was to identify the cortical networks recruited during the representation of body midline and the representation of verticality. METHODS Thirty right-handed healthy participants were evaluated using fMRI. Brain networks activated during a subjective straight-ahead (SSA) task were compared to those recruited during a subjective vertical (SV) task. RESULTS Different patterns of cortical activation were observed, with differential increases in the angular gyrus and left cerebellum posterior lobe during the SSA task, in right rolandic operculum and cerebellum anterior lobe during the SV task. DISCUSSION The activation of these areas involved in visuo-spatial functions suggests that bodily processes of great complexity are engaged in body representation and vertical perception. Interestingly, the common brain networks involved in SSA and SV tasks were comprised of areas of vestibular projection that receive multisensory information (parieto-occipital areas) and the cerebellum, and reveal a predominance of the right cerebral and cerebellar hemispheres. The outcomes of this first fMRI study designed to unmask common and specific neural mechanisms at work in gravity- or body-referenced tasks pave a new way for the exploration of spatial cognitive impairment in patients with vestibular or cortical disorders.
Collapse
Affiliation(s)
- Arnaud Saj
- Neuropsychology Unit, Neurology Department, University Hospital of Geneva, Geneva, Switzerland
- Department of Psychology, University of Montréal, Montréal, Québec, Canada
- CRIR/Institut Nazareth et Louis-Braille du CISSS de la Montérégie-Centre, Longueuil, Québec, Canada
| | - Jacques Honoré
- SCALab, UMR 9193, University of Lille, CNRS, Lille, France
| | - Liliane Borel
- LNC, Aix-Marseille University, CNRS, Marseille, France
| |
Collapse
|
9
|
Song L, Wang P, Li H, Weiss PH, Fink GR, Zhou X, Chen Q. Increased functional connectivity between the auditory cortex and the frontoparietal network compensates for impaired visuomotor transformation after early auditory deprivation. Cereb Cortex 2023; 33:11126-11145. [PMID: 37814363 DOI: 10.1093/cercor/bhad351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2023] Open
Abstract
Early auditory deprivation leads to a reorganization of large-scale brain networks involving and extending beyond the auditory system. It has been documented that visuomotor transformation is impaired after early deafness, associated with a hyper-crosstalk between the task-critical frontoparietal network and the default-mode network. However, it remains unknown whether and how the reorganized large-scale brain networks involving the auditory cortex contribute to impaired visuomotor transformation after early deafness. Here, we asked deaf and early hard of hearing participants and normal hearing controls to judge the spatial location of a visual target. Compared with normal hearing controls, the superior temporal gyrus showed significantly increased functional connectivity with the frontoparietal network and the default-mode network in deaf and early hard of hearing participants, specifically during egocentric judgments. However, increased superior temporal gyrus-frontoparietal network and superior temporal gyrus-default-mode network coupling showed antagonistic effects on egocentric judgments. In deaf and early hard of hearing participants, increased superior temporal gyrus-frontoparietal network connectivity was associated with improved egocentric judgments, whereas increased superior temporal gyrus-default-mode network connectivity was associated with deteriorated performance in the egocentric task. Therefore, the data suggest that the auditory cortex exhibits compensatory neuroplasticity (i.e. increased functional connectivity with the task-critical frontoparietal network) to mitigate impaired visuomotor transformation after early auditory deprivation.
Collapse
Affiliation(s)
- Li Song
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Pengfei Wang
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Hui Li
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Peter H Weiss
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Wilhelm-Johnen-Strasse, Jülich 52428, Germany
- Department of Neurology, University Hospital Cologne, Cologne University, Cologne 509737, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Wilhelm-Johnen-Strasse, Jülich 52428, Germany
- Department of Neurology, University Hospital Cologne, Cologne University, Cologne 509737, Germany
| | - Xiaolin Zhou
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Qi Chen
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou 510631, China
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Wilhelm-Johnen-Strasse, Jülich 52428, Germany
| |
Collapse
|
10
|
Moraresku S, Hammer J, Janca R, Jezdik P, Kalina A, Marusic P, Vlcek K. Timing of Allocentric and Egocentric Spatial Processing in Human Intracranial EEG. Brain Topogr 2023; 36:870-889. [PMID: 37474691 PMCID: PMC10522529 DOI: 10.1007/s10548-023-00989-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Spatial reference frames (RFs) play a key role in spatial cognition, especially in perception, spatial memory, and navigation. There are two main types of RFs: egocentric (self-centered) and allocentric (object-centered). Although many fMRI studies examined the neural correlates of egocentric and allocentric RFs, they could not sample the fast temporal dynamics of the underlying cognitive processes. Therefore, the interaction and timing between these two RFs remain unclear. Taking advantage of the high temporal resolution of intracranial EEG (iEEG), we aimed to determine the timing of egocentric and allocentric information processing and describe the brain areas involved. We recorded iEEG and analyzed broad gamma activity (50-150 Hz) in 37 epilepsy patients performing a spatial judgment task in a three-dimensional circular virtual arena. We found overlapping activation for egocentric and allocentric RFs in many brain regions, with several additional egocentric- and allocentric-selective areas. In contrast to the egocentric responses, the allocentric responses peaked later than the control ones in frontal regions with overlapping selectivity. Also, across several egocentric or allocentric selective areas, the egocentric selectivity appeared earlier than the allocentric one. We identified the maximum number of egocentric-selective channels in the medial occipito-temporal region and allocentric-selective channels around the intraparietal sulcus in the parietal cortex. Our findings favor the hypothesis that egocentric spatial coding is a more primary process, and allocentric representations may be derived from egocentric ones. They also broaden the dominant view of the dorsal and ventral streams supporting egocentric and allocentric space coding, respectively.
Collapse
Affiliation(s)
- Sofiia Moraresku
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czechia.
- Third Faculty of Medicine, Charles University, Prague, Czechia.
| | - Jiri Hammer
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Radek Janca
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Petr Jezdik
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Adam Kalina
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Petr Marusic
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Kamil Vlcek
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czechia.
| |
Collapse
|
11
|
Mathieu B, Abillama A, Moré S, Mercier C, Simoneau M, Danna J, Mouchnino L, Blouin J. Seeing our hand or a tool during visually-guided actions: Different effects on the somatosensory and visual cortices. Neuropsychologia 2023; 185:108582. [PMID: 37121267 DOI: 10.1016/j.neuropsychologia.2023.108582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/11/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The processing of proprioceptive information in the context of a conflict between visual and somatosensory feedbacks deteriorates motor performance. Previous studies have shown that seeing one's hand increases the weighting assigned to arm somatosensory inputs. In this light, we hypothesized that the sensory conflict, when tracing the contour of a shape with mirror-reversed vision, will be greater for participants who trace with a stylus seen in their hand (Hand group, n = 17) than for participants who trace with the tip of rod without seen their hand (Tool group, n = 15). Based on this hypothesis, we predicted that the tracing performance with mirror vision will be more deteriorated for the Hand group than for the Tool group, and we predicted a greater gating of somatosensory information for the Hand group to reduce the sensory conflict. The participants of both groups followed the outline of a shape in two visual conditions. Direct vision: the participants saw the hand or portion of a light 40 cm rod directly. Mirror Vision: the hand or the rod was seen through a mirror. We measured tracing performance using a digitizing tablet and the cortical activity with electroencephalography. Behavioral analyses revealed that the tracing performance of both groups was similarly impaired by mirror vision. However, contrasting the spectral content of the cortical oscillatory activity between the Mirror and Direct conditions, we observed that tracing with mirror vision resulted in significantly larger alpha (8-12 Hz) and beta (15-25 Hz) powers in the somatosensory cortex for participants of the Hand group. The somatosensory alpha and beta powers did not significantly differ between Mirror and Direct vision conditions for the Tool group. For both groups, tracing with mirror vision altered the activity of the visual cortex: decreased alpha power for the Hand group, decreased alpha and beta power for the Tool group. Overall, these results suggest that seeing the hand enhanced the sensory conflict when tracing with mirror vision and that the increase of alpha and beta powers in the somatosensory cortex served to reduce the weight assigned to somatosensory information. The increased activity of the visual cortex observed for both groups in the mirror vision condition suggests greater visual processing with increased task difficulty. Finally, the fact that the participants of the Tool group did not show better tracing performance than those of the Hand group suggests that tracing deterioration resulted from a sensorimotor conflict (as opposed to a visuo-proprioceptive conflict).
Collapse
Affiliation(s)
- Benjamin Mathieu
- Laboratoire de Neurosciences Cognitives (LNC), Aix-Marseille Université/ CNRS, Marseille, France.
| | - Antonin Abillama
- Laboratoire de Neurosciences Cognitives (LNC), Aix-Marseille Université/ CNRS, Marseille, France.
| | - Simon Moré
- Laboratoire de Neurosciences Cognitives (LNC), Aix-Marseille Université/ CNRS, Marseille, France
| | - Catherine Mercier
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (CIRRIS) Du CIUSSS de La Capitale-Nationale, Québec, Québec, Canada; Faculté de Médecine, Université Laval, Québec, Canada
| | - Martin Simoneau
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (CIRRIS) Du CIUSSS de La Capitale-Nationale, Québec, Québec, Canada; Faculté de Médecine, Université Laval, Québec, Canada
| | - Jérémy Danna
- Laboratoire de Neurosciences Cognitives (LNC), Aix-Marseille Université/ CNRS, Marseille, France
| | - Laurence Mouchnino
- Laboratoire de Neurosciences Cognitives (LNC), Aix-Marseille Université/ CNRS, Marseille, France; Institut Universitaire de France (IUF), Paris, France
| | - Jean Blouin
- Laboratoire de Neurosciences Cognitives (LNC), Aix-Marseille Université/ CNRS, Marseille, France
| |
Collapse
|
12
|
Davide E, Jenifer M, Alessia T, Alberto M, Monica G. Young children can use their subjective straight-ahead to remap visuo-motor alterations. Sci Rep 2023; 13:6427. [PMID: 37081091 PMCID: PMC10119127 DOI: 10.1038/s41598-023-33127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 04/07/2023] [Indexed: 04/22/2023] Open
Abstract
Young children and adults process spatial information differently: the former use their bodies as primary reference, while adults seem capable of using abstract frames. The transition is estimated to occur between the 6th and the 12th year of age. The mechanisms underlying spatial encoding in children and adults are unclear, as well as those underlying the transition. Here, we investigated the role of the subjective straight-ahead (SSA), the body antero-posterior half-plane mental model, in spatial encoding before and after the expected transition. We tested 6-7-year-old and 10-11-year-old children, and adults on a spatial alignment task in virtual reality, searching for differences in performance when targets were placed frontally or sideways. The performance differences were assessed both in a naturalistic baseline condition and in a test condition that discouraged using body-centered coordinates through a head-related visuo-motor conflict. We found no differences in the baseline condition, while all groups showed differences between central and lateral targets (SSA effect) in the visuo-motor conflict condition, and 6-7-year-old children showed the largest effect. These results confirm the expected transition timing; moreover, they suggest that children can abstract from the body using their SSA and that the transition underlies the maturation of a world-centered reference frame.
