1
|
Chiesa M, Rabiei H, Riffault B, Ferrari DC, Ben-Ari Y. Brain Volumes in Mice are Smaller at Birth After Term or Preterm Cesarean Section Delivery. Cereb Cortex 2021; 31:3579-3591. [PMID: 33754629 DOI: 10.1093/cercor/bhab033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/31/2022] Open
Abstract
The rate of cesarean section (CS) delivery has steadily increased over the past decades despite epidemiological studies reporting higher risks of neonatal morbidity and neurodevelopmental disorders. Yet, little is known about the immediate impact of CS birth on the brain, hence the need of experimental studies to evaluate brain parameters following this mode of delivery. Using the solvent clearing method iDISCO and 3D imaging technique, we report that on the day of birth, whole-brain, hippocampus, and striatum volumes are reduced in CS-delivered as compared to vaginally-born mice, with a stronger effect observed in preterm CS pups. These results stress the impact of CS delivery, at term or preterm, during parturition and at birth. In contrast, cellular activity and apoptosis are reduced in mice born by CS preterm but not term, suggesting that these early-life processes are only impacted by the combination of preterm birth and CS delivery.
Collapse
Affiliation(s)
- Morgane Chiesa
- Fundamental Research Department, Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Marseille cedex 09, 13288, France
| | - Hamed Rabiei
- Fundamental Research Department, Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Marseille cedex 09, 13288, France
| | - Baptiste Riffault
- Fundamental Research Department, Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Marseille cedex 09, 13288, France
| | - Diana Carolina Ferrari
- Fundamental Research Department, Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Marseille cedex 09, 13288, France
| | - Yehezkel Ben-Ari
- Fundamental Research Department, Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Marseille cedex 09, 13288, France
| |
Collapse
|
2
|
Tribe RM, Taylor PD, Kelly NM, Rees D, Sandall J, Kennedy HP. Parturition and the perinatal period: can mode of delivery impact on the future health of the neonate? J Physiol 2018; 596:5709-5722. [PMID: 29533463 PMCID: PMC6265543 DOI: 10.1113/jp275429] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/25/2018] [Indexed: 12/21/2022] Open
Abstract
Caesarean section and instrumental delivery rates are increasing in many parts of the world for a range of cultural and medical reasons, with limited consideration as to how 'mode of delivery' may impact on childhood and long-term health. However, babies born particularly by pre-labour caesarean section appear to have a subtly different physiology from those born by normal vaginal delivery, with both acute and chronic complications such as respiratory and cardio-metabolic morbidities being apparent. It has been hypothesized that inherent mechanisms within the process of labour and vaginal delivery, far from being a passive mechanical process by which the fetus and placenta are expelled from the birth canal, may trigger certain protective developmental processes permissive for normal immunological and physiological development of the fetus postnatally. Traditionally the primary candidate mechanism has been the hormonal surges or stress response associated with labour and vaginal delivery, but there is increasing awareness that transfer of the maternal microbiome to the infant during parturition. Transgenerational transmission of disease traits through epigenetics are also likely to be important. Interventions such as probiotics, neonatal gut seeding and different approaches to clinical care have potential to influence parturition physiology and improve outcomes for infants.
Collapse
Affiliation(s)
- R. M. Tribe
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, St Thomas’ Hospital CampusKing's College LondonLondon SE1 7EHUK
| | - P. D. Taylor
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, St Thomas’ Hospital CampusKing's College LondonLondon SE1 7EHUK
| | - N. M. Kelly
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, St Thomas’ Hospital CampusKing's College LondonLondon SE1 7EHUK
| | - D. Rees
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, St Thomas’ Hospital CampusKing's College LondonLondon SE1 7EHUK
| | - J. Sandall
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, St Thomas’ Hospital CampusKing's College LondonLondon SE1 7EHUK
| | - H. P. Kennedy
- Yale School of Nursing400 West Campus DriveWest HavenCT 06516USA
| |
Collapse
|
3
|
Birth delivery mode alters perinatal cell death in the mouse brain. Proc Natl Acad Sci U S A 2018; 115:11826-11831. [PMID: 30322936 DOI: 10.1073/pnas.1811962115] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Labor and a vaginal delivery trigger changes in peripheral organs that prepare the mammalian fetus to survive ex utero. Surprisingly little attention has been given to whether birth also influences the brain, and to how alterations in birth mode affect neonatal brain development. These are important questions, given the high rates of cesarean section (C-section) delivery worldwide, many of which are elective. We examined the effect of birth mode on neuronal cell death, a widespread developmental process that occurs primarily during the first postnatal week in mice. Timed-pregnant dams were randomly assigned to C-section deliveries that were yoked to vaginal births to carefully match gestation length and circadian time of parturition. Compared with rates of cell death just before birth, vaginally-born offspring had an abrupt, transient decrease in cell death in many brain regions, suggesting that a vaginal delivery is neuroprotective. In contrast, cell death was either unchanged or increased in C-section-born mice. Effects of delivery mode on cell death were greatest for the paraventricular nucleus of the hypothalamus (PVN), which is central to the stress response and brain-immune interactions. The greater cell death in the PVN of C-section-delivered newborns was associated with a reduction in the number of PVN neurons expressing vasopressin at weaning. C-section-delivered mice also showed altered vocalizations in a maternal separation test and greater body mass at weaning. Our results suggest that vaginal birth acutely impacts brain development, and that alterations in birth mode may have lasting consequences.