Collapse
Affiliation(s)
- Esposito Davide
- Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, 16163, Genova, Italy.
| | - Miehlbradt Jenifer
- Bertarelli Foundation Chair in Translational Neuroengineering, EPFL, 1015, Lausanne, Switzerland
| | - Tonelli Alessia
- Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Mazzoni Alberto
- The Biorobotics Institute, Scuola Superiore Sant'Anna, 56127, Pontedera, Italy
| | - Gori Monica
- Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, 16163, Genova, Italy
| |
Collapse
|
13
|
Bonavita A, Bellagamba M, Verde P, Boccia M, Guariglia C. The Effect of Cognitive Style on Individual Differences in Prismatic Adaptation: A Pilot Study. Brain Sci 2023; 13:brainsci13040641. [PMID: 37190606 DOI: 10.3390/brainsci13040641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Prism adaptation (PA) is a well-known and widely used technique for rehabilitating unilateral spatial neglect and studying sensory-motor plasticity. However, there is conflicting evidence in the literature regarding its effectiveness which may arise from differences in the type of prisms used, clinical characteristics of the patients, and the procedure used in training. Individual differences may play a role in PA effectiveness in rehabilitating neglect, affecting both its development and its effects. Field-dependent/independent cognitive style is a pervasive characteristic of individual functioning, affecting how environmental information is processed. Here, we tested the hypothesis that cognitive style plays a role in PA efficacy by submitting to a protocol of prism adaptation to 38 health participants, who were classified as field-dependent (FD, N = 19) or field-independent (FI, N = 19), by using the Embedded Figure Test. Results show that during the exposure phase, FI individuals needed a lesser number of pointing movements to reduce the deviation error than FD individuals. However, there are no differences in the extinction of sensory-motor and cognitive after-effects. These results suggest that prismatic adaptation is affected by individuals' cognitive style since FI individuals will need fewer trials to reach adaptation and this could explain why using this rehabilitation technique with a unique, standard protocol is not always effective.
Collapse
Affiliation(s)
- Alessia Bonavita
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185 Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Santa Lucia, Via Ardeatina 306/354, 00142 Rome, Italy
- Ph.D. Program in Behavioral Neuroscience, "Sapienza" University of Rome, 00185 Rome, Italy
| | - Martina Bellagamba
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Santa Lucia, Via Ardeatina 306/354, 00142 Rome, Italy
| | - Paola Verde
- Aerospace Medicine Department, Aerospace Test Division, Pratica di Mare, AFB, 00071 Pomezia, Italy
| | - Maddalena Boccia
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185 Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Santa Lucia, Via Ardeatina 306/354, 00142 Rome, Italy
| | - Cecilia Guariglia
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185 Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Santa Lucia, Via Ardeatina 306/354, 00142 Rome, Italy
| |
Collapse
|
14
|
Iachini T, Ruotolo F, Rapuano M, Sbordone FL, Ruggiero G. The Role of Temporal Order in Egocentric and Allocentric Spatial Representations. J Clin Med 2023; 12:jcm12031132. [PMID: 36769780 PMCID: PMC9917670 DOI: 10.3390/jcm12031132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Several studies have shown that spatial information is encoded using two types of reference systems: egocentric (body-based) and/or allocentric (environment-based). However, most studies have been conducted in static situations, neglecting the fact that when we explore the environment, the objects closest to us are also those we encounter first, while those we encounter later are usually those closest to other environmental objects/elements. In this study, participants were shown with two stimuli on a computer screen, each depicting a different geometric object, placed at different distances from them and an external reference (i.e., a bar). The crucial manipulation was that the stimuli were shown sequentially. After participants had memorized the position of both stimuli, they had to indicate which object appeared closest to them (egocentric judgment) or which object appeared closest to the bar (allocentric judgment). The results showed that egocentric judgements were facilitated when the object closest to them was presented first, whereas allocentric judgements were facilitated when the object closest to the bar was presented second. These results show that temporal order has a different effect on egocentric and allocentric frames of reference, presumably rooted in the embodied way in which individuals dynamically explore the environment.
Collapse
|
15
|
Derbie AY, Dejenie MA, Zegeye TG. Visuospatial representation in patients with mild cognitive impairment: Implication for rehabilitation. Medicine (Baltimore) 2022; 101:e31462. [PMID: 36343037 PMCID: PMC9646670 DOI: 10.1097/md.0000000000031462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Behavioral and neurophysiological experiments have demonstrated that distinct and common cognitive processes and associated neural substrates maintain allocentric and egocentric spatial representations. This review aimed to provide evidence from previous behavioral and neurophysiological studies on collating cognitive processes and associated neural substrates and linking them to the state of visuospatial representations in patients with mild cognitive impairment (MCI). Even though MCI patients showed impaired visuospatial attentional processing and working memory, previous neuropsychological experiments in MCI largely emphasized memory impairment and lacked substantiating evidence of whether memory impairment could be associated with how patients with MCI encode objects in space. The present review suggests that impaired memory capacity is linked to impaired allocentric representation in MCI patients. This review indicates that further research is needed to examine how the decline in visuospatial attentional resources during allocentric coding of space could be linked to working memory impairment.
Collapse
Affiliation(s)
- Abiot Y. Derbie
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
- Department of Psychology, Bahir Dar University, Bahir Dar, Ethiopia
- *Correspondence: Abiot Y. Derbie, Department of Psychology, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia (e-mail: )
| | | | - Tsigie G. Zegeye
- Department of Special Needs, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
16
|
The pantomime of mental rotation: Left-handers are less lateralized. Neuropsychologia 2022; 176:108385. [PMID: 36183801 DOI: 10.1016/j.neuropsychologia.2022.108385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/23/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION The conceptualization of skilled hand movements (praxis) may be grounded in hemispherically specialized functions. However, a left-hemispherical advantage of (tool-use) pantomime gestures and a right-hemispherical advantage of spatial gestures may be more prominent in right-handed than left-handed individuals. We therefore investigated the hypothesis that right-handed but not left-handed individuals show a superiority of the left hemisphere (/right-hand preference) for the execution of pantomime (rotation of an object) gestures as well as a right-hemispherical superiority (/left-hand preference) for gestures that depict spatial information (/positioning of an object). METHODS 20 right- and 20 left-handed participants were asked in two experiments to demonstrate with their two hands how to move tachistoscopically (in the left (LVF) or right visual hemifields (RVF)) presented geometric objects of different rotations into an identical final position. Two independent blind raters evaluated the videotaped hand gestures employing the Neuropsychological Gesture (NEUROGES) Coding System. RESULTS In contrast to left-handed individuals, right-handed individuals present increased pantomime - rotation gestures with the right hand and pantomime - position gestures with the left hand during stimuli presentation in either visual field. Left-handers showed significantly increased left-hand pantomime - rotation gestures during stimulus presentation within the LVF (only). DISCUSSION Right-handed individuals increase their pantomime - rotation gestures with the right hand to depict motion but use their left hand for pantomime - position gestures to describe spatial relations of the objects. Left-handers do not show a clear lateralization of the right and left hand with regards to either handedness or hemispherically lateralized motor functions. The hemispherical lateralization of praxis functions is therefore more pronounced in right-handed than left-handed individuals.
Collapse
|
17
|
Liu J, Singh AK, Wunderlich A, Gramann K, Lin CT. Redesigning navigational aids using virtual global landmarks to improve spatial knowledge retrieval. NPJ SCIENCE OF LEARNING 2022; 7:17. [PMID: 35853945 PMCID: PMC9296625 DOI: 10.1038/s41539-022-00132-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Although beacon- and map-based spatial strategies are the default strategies for navigation activities, today's navigational aids mostly follow a beacon-based design where one is provided with turn-by-turn instructions. Recent research, however, shows that our reliance on these navigational aids is causing a decline in our spatial skills. We are processing less of our surrounding environment and relying too heavily on the instructions given. To reverse this decline, we need to engage more in map-based learning, which encourages the user to process and integrate spatial knowledge into a cognitive map built to benefit flexible and independent spatial navigation behaviour. In an attempt to curb our loss of skills, we proposed a navigation assistant to support map-based learning during active navigation. Called the virtual global landmark (VGL) system, this augmented reality (AR) system is based on the kinds of techniques used in traditional orienteering. Specifically, a notable landmark is always present in the user's sight, allowing the user to continuously compute where they are in relation to that specific location. The efficacy of the unit as a navigational aid was tested in an experiment with 27 students from the University of Technology Sydney via a comparison of brain dynamics and behaviour. From an analysis of behaviour and event-related spectral perturbation, we found that participants were encouraged to process more spatial information with a map-based strategy where a silhouette of the compass-like landmark was perpetually in view. As a result of this technique, they consistently navigated with greater efficiency and better accuracy.
Collapse
Affiliation(s)
- Jia Liu
- CIBCI Centre, Australian AI Institute, School of Computer Science, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - Avinash Kumar Singh
- CIBCI Centre, Australian AI Institute, School of Computer Science, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia.
| | - Anna Wunderlich
- Biological Psychology and Neuroergonomics, Berlin Institute of Technology, Berlin, Germany
| | - Klaus Gramann
- CIBCI Centre, Australian AI Institute, School of Computer Science, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
- Biological Psychology and Neuroergonomics, Berlin Institute of Technology, Berlin, Germany
| | - Chin-Teng Lin
- CIBCI Centre, Australian AI Institute, School of Computer Science, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
18
|
Mirino P, Pecchinenda A, Boccia M, Capirchio A, D’Antonio F, Guariglia C. Cerebellum-Cortical Interaction in Spatial Navigation and Its Alteration in Dementias. Brain Sci 2022; 12:brainsci12050523. [PMID: 35624910 PMCID: PMC9138670 DOI: 10.3390/brainsci12050523] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
The cerebellum has a homogeneous structure and performs different computational functions such as modulation/coordination of the communication between cerebral regions, and regulation/integration of sensory information. Albeit cerebellar activity is generally associated with motor functions, several recent studies link it to various cognitive functions, including spatial navigation. In addition, cerebellar activity plays a modulatory role in different cognitive domains and brain processes. Depending on the network involved, cerebellar damage results in specific functional alterations, even when no function loss might be detected. In the present review, we discuss evidence of brainstem degeneration and of a substantial reduction of neurons in nuclei connected to the inferior olivary nucleus in the early stages of Alzheimer’s disease. Based on the rich patterns of afferences from the inferior olive nucleus to the cerebellum, we argue that the subtle alterations in spatial navigation described in the early stages of dementia stem from alterations of the neuromodulatory functions of the cerebellum.
Collapse
Affiliation(s)
- Pierandrea Mirino
- Department of Psychology, “Sapienza” University of Rome, 00185 Rome, Italy; (P.M.); (A.P.); (M.B.)
- Ph.D. Program in Behavioral Neuroscience, “Sapienza” University of Rome, 00185 Rome, Italy
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council, 00185 Rome, Italy;
| | - Anna Pecchinenda
- Department of Psychology, “Sapienza” University of Rome, 00185 Rome, Italy; (P.M.); (A.P.); (M.B.)
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Santa Lucia, 00179 Rome, Italy
| | - Maddalena Boccia
- Department of Psychology, “Sapienza” University of Rome, 00185 Rome, Italy; (P.M.); (A.P.); (M.B.)
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Santa Lucia, 00179 Rome, Italy
| | - Adriano Capirchio
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council, 00185 Rome, Italy;
| | - Fabrizia D’Antonio
- Department of Human Neurosciences, “Sapienza” University of Rome, 00185 Rome, Italy;
| | - Cecilia Guariglia
- Department of Psychology, “Sapienza” University of Rome, 00185 Rome, Italy; (P.M.); (A.P.); (M.B.)
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Santa Lucia, 00179 Rome, Italy
- Correspondence:
| |
Collapse
|
19
|
Cojan Y, Saj A, Vuilleumier P. Brain Substrates for Distinct Spatial Processing Components Contributing to Hemineglect in Humans. Brain Sci 2021; 11:brainsci11121584. [PMID: 34942886 PMCID: PMC8699043 DOI: 10.3390/brainsci11121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/06/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022] Open
Abstract
Several cortical and sub-cortical regions in the right hemisphere, particularly in parietal and frontal lobe, but also in temporal lobe and thalamus, are part of neural networks critically implicated in spatial and attentional functions. Damage to different sites within these networks can cause hemispatial neglect. The aim of this study was to identify the neural substrates of different spatial processing components that are known to contribute to neglect symptoms. First, three different spatial tasks (visual search, bisection, and visual memory) were tested in 27 patients with focal right brain-damage. Voxel-based lesion-symptom mapping was used to determine the relationships between specific sites of damage and severity of deficits in these three spatial tasks. Secondly, fMRI was used in 26 healthy controls who performed the same tasks. In the healthy group, fMRI results showed a differential activation of regions within the parietal and frontal lobes during bisection and visual search, respectively. In the patients, we confirmed a critical role of right lateral parietal cortex in bisection, but lesions in frontal and temporal lobe were more critical for visual search. These data support the existence of distinct components in spatial attentional processes that might be damaged to different degrees in neglect patients.
Collapse
Affiliation(s)
- Yann Cojan
- Laboratory for Behavioral Neurology and Imaging of Cognition, Neuroscience Department, University of Geneva, 1211 Geneva, Switzerland; (A.S.); (P.V.)
- CRIR/Institut Nazareth et Louis-Braille du CISSS de la Montérégie-Centre, Longueuil, QC J4K 5G4, Canada
- Correspondence:
| | - Arnaud Saj
- Laboratory for Behavioral Neurology and Imaging of Cognition, Neuroscience Department, University of Geneva, 1211 Geneva, Switzerland; (A.S.); (P.V.)
- CRIR/Institut Nazareth et Louis-Braille du CISSS de la Montérégie-Centre, Longueuil, QC J4K 5G4, Canada
- Department of Psychology, University of Montréal, Montréal, QC H3A 1G1, Canada
- Neurology Department, Neuropsychology Unit, University Hospital of Geneva, 1205 Geneva, Switzerland
| | - Patrik Vuilleumier
- Laboratory for Behavioral Neurology and Imaging of Cognition, Neuroscience Department, University of Geneva, 1211 Geneva, Switzerland; (A.S.); (P.V.)
| |
Collapse
|
20
|
Yang CS, Liu J, Singh AK, Huang KC, Lin CT. Brain Dynamics of Spatial Reference Frame Proclivity in Active Navigation. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1701-1710. [PMID: 34410926 DOI: 10.1109/tnsre.2021.3106174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent research into navigation strategy of different spatial reference frames (self-centered egocentric reference frame and environment-centered allocentric reference frame) has revealed that the parietal cortex plays an important role in processing allocentric information to provide a translation function between egocentric and allocentric spatial reference frames. However, most studies merely focused on a passive experimental environment, which is not truly representative of our daily spatial learning/navigation tasks. This study investigated the factor associated with brain dynamics that causes people to switch their preferred spatial strategy in both active and passive navigations to bridge the gap. Virtual reality (VR) technique and Omni treadmill are applied to realize actively walking for active navigation, and for passive navigation, participants were sitting while conducting the same task. Electroencephalography (EEG) signals were recorded to monitor spectral perturbations on transitions between egocentric and allocentric frames during a path integration task. Forty-one right-handed male participants from authors' university participated this study. Our brain dynamics results showed navigation involved areas including the parietal cortex with modulation in the alpha band, the occipital cortex with beta and low gamma band perturbations, and the frontal cortex with theta perturbation. Differences were found between two different turning-angle paths in the alpha band in parietal cluster event-related spectral perturbations (ERSPs). In small turning-angle paths, allocentric participants showed stronger alpha desynchronization than egocentric participants; in large turning-angle paths, participants for two reference frames had a smaller difference in the alpha frequency band. Behavior results of homing errors also corresponded to brain dynamic results, indicating that a larger angle path caused the allocentric to have a higher tendency to become egocentric navigators in the active navigation environment.
Collapse
|
21
|
The Neural Bases of Egocentric Spatial Representation for Extracorporeal and Corporeal Tasks: An fMRI Study. Brain Sci 2021; 11:brainsci11080963. [PMID: 34439582 PMCID: PMC8394366 DOI: 10.3390/brainsci11080963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/04/2021] [Accepted: 07/19/2021] [Indexed: 12/02/2022] Open
Abstract
(1) Background: Humans use reference frames to elaborate the spatial representations needed for all space-oriented behaviors such as postural control, walking, or grasping. We investigated the neural bases of two egocentric tasks: the extracorporeal subjective straight-ahead task (SSA) and the corporeal subjective longitudinal body plane task (SLB) in healthy participants using functional magnetic resonance imaging (fMRI). This work was an ancillary part of a study involving stroke patients. (2) Methods: Seventeen healthy participants underwent a 3T fMRI examination. During the SSA, participants had to divide the extracorporeal space into two equal parts. During the SLB, they had to divide their body along the midsagittal plane. (3) Results: Both tasks elicited a parieto-occipital network encompassing the superior and inferior parietal lobules and lateral occipital cortex, with a right hemispheric dominance. Additionally, the SLB > SSA contrast revealed activations of the left angular and premotor cortices. These areas, involved in attention and motor imagery suggest a greater complexity of corporeal processes engaging body representation. (4) Conclusions: This was the first fMRI study to explore the SLB-related activity and its complementarity with the SSA. Our results pave the way for the exploration of spatial cognitive impairment in patients.
Collapse
|
22
|
Tani K, Tanaka S. Neuroanatomical correlates of the perception of body axis orientation during body tilt: a voxel-based morphometry study. Sci Rep 2021; 11:14659. [PMID: 34282178 PMCID: PMC8289860 DOI: 10.1038/s41598-021-93961-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/05/2021] [Indexed: 11/23/2022] Open
Abstract
Accurate perception of the orientations of the body axis and gravity is essential for actions. The ability to perceive these orientations during head and body tilt varies across individuals, and its underlying neural basis is unknown. To address this, we investigated the association between inter-individual differences in local gray matter (GM) volume and inter-individual differences in the ability to estimate the directions of body longitudinal axis or gravity during whole-body tilt using voxel-based morphometry (VBM) analysis in 50 healthy adults (20–46 years, 25 men and 25 women). Although no anatomical regions were identified relating to performance requiring estimates of gravitational direction, we found a significant correlation between the GM volume in the right middle occipital gyrus and the ability to estimate the body axis orientation. This finding provides the first evidence on neuroanatomical substrates of the perception of body axis orientation during body tilt.
Collapse
Affiliation(s)
- Keisuke Tani
- Laboratory of Psychology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan. .,Faculty of Psychology, Otemon Gakuin University, 2-1-15 Nishi-Ai , Ibaraki, Osaka, 567-8502, Japan.
| | - Satoshi Tanaka
- Laboratory of Psychology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| |
Collapse
|
23
|
Bocchi A, Palmiero M, Redondo JMC, Tascón L, Nori R, Piccardi L. The Role of Gender and Familiarity in a Modified Version of the Almeria Boxes Room Spatial Task. Brain Sci 2021; 11:brainsci11060681. [PMID: 34067401 PMCID: PMC8224594 DOI: 10.3390/brainsci11060681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Individual factors like gender and familiarity can affect the kind of environmental representation that a person acquires during spatial navigation. Men seem to prefer relying on map-like survey representations, while women prefer using sequential route representations. Moreover, a good familiarity with the environment allows more complete environmental representations. This study was aimed at investigating gender differences in two different object-position learning tasks (i.e., Almeria Boxes Tasks) assuming a route or a survey perspective also considering the role of environmental familiarity. Two groups of participants had to learn the position of boxes placed in a virtual room. Participants had several trials, so that familiarity with the environment could increase. In both tasks, the effects of gender and familiarity were found, and only in the route perspective did an interaction effect emerge. This suggests that gender differences can be found regardless of the perspective taken, with men outperforming women in navigational tasks. However, in the route task, gender differences appeared only at the initial phase of learning, when the environment was unexplored, and disappeared when familiarity with the environment increased. This is consistent with studies showing that familiarity can mitigate gender differences in spatial tasks, especially in more complex ones.
Collapse
Affiliation(s)
- Alessia Bocchi
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy;
- Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Correspondence:
| | - Massimiliano Palmiero
- Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | | | - Laura Tascón
- Department of Psychology, University of Cordoba, 14014 Cordoba, Spain;
| | - Raffaella Nori
- Department of Psychology, University of Bologna, 40126 Bologna, Italy;
| | - Laura Piccardi
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy;
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
24
|
Helmich I, Voelk M, Coenen J, Xu L, Reinhardt J, Mueller S, Schepmann J, Lausberg H. Hemispheric specialization for nonverbal gestures depicting motion and space. Brain Cogn 2021; 151:105736. [PMID: 33906119 DOI: 10.1016/j.bandc.2021.105736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The right hemispheric specialisation for mental rotation suggests a left hand preference for nonverbal gestures that depict spatial information. We therefore hypothesized that nonverbal depictions of spatial information are preferentially demonstrated by the left hand, i.e., are grounded in right hemispheric functions. METHODS Right-handed participants were asked in two experiments to nonverbally demonstrate how to move tachistoscopically presented (in the left or right visual hemifields) geometric objects of different rotations into an identical final position. Two independent blind raters evaluated the videotaped hand gestures employing the Neuropsychological Gesture (NEUROGES) Coding System. RESULTS Pantomime gestures increase in order to rotate gravitationally unstable objects whereas spatial relation presentation gestures increase when to nonverbally demonstrate a gravitationally stable object. Individuals preferred the right hand for pantomime gestures but the left hand for spatial relation presentation gestures. DISCUSSION Individuals increase their pantomime gestures to nonverbally depict motion particularly with the right hand, i.e. the left hemisphere. In contrast, increased left hand spatial relation presentations gestures indicate that those gestures are of right hemispheric origin. Thus, the hemispherical lateralization of nonverbal gestures seems to depend on the hands' functional depiction.
Collapse
Affiliation(s)
- I Helmich
- Department of Neurology, Psychosomatic Medicine and Psychiatry, German Sport University (GSU), Am Sportpark Muengersdorf 6, 50933 Cologne, Germany.
| | - M Voelk
- Department of Neurology, Psychosomatic Medicine and Psychiatry, German Sport University (GSU), Am Sportpark Muengersdorf 6, 50933 Cologne, Germany.
| | - J Coenen
- Department of Sport and Health, Institute of Sport Medicine, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany.
| | - L Xu
- Department of Neurology, Psychosomatic Medicine and Psychiatry, German Sport University (GSU), Am Sportpark Muengersdorf 6, 50933 Cologne, Germany
| | - J Reinhardt
- Department of Neurology, Psychosomatic Medicine and Psychiatry, German Sport University (GSU), Am Sportpark Muengersdorf 6, 50933 Cologne, Germany
| | - S Mueller
- Department of Neurology, Psychosomatic Medicine and Psychiatry, German Sport University (GSU), Am Sportpark Muengersdorf 6, 50933 Cologne, Germany.
| | - J Schepmann
- Department of Neurology, Psychosomatic Medicine and Psychiatry, German Sport University (GSU), Am Sportpark Muengersdorf 6, 50933 Cologne, Germany.
| | - H Lausberg
- Department of Neurology, Psychosomatic Medicine and Psychiatry, German Sport University (GSU), Am Sportpark Muengersdorf 6, 50933 Cologne, Germany.
| |
Collapse
|
25
|
Derbie AY, Chau BKH, Wong CHY, Chen LD, Ting KH, Lam BYH, Lee TMC, Chan CCH, Smith Y. Common and distinct neural trends of allocentric and egocentric spatial coding: An ALE meta-analysis. Eur J Neurosci 2021; 53:3672-3687. [PMID: 33880818 DOI: 10.1111/ejn.15240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 01/22/2023]
Abstract
The uniqueness of neural processes between allocentric and egocentric spatial coding has been controversial. The distinctive paradigms used in previous studies for manipulating spatial coding could have attributed for the inconsistent results. This study was aimed to generate converging evidence from previous functional brain imaging experiments for collating neural substrates associated with these two types of spatial coding. An additional aim was to test whether test-taking processes would have influenced the results. We obtained coordinate-based functional neuroimaging data for 447 subjects and performed activation likelihood estimation (ALE) meta-analysis. Among the 28 experiments, the results indicate two common clusters of convergence. They were the right precuneus and the right superior frontal gyrus as parts of the parieto-frontal circuit. Between-type differences were in the parieto-occipital circuit, with allocentric showing convergence in the superior occipital gyrus (SOG) cluster compared with egocentric showing convergence in the middle occipital gyrus (MOG) cluster. Task-specific influences were only found in allocentric spatial coding. Spatial judgment-oriented tasks seem to increase the demands on manipulating spatial relationships among the visual objects, while spatial navigation tasks seem to increase the demands on maintaining object representations. Our findings address the theoretical controversies on spatial coding that both the allocentric and egocentric types are common in their processes mediated by the parieto-frontal network, while unique and additional processes in the allocentric type are mediated by the parieto-occipital network. The positive results on possible task-specific confound offer insights into the future design of spatial tasks for eliciting spatial coding processes.
Collapse
Affiliation(s)
- Abiot Y Derbie
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.,Department of Psychology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Bolton K H Chau
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Clive H Y Wong
- Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China
| | - Li-Dian Chen
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Kin-Hung Ting
- University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong, China
| | - Bess Y H Lam
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Tatia M C Lee
- Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Chetwyn C H Chan
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.,University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong, China
| | | |
Collapse
|
26
|
Derbie AY, Chau B, Lam B, Fang YH, Ting KH, Wong CYH, Tao J, Chen LD, Chan CCH. Cortical Hemodynamic Response Associated with Spatial Coding: A Near-Infrared Spectroscopy Study. Brain Topogr 2021; 34:207-220. [PMID: 33484379 DOI: 10.1007/s10548-021-00821-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 01/11/2021] [Indexed: 01/01/2023]
Abstract
Allocentric and egocentric are two types of spatial coding. Previous studies reported the dorsal attention network's involvement in both types. To eliminate possible paradigm-specific confounds in the results, this study employed fine-grained cue-to-target paradigm to dissociate allocentric (aSC) and egocentric (eSC) spatial coding. Twenty-two participants completed a custom visuospatial task, and changes in the concentration of oxygenated hemoglobin (O2-Hb) were recorded using functional near-infrared spectroscopy (fNIRS). The least absolute shrinkage and selection operator-regularized principal component (LASSO-RPC) algorithm was used to identify cortical sites that predicted the aSC and eSC conditions' reaction times. Significant changes in O2-Hb concentration in the right inferior parietal lobule (IPL) and post-central gyrus regions were common in both aSC and eSC. Results of inter-channel correlations further substantiate cortical activities in both conditions were predominantly over the right parieto-frontal areas. Together with right superior frontal gyrus areas be the reaction time neural correlates, the results suggest top-down attention and response-mapping processes are common to both spatial coding types. Changes unique to aSC were in clusters over the right intraparietal sulcus, right temporo-parietal junction, and left IPL. With the left pre-central gyrus region, be the reaction time neural correlate, aSC is likely to involve more orienting attention, updating of spatial information, and object-based response selection and inhibition than eSC. Future studies will use other visuospatial task designs for testing the robustness of the findings on spatial coding processes.
Collapse
Affiliation(s)
- Abiot Y Derbie
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Department of Psychology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Bolton Chau
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Bess Lam
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Yun-Hua Fang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Kin-Hung Ting
- University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Clive Y H Wong
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Li-Dian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Chetwyn C H Chan
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
- University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
| |
Collapse
|
27
|
Heywood-Everett E, Baker DH, Hartley T. Testing the precision of spatial memory representations using a change-detection task: effects of viewpoint change. JOURNAL OF COGNITIVE PSYCHOLOGY 2020. [DOI: 10.1080/20445911.2020.1863414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Edward Heywood-Everett
- Department of Psychology and York Biomedical Research Institute, University of York, York, UK
| | - Daniel H. Baker
- Department of Psychology and York Biomedical Research Institute, University of York, York, UK
| | - Tom Hartley
- Department of Psychology and York Biomedical Research Institute, University of York, York, UK
| |
Collapse
|
28
|
Mieda T, Kokubu M. Blind footballers direct their head towards an approaching ball during ball trapping. Sci Rep 2020; 10:20246. [PMID: 33219244 PMCID: PMC7679380 DOI: 10.1038/s41598-020-77049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/05/2020] [Indexed: 12/02/2022] Open
Abstract
In blind football, players predict the sound location of a ball to underpin the success of ball trapping. It is currently unknown whether blind footballers use head movements as a strategy for trapping a moving ball. This study investigated characteristics of head rotations in blind footballers during ball trapping compared to sighted nonathletes. Participants performed trapping an approaching ball using their right foot. Head and trunk rotation angles in the sagittal plane, and head rotation angles in the horizontal plane were measured during ball trapping. The blind footballers showed a larger downward head rotation angle, as well as higher performance at the time of ball trapping than did the sighted nonathletes. However, no significant differences between the groups were found with regards to the horizontal head rotation angle and the downward trunk rotation angle. The blind footballers consistently showed a larger relative angle of downward head rotation from an early time point after ball launching to the moment of ball trapping. These results suggest that blind footballers couple downward head rotation with the movement of an approaching ball, to ensure that the ball is kept in a consistent egocentric direction relative to the head throughout ball trapping.
Collapse
Affiliation(s)
- Takumi Mieda
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan.
| | - Masahiro Kokubu
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan
| |
Collapse
|
29
|
Moraresku S, Vlcek K. The use of egocentric and allocentric reference frames in static and dynamic conditions in humans. Physiol Res 2020; 69:787-801. [PMID: 32901499 DOI: 10.33549/physiolres.934528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The dissociation between egocentric and allocentric reference frames is well established. Spatial coding relative to oneself has been associated with a brain network distinct from spatial coding using a cognitive map independently of the actual position. These differences were, however, revealed by a variety of tasks from both static conditions, using a series of images, and dynamic conditions, using movements through space. We aimed to clarify how these paradigms correspond to each other concerning the neural correlates of the use of egocentric and allocentric reference frames. We review here studies of allocentric and egocentric judgments used in static two- and three-dimensional tasks and compare their results with the findings from spatial navigation studies. We argue that neural correlates of allocentric coding in static conditions but using complex three-dimensional scenes and involving spatial memory of participants resemble those in spatial navigation studies, while allocentric representations in two-dimensional tasks are connected with other perceptual and attentional processes. In contrast, the brain networks associated with the egocentric reference frame in static two-dimensional and three-dimensional tasks and spatial navigation tasks are, with some limitations, more similar. Our review demonstrates the heterogeneity of experimental designs focused on spatial reference frames. At the same time, it indicates similarities in brain activation during reference frame use despite this heterogeneity.
Collapse
Affiliation(s)
- S Moraresku
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. ,
| | | |
Collapse
|
30
|
Schintu S, Cunningham CA, Freedberg M, Taylor P, Gotts SJ, Shomstein S, Wassermann EM. Callosal anisotropy predicts attentional network changes after parietal inhibitory stimulation. Neuroimage 2020; 226:117559. [PMID: 33189929 DOI: 10.1016/j.neuroimage.2020.117559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/28/2020] [Accepted: 11/08/2020] [Indexed: 12/28/2022] Open
Abstract
Hemispatial neglect is thought to result from disruption of interhemispheric equilibrium. Right hemisphere lesions deactivate the right frontoparietal network and hyperactivate the left via release from interhemispheric inhibition. Support for this putative mechanism comes from neuropsychological evidence as well as transcranial magnetic stimulation (TMS) studies in healthy subjects, in whom right posterior parietal cortex (PPC) inhibition causes neglect-like, rightward, visuospatial bias. Concurrent TMS and fMRI after right PPC TMS show task-dependent changes but may fail to identify effects of stimulation in areas not directly activated by the specific task, complicating interpretations. We used resting-state functional connectivity (RSFC) after inhibitory TMS over the right PPC to examine changes in the networks underlying visuospatial attention and used diffusion-weighted imaging to measure the structural properties of relevant white matter pathways. In a crossover experiment in healthy individuals, we delivered continuous theta burst TMS to the right PPC and vertex as control condition. We hypothesized that PPC inhibitory stimulation would result in a rightward visuospatial bias, decrease frontoparietal RSFC, and increase the PPC RSFC with the attentional network in the left hemisphere. We also expected that individual differences in fractional anisotropy (FA) of the frontoparietal network and the callosal pathway between the PPCs would account for variability of the TMS-induced RSFC changes. As hypothesized, TMS over the right PPC caused a rightward shift in line bisection judgment and increased RSFC between the right PPC and the left superior temporal gyrus. This effect was inversely related to FA in the posterior corpus callosum. Local inhibition of the right PPC reshapes connectivity in the attentional network and depends significantly on interhemispheric connections.
Collapse
Affiliation(s)
- Selene Schintu
- National Institute of Neurological Disorders and Stroke, Bethesda, USA; Department of Psychology, George Washington University, Washington DC, USA.
| | | | - Michael Freedberg
- National Institute of Neurological Disorders and Stroke, Bethesda, USA
| | - Paul Taylor
- National Institute of Mental Health, Bethesda, USA
| | | | - Sarah Shomstein
- Department of Psychology, George Washington University, Washington DC, USA
| | - Eric M Wassermann
- National Institute of Neurological Disorders and Stroke, Bethesda, USA
| |
Collapse
|
31
|
Lhuillier S, Gyselinck V, Piolino P, Nicolas S. "Walk this way": specific contributions of active walking to the encoding of metric properties during spatial learning. PSYCHOLOGICAL RESEARCH 2020; 85:2502-2517. [PMID: 32918143 DOI: 10.1007/s00426-020-01415-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/01/2020] [Indexed: 11/25/2022]
Abstract
The effect of body-based information on spatial memory has been traditionally described as a facilitating factor for large-scale spatial learning in the field of active learning research (Chrastil & Warren, Psychonomic Bulletin and Review, 19(1):1-23; 2012). The specific contribution of body-based information to spatial representation properties is however not yet well defined and the mechanisms through which body-based information contributes to spatial learning are not clear enough. To disambiguate the effect of active spatial learning on the quality of spatial representations from the beneficial effect of physiological arousal, we compared four experimental conditions (walking on a unidirectional treadmill during learning, retrieval, both phases or no walking). Results showed no effect of the walking condition for a route perspective task, but a significant effect on a survey perspective task (landmark positioning on a map): participants who walked during encoding (encoding group and encoding + retrieval group) obtained better results than those who did not walk or walked only during retrieval. Geometrical analysis of spatial positions on maps revealed that the activity of walking during encoding improves the correlation between participants' coordinates and actual coordinates through better distance estimations and angular accuracy, even though the optic flow was not matched with individual walking speed. Control group variance in all measures was higher than that of the walking groups (regardless of the moment of walking). Taken together, these results provide arguments for the multimodal nature of spatial representations, where body-related information derived from walking is involved in metric properties accuracy and perspective switching.
Collapse
Affiliation(s)
- Simon Lhuillier
- LAPEA, Université Gustave Eiffel, IFSTTAR, 78000, Versailles, France.
- LAPEA, Université de Paris, 92000, Boulogne-Billancourt, France.
- MC2, Université de Paris, 92000, Boulogne-Billancourt, France.
| | - Valérie Gyselinck
- LAPEA, Université Gustave Eiffel, IFSTTAR, 78000, Versailles, France
- LAPEA, Université de Paris, 92000, Boulogne-Billancourt, France
| | - Pascale Piolino
- MC2, Université de Paris, 92000, Boulogne-Billancourt, France
| | - Serge Nicolas
- MC2, Université de Paris, 92000, Boulogne-Billancourt, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
32
|
Aggius-Vella E, Gori M, Animali S, Campus C, Binda P. Non-spatial skills differ in the front and rear peri-personal space. Neuropsychologia 2020; 147:107619. [PMID: 32898519 DOI: 10.1016/j.neuropsychologia.2020.107619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/25/2020] [Accepted: 09/02/2020] [Indexed: 11/26/2022]
Abstract
In measuring behavioural and pupillary responses to auditory oddball stimuli delivered in the front and rear peri-personal space, we find that pupils dilate in response to rare stimuli, both target and distracters. Dilation in response to targets is stronger than the response to distracters, implying a task relevance effect on pupil responses. Crucially, pupil dilation in response to targets is also selectively modulated by the location of sound sources: stronger in the front than in the rear peri-personal space, in spite of matching behavioural performance. This supports the concept that even non-spatial skills, such as the ability to alert in response to behaviourally relevant events, are differentially engaged across subregions of the peri-personal space.
Collapse
Affiliation(s)
- Elena Aggius-Vella
- Unit for Visually Impaired People (U-VIP), Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy; Institute for Mind, Brain and Technology, Ivcher School of Psychology, Inter-Disciplinary Center (IDC), Herzeliya, Israel
| | - Monica Gori
- Unit for Visually Impaired People (U-VIP), Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Silvia Animali
- University of Pisa, Dept. of Translational Research and New Technologies in Medicine and Surgery, Italy; University of Pisa, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Italy
| | - Claudio Campus
- Unit for Visually Impaired People (U-VIP), Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Paola Binda
- University of Pisa, Dept. of Translational Research and New Technologies in Medicine and Surgery, Italy.
| |
Collapse
|
33
|
Freud E, Behrmann M, Snow JC. What Does Dorsal Cortex Contribute to Perception? Open Mind (Camb) 2020; 4:40-56. [PMID: 33225195 PMCID: PMC7672309 DOI: 10.1162/opmi_a_00033] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/20/2020] [Indexed: 01/26/2023] Open
Abstract
According to the influential "Two Visual Pathways" hypothesis, the cortical visual system is segregated into two pathways, with the ventral, occipitotemporal pathway subserving object perception, and the dorsal, occipitoparietal pathway subserving the visuomotor control of action. However, growing evidence suggests that the dorsal pathway also plays a functional role in object perception. In the current article, we present evidence that the dorsal pathway contributes uniquely to the perception of a range of visuospatial attributes that are not redundant with representations in ventral cortex. We describe how dorsal cortex is recruited automatically during perception, even when no explicit visuomotor response is required. Importantly, we propose that dorsal cortex may selectively process visual attributes that can inform the perception of potential actions on objects and environments, and we consider plausible developmental and cognitive mechanisms that might give rise to these representations. As such, we consider whether naturalistic stimuli, such as real-world solid objects, might engage dorsal cortex more so than simplified or artificial stimuli such as images that do not afford action, and how the use of suboptimal stimuli might limit our understanding of the functional contribution of dorsal cortex to visual perception.
Collapse
Affiliation(s)
- Erez Freud
- Department of Psychology and the Centre for Vision Research, York University
| | - Marlene Behrmann
- Department of Psychology and the Neuroscience Institute, Carnegie Mellon University
| | | |
Collapse
|
34
|
Chebat DR, Schneider FC, Ptito M. Spatial Competence and Brain Plasticity in Congenital Blindness via Sensory Substitution Devices. Front Neurosci 2020; 14:815. [PMID: 32848575 PMCID: PMC7406645 DOI: 10.3389/fnins.2020.00815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022] Open
Abstract
In congenital blindness (CB), tactile, and auditory information can be reinterpreted by the brain to compensate for visual information through mechanisms of brain plasticity triggered by training. Visual deprivation does not cause a cognitive spatial deficit since blind people are able to acquire spatial knowledge about the environment. However, this spatial competence takes longer to achieve but is eventually reached through training-induced plasticity. Congenitally blind individuals can further improve their spatial skills with the extensive use of sensory substitution devices (SSDs), either visual-to-tactile or visual-to-auditory. Using a combination of functional and anatomical neuroimaging techniques, our recent work has demonstrated the impact of spatial training with both visual to tactile and visual to auditory SSDs on brain plasticity, cortical processing, and the achievement of certain forms of spatial competence. The comparison of performances between CB and sighted people using several different sensory substitution devices in perceptual and sensory-motor tasks uncovered the striking ability of the brain to rewire itself during perceptual learning and to interpret novel sensory information even during adulthood. We discuss here the implications of these findings for helping blind people in navigation tasks and to increase their accessibility to both real and virtual environments.
Collapse
Affiliation(s)
- Daniel-Robert Chebat
- Visual and Cognitive Neuroscience Laboratory (VCN Lab), Department of Psychology, Faculty of Social Sciences and Humanities, Ariel University, Ariel, Israel
- Navigation and Accessibility Research Center of Ariel University (NARCA), Ariel, Israel
| | - Fabien C. Schneider
- Department of Radiology, University of Lyon, Saint-Etienne, France
- Neuroradiology Unit, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Maurice Ptito
- BRAIN Lab, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Chaire de Recherche Harland Sanders en Sciences de la Vision, École d’Optométrie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
35
|
Ruggiero G, Ruotolo F, Orti R, Rauso B, Iachini T. Egocentric metric representations in peripersonal space: A bridge between motor resources and spatial memory. Br J Psychol 2020; 112:433-454. [PMID: 32710656 DOI: 10.1111/bjop.12467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/18/2020] [Indexed: 11/29/2022]
Abstract
Research on visuospatial memory has shown that egocentric (subject-to-object) and allocentric (object-to-object) reference frames are connected to categorical (non-metric) and coordinate (metric) spatial relations, and that motor resources are recruited especially when processing spatial information in peripersonal (within arm reaching) than extrapersonal (outside arm reaching) space. In order to perform our daily-life activities, these spatial components cooperate along a continuum from recognition-related (e.g., recognizing stimuli) to action-related (e.g., reaching stimuli) purposes. Therefore, it is possible that some types of spatial representations rely more on action/motor processes than others. Here, we explored the role of motor resources in the combinations of these visuospatial memory components. A motor interference paradigm was adopted in which participants had their arms bent behind their back or free during a spatial memory task. This task consisted in memorizing triads of objects and then verbally judging what was the object: (1) closest to/farthest from the participant (egocentric coordinate); (2) to the right/left of the participant (egocentric categorical); (3) closest to/farthest from a target object (allocentric coordinate); and (4) on the right/left of a target object (allocentric categorical). The triads appeared in participants' peripersonal (Experiment 1) or extrapersonal (Experiment 2) space. The results of Experiment 1 showed that motor interference selectively damaged egocentric-coordinate judgements but not the other spatial combinations. The results of Experiment 2 showed that the interference effect disappeared when the objects were in the extrapersonal space. A third follow-up study using a within-subject design confirmed the overall pattern of results. Our findings provide evidence that motor resources play an important role in the combination of coordinate spatial relations and egocentric representations in peripersonal space.
Collapse
Affiliation(s)
- Gennaro Ruggiero
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania L. Vanvitelli, Caserta, Italy
| | - Francesco Ruotolo
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania L. Vanvitelli, Caserta, Italy
| | - Renato Orti
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania L. Vanvitelli, Caserta, Italy
| | - Barbara Rauso
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania L. Vanvitelli, Caserta, Italy
| | - Tina Iachini
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania L. Vanvitelli, Caserta, Italy
| |
Collapse
|
36
|
Chen W, Liu B, Li X, Wang P, Wang B. Sex Differences in Spatial Memory. Neuroscience 2020; 443:140-147. [PMID: 32710913 DOI: 10.1016/j.neuroscience.2020.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/04/2020] [Accepted: 06/15/2020] [Indexed: 01/01/2023]
Abstract
Spatial memory is an essential ability for living. Some studies have demonstrated the finding of sex differences in spatial memory. However, the results are diverse, ranging from "significant difference" to "no difference". In this study, we sought to determine the underlying sex differences observed during spatial memory by examining neurofunctional differences in the distinct cortical regions that lay within the spatial memory network. Functional magnetic resonance imaging (fMRI) was used to measure neural responses while healthy young adults were engaged in spatial memory tasks with different levels of memory load. Our results not only illustrate consistent spatial memory networks between the female and male groups but also find a functional interaction between sex and difficulty in left superior frontal gyrus (lSFG) during the encoding phase. In addition, sex divergences in spatial memory appear when task difficulty increases. In sum, our study supports the existence of sex differences in spatial memory and demonstrates the role of task-difficulty expressed in terms of spatial memory involvement.
Collapse
Affiliation(s)
- Wenfei Chen
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin 300350, PR China
| | - Baolin Liu
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| | - Xianglin Li
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Peiyuan Wang
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Bin Wang
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong 264003, PR China
| |
Collapse
|
37
|
Touchscreen Pointing and Swiping: The Effect of Background Cues and Target Visibility. Motor Control 2020; 24:422-434. [PMID: 32502971 DOI: 10.1123/mc.2019-0096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 11/18/2022]
Abstract
By assessing the precision of gestural interactions with touchscreen targets, the authors investigate how the type of gesture, target location, and scene visibility impact movement endpoints. Participants made visually and memory-guided pointing and swiping gestures with a stylus to targets located in a semicircle. Specific differences in aiming errors were identified between swiping and pointing. In particular, participants overshot the target more when swiping than when pointing and swiping endpoints showed a stronger bias toward the oblique than pointing gestures. As expected, the authors also found specific differences between conditions with and without delays. Overall, the authors observed an influence on movement execution from each of the three parameters studied and uncovered that the information used to guide movement appears to be gesture specific.
Collapse
|
38
|
Lowry E, Puthusseryppady V, Coughlan G, Jeffs S, Hornberger M. Path Integration Changes as a Cognitive Marker for Vascular Cognitive Impairment?-A Pilot Study. Front Hum Neurosci 2020; 14:131. [PMID: 32372934 PMCID: PMC7186341 DOI: 10.3389/fnhum.2020.00131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Path integration spatial navigation processes are emerging as promising cognitive markers for prodromal and clinical Alzheimer’s disease (AD). However, such path integration changes have been less explored in Vascular Cognitive Impairment (VCI), despite neurovascular change being a major contributing factor to dementia and potentially AD. In particular, the sensitivity and specificity of path integration impairments in VCI compared to AD is unclear. In the current pilot study, we explore path integration performance in early-stage AD and VCI patient groups and hypothesize that: (i) medial parietal mediated egocentric processes will be more affected in VCI; and (ii) medial temporal mediated allocentric processes will be more affected in AD. This cross-sectional study included early-stage VCI patients (n = 9), AD patients (n = 10) and healthy age-matched controls (n = 20). All participants underwent extensive neuropsychological testing, as well as spatial navigation testing. The spatial navigation tests included the virtual reality “Supermarket” task assessing egocentric (body-based) and allocentric (map-based) navigation as well as the “Clock Orientation” test assessing egocentric and path integration processes. Results showed that egocentric integration processes are only impaired in VCI, potentially distinguishing it from AD. However, in contrast to our prediction, allocentric integration was not more impaired in AD compared to VCI. These preliminary findings suggest limited specificity of allocentric integration deficits between VCI and AD. By contrast, egocentric path integration deficits emerge as more specific to VCI, potentially allowing for more specific diagnostic and treatment outcome measures for vascular impairment in dementia.
Collapse
Affiliation(s)
- Ellen Lowry
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom.,School of Psychology, University of East Anglia, Norwich, United Kingdom
| | | | - Gillian Coughlan
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Stephen Jeffs
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Michael Hornberger
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
39
|
Lv M, Hu S. Asymmetrical Switch Costs in Spatial Reference Frames Switching. Perception 2020; 49:268-280. [DOI: 10.1177/0301006620906087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies found that the egocentric and allocentric reference frames are distinct in their functions, developmental trajectory, and neural basis. However, these two spatial reference frames exist in parallel, and people switch between them frequently in their daily lives. Using an allocentric and egocentric switching task, this study explored the cognitive processes involved in the switch between egocentric and allocentric reference frames and the possible asymmetry of switch costs. Sixty-two participants were tested in congruent (i.e., the target was on the same side in two reference frames) and incongruent conditions (i.e., the target was on a different side in two reference frames). The results indicated that the interaction between allocentric and egocentric reference frames was bidirectional and that the congruency effect was higher in the egocentric task than in the allocentric task. More important, the switch costs between allocentric and egocentric reference frames were found in both conditions, and the switch cost was higher for allocentric task. To our knowledge, this was the first study to focus on how switch costs and asymmetrical switch costs occur in allocentric and egocentric task switching.
Collapse
Affiliation(s)
- Ming Lv
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, China
| | - Siyuan Hu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, China
| |
Collapse
|
40
|
Characterizing Body Image Distortion and Bodily Self-Plasticity in Anorexia Nervosa via Visuo-Tactile Stimulation in Virtual Reality. J Clin Med 2019; 9:jcm9010098. [PMID: 31906009 PMCID: PMC7019698 DOI: 10.3390/jcm9010098] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
We combined virtual reality and multisensory bodily illusion with the aim to characterize and reduce the perceptual (body overestimation) and the cognitive-emotional (body dissatisfaction) components of body image distortion (BID) in anorexia nervosa (AN). For each participant (20 anorexics, 20 healthy controls) we built personalized avatars that reproduced their own body size, shape, and verisimilar increases and losses of their original weight. Body overestimation and dissatisfaction were measured by asking participants to choose the avatar that best resembled their real and ideal body. Results show higher body dissatisfaction in AN, caused by the desire of a thinner body, and no body-size overestimation. Interpersonal multisensory stimulation (IMS) was then applied on the avatar reproducing participant’s perceived body, and on the two avatars which reproduced increases and losses of 15% of it, all presented with a first-person perspective (1PP). Embodiment was stronger after synchronous IMS in both groups, but did not reduce BID in participants with AN. Interestingly, anorexics reported more negative emotions after embodying the fattest avatar, which scaled with symptoms severity. Overall, our findings suggest that the cognitive-emotional, more than the perceptual component of BID is severely altered in AN and that perspective (1PP vs. 3PP) from which a body is evaluated may play a crucial role. Future research and clinical trials might take advantage of virtual reality to reduce the emotional distress related to body dissatisfaction.
Collapse
|
41
|
Chen Y, Crawford JD. Allocentric representations for target memory and reaching in human cortex. Ann N Y Acad Sci 2019; 1464:142-155. [PMID: 31621922 DOI: 10.1111/nyas.14261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/25/2019] [Accepted: 09/28/2019] [Indexed: 01/18/2023]
Abstract
The use of allocentric cues for movement guidance is complex because it involves the integration of visual targets and independent landmarks and the conversion of this information into egocentric commands for action. Here, we focus on the mechanisms for encoding reach targets relative to visual landmarks in humans. First, we consider the behavioral results suggesting that both of these cues influence target memory, but are then transformed-at the first opportunity-into egocentric commands for action. We then consider the cortical mechanisms for these behaviors. We discuss different allocentric versus egocentric mechanisms for coding of target directional selectivity in memory (inferior temporal gyrus versus superior occipital gyrus) and distinguish these mechanisms from parieto-frontal activation for planning egocentric direction of actual reach movements. Then, we consider where and how the former allocentric representations of remembered reach targets are converted into the latter egocentric plans. In particular, our recent neuroimaging study suggests that four areas in the parietal and frontal cortex (right precuneus, bilateral dorsal premotor cortex, and right presupplementary area) participate in this allo-to-ego conversion. Finally, we provide a functional overview describing how and why egocentric and landmark-centered representations are segregated early in the visual system, but then reintegrated in the parieto-frontal cortex for action.
Collapse
Affiliation(s)
- Ying Chen
- Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.,Canadian Action and Perception Network (CAPnet), Toronto, Ontario, Canada
| | - J Douglas Crawford
- Canadian Action and Perception Network (CAPnet), Toronto, Ontario, Canada.,Center for Vision Research, Vision: Science to Applications (VISTA) Program, and Departments of Psychology, Biology, and Kinesiology & Health Science, York University, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Li H, Liu N, Li Y, Weidner R, Fink GR, Chen Q. The Simon Effect Based on Allocentric and Egocentric Reference Frame: Common and Specific Neural Correlates. Sci Rep 2019; 9:13727. [PMID: 31551429 PMCID: PMC6760495 DOI: 10.1038/s41598-019-49990-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 09/04/2019] [Indexed: 11/09/2022] Open
Abstract
An object's location can be represented either relative to an observer's body effectors (egocentric reference frame) or relative to another external object (allocentric reference frame). In non-spatial tasks, an object's task-irrelevant egocentric position conflicts with the side of a task-relevant manual response, which defines the classical Simon effect. Growing evidence suggests that the Simon effect occurs not only based on conflicting positions within the egocentric but also within the allocentric reference frame. Although neural mechanisms underlying the egocentric Simon effect have been extensively researched, neural mechanisms underlying the allocentric Simon effect and their potential interaction with those underlying its egocentric variant remain to be explored. In this fMRI study, spatial congruency between the task-irrelevant egocentric and allocentric target positions and the task-relevant response hand was orthogonally manipulated. Behaviorally, a significant Simon effect was observed for both reference frames. Neurally, three sub-regions in the frontoparietal network were involved in different aspects of the Simon effect, depending on the source of the task-irrelevant object locations. The right precentral gyrus, extending to the right SMA, was generally activated by Simon conflicts, irrespective of the spatial reference frame involved, and showed no additive activity to Simon conflicts. In contrast, the right postcentral gyrus was specifically involved in Simon conflicts induced by task-irrelevant allocentric, rather than egocentric, representations. Furthermore, a right lateral frontoparietal network showed increased neural activity whenever the egocentric and allocentric target locations were incongruent, indicating its functional role as a mismatch detector that monitors the discrepancy concerning allocentric and egocentric object locations.
Collapse
Affiliation(s)
- Hui Li
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Nan Liu
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - You Li
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Ralph Weidner
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, 52425, Jülich, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, 52425, Jülich, Germany
- Department of Neurology, University Hospital Cologne, 50937, Cologne, Germany
| | - Qi Chen
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, 510631, China.
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, P.R. China.
| |
Collapse
|
43
|
Aging and spatial cues influence the updating of navigational memories. Sci Rep 2019; 9:11469. [PMID: 31391574 PMCID: PMC6686023 DOI: 10.1038/s41598-019-47971-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/23/2019] [Indexed: 11/11/2022] Open
Abstract
Updating navigational memories is important for everyday tasks. It was recently found that older adults are impaired in updating spatial representations in small, bi-dimensional layouts. Because performance in small-scale areas cannot predict navigational behavior, we investigated how aging affects the updating of navigational memories encoded in large, 3-dimensional environments. Moreover, since locations can be encoded relative to the observer (egocentric encoding) or relative to landmarks (allocentric encoding), we tested whether the presumed age-related spatial updating deficit depends on the available spatial cues. By combining whole-body motion tracking with immersive virtual reality, we could dissociate egocentric and allocentric spatial cues and assess navigational memory under ecologically valid conditions (i.e., providing body-based and visual cues). In the task, objects were relocated overnight, and young and older participants had to navigate to the updated locations of the objects. In addition to replicating age-related deficits in allocentric memory, we found age-related impairments in updating navigational memories following egocentric encoding. Finally, older participants depicted stronger representations of the previous navigational context that were correlated with their spatial updating deficits. Given that these effects may stem from inefficient suppression of former navigational memories, our findings propose a mechanism that helps explain the navigational decline in aging.
Collapse
|
44
|
Yuan L, Kong F, Luo Y, Zeng S, Lan J, You X. Gender Differences in Large-Scale and Small-Scale Spatial Ability: A Systematic Review Based on Behavioral and Neuroimaging Research. Front Behav Neurosci 2019; 13:128. [PMID: 31275121 PMCID: PMC6591491 DOI: 10.3389/fnbeh.2019.00128] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022] Open
Abstract
Background: As we human beings are living in a multidimensional space all the time. Therefore, spatial ability is vital for the survival and development of individuals. However, males and females show gender differences in this ability. So, are these gender differences influenced by the scale type of spatial ability? It's not well specified. Therefore, to tackle this issue, we conducted the current research from the behavioral and neural level. Methods: Study 1 used the general meta-analysis method to explore whether individuals display the same gender differences in large- and small-scale spatial ability. Study 2 used the method of Activation Likelihood Estimation to identify the commonalities and distinctions of the brain activity between males and females on large- and small-scale spatial ability. Results: Study 1 showed that in behavior performance, males outperformed females in both large-scale and small-scale spatial ability, but the effect size of the gender difference in large-scale spatial ability is significantly greater than that in small-scale spatial ability. In addition, Study 2 showed that in terms of neural activity, males and females exhibited both similarities and differences no matter in large-scale or small-scale spatial ability. Especially, the contrast analysis between females and males demonstrated a stronger activation in the brain regions of bilateral lentiform nucleus and bilateral parahippocampal gyrus in large-scale spatial ability, and correspondence in right sub-gyral, right precuneus, and left middle frontal gyrus in small-scale spatial ability. Conclusions: The results indicated that the reason why females performed not so well in large-scale spatial ability was that they were more susceptible to emotions and their parahippocampal gyrus worked less efficiently than males; females performed not so well in small-scale spatial ability because they mostly adopted the egocentric strategy and their sub-gyral also worked less efficiently than males. The two different reasons have made for gender differences in favor of males in terms of spatial ability and such gender differences have different manifestations in large-scale and small-scale spatial ability. Possible implications of the results for understanding the issue of gender differences in spatial ability are discussed.
Collapse
Affiliation(s)
- Li Yuan
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Feng Kong
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Yangmei Luo
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Siyao Zeng
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Jijun Lan
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Xuqun You
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, School of Psychology, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
45
|
Ruotolo F, Ruggiero G, Raemaekers M, Iachini T, van der Ham I, Fracasso A, Postma A. Neural correlates of egocentric and allocentric frames of reference combined with metric and non-metric spatial relations. Neuroscience 2019; 409:235-252. [DOI: 10.1016/j.neuroscience.2019.04.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 03/28/2019] [Accepted: 04/09/2019] [Indexed: 01/08/2023]
|
46
|
Egocentric processing in the roll plane and dorsal parietal cortex: A TMS-ERP study of the subjective visual vertical. Neuropsychologia 2019; 127:113-122. [DOI: 10.1016/j.neuropsychologia.2019.02.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/29/2019] [Accepted: 02/28/2019] [Indexed: 11/18/2022]
|
47
|
Zajac L, Burte H, Taylor HA, Killiany R. Self-reported navigation ability is associated with optic flow-sensitive regions' functional connectivity patterns during visual path integration. Brain Behav 2019; 9:e01236. [PMID: 30884216 PMCID: PMC6456774 DOI: 10.1002/brb3.1236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/16/2019] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Spatial navigation is a complex cognitive skill that varies between individuals, and the mechanisms underlying this variability are not clear. Studying simpler components of spatial navigation may help illuminate factors that contribute to variation in this complex skill; path integration is one such component. Optic flow provides self-motion information while moving through an environment and is sufficient for path integration. This study aims to investigate whether self-reported navigation ability is related to information transfer between optic flow-sensitive (OF-sensitive) cortical regions and regions important to navigation during environmental spatial tasks. METHODS Functional magnetic resonance imaging was used to define OF-sensitive regions and map their functional connectivity (FC) with the retrosplenial cortex and hippocampus during visual path integration (VPI) and turn counting (TC) tasks. Both tasks presented visual self-motion through a real-world environment. Correlations predicting a positive association between self-reported navigation ability (measured with the Santa Barbara Sense of Direction scale) and FC strength between OF-sensitive regions and retrosplenial cortex and OF-sensitive regions and the hippocampus were performed. RESULTS During VPI, FC strength between left cingulate sulcus visual area (L CSv) and right retrosplenial cortex and L CSv and right hippocampus was positively associated with self-reported navigation ability. FC strength between right cingulate sulcus visual area (R CSv) and right retrosplenial cortex during VPI was also positively associated with self-reported navigation ability. These relationships were specific to VPI, and whole-brain exploratory analyses corroborated these results. CONCLUSIONS These findings support the hypothesis that perceived spatial navigation ability is associated with communication strength between OF-sensitive and navigationally relevant regions during visual path integration, which may represent the transformation accuracy of visual motion information into internal spatial representations. More broadly, these results illuminate underlying mechanisms that may explain some variability in spatial navigation ability.
Collapse
Affiliation(s)
- Lauren Zajac
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts.,Center for Biomedical Imaging, Boston University School of Medicine, Boston, Massachusetts
| | - Heather Burte
- Department of Psychology, Tufts University, Medford, Massachusetts
| | - Holly A Taylor
- Department of Psychology, Tufts University, Medford, Massachusetts
| | - Ronald Killiany
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts.,Center for Biomedical Imaging, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
48
|
Li Y, Kong F, Ji M, Luo Y, Lan J, You X. Shared and Distinct Neural Bases of Large- and Small-Scale Spatial Ability: A Coordinate-Based Activation Likelihood Estimation Meta-Analysis. Front Neurosci 2019; 12:1021. [PMID: 30686987 PMCID: PMC6335367 DOI: 10.3389/fnins.2018.01021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/18/2018] [Indexed: 11/19/2022] Open
Abstract
Background: Spatial ability is vital for human survival and development. However, the relationship between large-scale and small-scale spatial ability remains poorly understood. To address this issue from a novel perspective, we performed an activation likelihood estimation (ALE) meta-analysis of neuroimaging studies to determine the shared and distinct neural bases of these two forms of spatial ability. Methods: We searched Web of Science, PubMed, PsycINFO, and Google Scholar for studies regarding "spatial ability" published within the last 20 years (January 1988 through June 2018). A final total of 103 studies (Table 1) involving 2,085 participants (male = 1,116) and 2,586 foci were incorporated into the meta-analysis. Results: Large-scale spatial ability was associated with activation in the limbic lobe, posterior lobe, occipital lobe, parietal lobe, right anterior lobe, frontal lobe, and right sub-lobar area. Small-scale spatial ability was associated with activation in the parietal lobe, occipital lobe, frontal lobe, right posterior lobe, and left sub-lobar area. Furthermore, conjunction analysis revealed overlapping regions in the sub-gyrus, right superior frontal gyrus, right superior parietal lobule, right middle occipital gyrus, right superior occipital gyrus, left inferior occipital gyrus, and precuneus. The contrast analysis demonstrated that the parahippocampal gyrus, left lingual gyrus, culmen, right middle temporal gyrus, left declive, left superior occipital gyrus, and right lentiform nucleus were more strongly activated during large-scale spatial tasks. In contrast, the precuneus, right inferior frontal gyrus, right precentral gyrus, left inferior parietal lobule, left supramarginal gyrus, left superior parietal lobule, right inferior occipital gyrus, and left middle frontal gyrus were more strongly activated during small-scale spatial tasks. Our results further indicated that there is no absolute difference in the cognitive strategies associated with the two forms of spatial ability (egocentric/allocentric). Conclusion: The results of the present study verify and expand upon the theoretical model of spatial ability proposed by Hegarty et al. Our analysis revealed a shared neural basis between large- and small-scale spatial abilities, as well as specific yet independent neural bases underlying each. Based on these findings, we proposed a more comprehensive version of the behavioral model.
Collapse
Affiliation(s)
- Yuan Li
- School of Psychology, Shaanxi Normal University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, Xi'an, China
| | - Feng Kong
- School of Psychology, Shaanxi Normal University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, Xi'an, China
| | - Ming Ji
- School of Psychology, Shaanxi Normal University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, Xi'an, China
| | - Yangmei Luo
- School of Psychology, Shaanxi Normal University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, Xi'an, China
| | - Jijun Lan
- School of Psychology, Shaanxi Normal University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, Xi'an, China
| | - Xuqun You
- School of Psychology, Shaanxi Normal University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, Xi'an, China
| |
Collapse
|
49
|
Bocchi A, Palermo L, Boccia M, Palmiero M, D'Amico S, Piccardi L. Object recognition and location: Which component of object location memory for landmarks is affected by gender? Evidence from four to ten year-old children. APPLIED NEUROPSYCHOLOGY-CHILD 2018; 9:31-40. [DOI: 10.1080/21622965.2018.1504218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Alessia Bocchi
- Health and Environmental Science, University of L’Aquila, L’Aquila, Italy
| | - Liana Palermo
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | | | - Massimiliano Palmiero
- Neuropsychology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Simonetta D'Amico
- Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Laura Piccardi
- Health and Environmental Science, University of L’Aquila, L’Aquila, Italy
- Neuropsychology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
50
|
Yoo PE, Oxley TJ, John SE, Opie NL, Ordidge RJ, O'Brien TJ, Hagan MA, Wong YT, Moffat BA. Feasibility of identifying the ideal locations for motor intention decoding using unimodal and multimodal classification at 7T-fMRI. Sci Rep 2018; 8:15556. [PMID: 30349004 PMCID: PMC6197258 DOI: 10.1038/s41598-018-33839-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/03/2018] [Indexed: 01/09/2023] Open
Abstract
Invasive Brain-Computer Interfaces (BCIs) require surgeries with high health-risks. The risk-to-benefit ratio of the procedure could potentially be improved by pre-surgically identifying the ideal locations for mental strategy classification. We recorded high-spatiotemporal resolution blood-oxygenation-level-dependent (BOLD) signals using functional MRI at 7 Tesla in eleven healthy participants during two motor imagery tasks. BCI diagnostic task isolated the intent to imagine movements, while BCI simulation task simulated the neural states that may be yielded in a real-life BCI-operation scenario. Imagination of movements were classified from the BOLD signals in sub-regions of activation within a single or multiple dorsal motor network regions. Then, the participant's decoding performance during the BCI simulation task was predicted from the BCI diagnostic task. The results revealed that drawing information from multiple regions compared to a single region increased the classification accuracy of imagined movements. Importantly, systematic unimodal and multimodal classification revealed the ideal combination of regions that yielded the best classification accuracy at the individual-level. Lastly, a given participant's decoding performance achieved during the BCI simulation task could be predicted from the BCI diagnostic task. These results show the feasibility of 7T-fMRI with unimodal and multimodal classification being utilized for identifying ideal sites for mental strategy classification.
Collapse
Affiliation(s)
- Peter E Yoo
- Department of Anatomy and Neuroscience, The University of Melbourne, VIC, Australia. .,Vascular Bionics Laboratory, Melbourne Brain Centre, Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, VIC, Australia. .,The Florey Institute of Neuroscience and Mental Health, VIC, Australia.
| | - Thomas J Oxley
- Vascular Bionics Laboratory, Melbourne Brain Centre, Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, VIC, Australia
| | - Sam E John
- Vascular Bionics Laboratory, Melbourne Brain Centre, Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, VIC, Australia
| | - Nicholas L Opie
- Vascular Bionics Laboratory, Melbourne Brain Centre, Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, VIC, Australia
| | - Roger J Ordidge
- Department of Anatomy and Neuroscience, The University of Melbourne, VIC, Australia
| | - Terence J O'Brien
- The Departments of Neuroscience, The Central Clinical School, Monash University, VIC, Australia.,The Department of Neurology, the Alfred Hospital, Melbourne, VIC, Australia
| | - Maureen A Hagan
- Department of Physiology, Monash University, VIC, Australia.,Biomedicine Discovery Institute, Monash University, VIC, Australia
| | - Yan T Wong
- Department of Physiology, Monash University, VIC, Australia.,Biomedicine Discovery Institute, Monash University, VIC, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, VIC, Australia
| | - Bradford A Moffat
- Department of Anatomy and Neuroscience, The University of Melbourne, VIC, Australia
| |
Collapse
|