Collapse
|
4
|
Chen WC, Chung CH, Lu YC, Wu MH, Chou PH, Yen JY, Lai YW, Wang GS, Liu SC, Cheng JK, Wu YJ, Yeh HI, Wang LY, Wang SW. BMP-2 induces angiogenesis by provoking integrin α6 expression in human endothelial progenitor cells. Biochem Pharmacol 2018; 150:256-266. [PMID: 29458046 DOI: 10.1016/j.bcp.2018.02.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/14/2018] [Indexed: 11/18/2022]
Abstract
Bone morphogenetic protein-2 (BMP-2) is a multifunctional cytokine, capable of governing several cellular functions, including proliferation, motility, differentiation, and angiogenesis. Circulating endothelial progenitor cells (EPCs) have been shown to facilitate tissue repair, postnatal neovascularization, and tumor associated angiogenesis. Nevertheless, the impact of BMP-2 on angiogenesis of human EPCs has largely remained a mystery. In this study, we found that BMP-2 promoted cell migration and tube formation of EPCs in a concentration-dependent manner, indicating BMP-2 induced in vitro angiogenesis in human EPCs. Furthermore, BMP-2 significantly increased microvessel formation in Matrigel plug assay, and BMP-2 antagonist noggin prevented BMP-2-induced in vivo angiogenesis. Mechanistic investigations showed BMP-2 profoundly induced the expression of Id-1 and integrin α6 as well as EPCs angiogenesis by activating PI3K/Akt and MEK/ERK signaling pathways. Moreover, knockdown of Id-1 and integrin α6 by siRNA transfection obviously attenuated BMP-2-indueced tube formation of EPCs. These results suggest that BMP-2 promotes angiogenesis in human EPCs through the activation of PI3K/Akt, MEK/ERK, and Id-1/integrin α6 signaling cascades. This is the first demonstration that BMP-2 exhibits the angiogenesis property on human EPCs. BMP-2 might serve as the potential therapeutic target for treatment of angiogenesis-related diseases.
Collapse
Affiliation(s)
- Wei-Cheng Chen
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Ching-Hu Chung
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Yung-Chang Lu
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Min-Huan Wu
- Sports Recreation and Health Management Continuing Studies, Tunghai University, Taichung, Taiwan; Physical Education Office, Tunghai University, Taichung, Taiwan
| | - Po-Hsun Chou
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Juei-Yu Yen
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yu-Wei Lai
- Division of Urology, Taipei City Hospital Renai Branch, Taiwan; Department of Urology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Guo-Shou Wang
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shih-Chia Liu
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Jen-Kun Cheng
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan; Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yih-Jer Wu
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hung-I Yeh
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Li-Yu Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
5
|
Paparelli A, Iwata K, Wakuda T, Iyegbe C, Murray RM, Takei N. Perinatal Asphyxia in Rat Alters Expression of Novel Schizophrenia Risk Genes. Front Mol Neurosci 2017; 10:341. [PMID: 29163023 PMCID: PMC5663725 DOI: 10.3389/fnmol.2017.00341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/06/2017] [Indexed: 11/17/2022] Open
Abstract
Epidemiological studies suggest that obstetric complications, particularly those related to hypoxia during labor and delivery, are a risk factor for development of schizophrenia. The impact of perinatal asphyxia on postnatal life has been studied in a rodent model of global hypoxia, which is accompanied by cesarean section birth. This asphyxia model shows several behavioral, pharmacological, neurochemical, and neuroanatomical abnormalities in adulthood that have relevance to schizophrenia. Further, it is suggested that schizophrenia has a strong genetic component, and indeed novel candidate genes were recently identified by a genome-wide association study. Here, we examined alteration in the novel schizophrenia risk genes, CNNM2, CSMD1, and MMP16 in the brains of rats undergoing cesarean section with or without global hypoxia. The brain regions studied were the prefrontal cortex, striatum, and hippocampus, which are all relevant to schizophrenia. Risk gene expression was measured at three time periods: neonatal, adolescence, and adulthood. We also performed an in vitro analysis to determine involvement of these genes in CNS maturation during differentiation of human neuronal and glial cell lines. Cnnm2 expression was altered in the brains of asphyxia model rats. However, Csmd1 and Mmp16 showed altered expression by exposure to cesarean section only. These findings suggest that altered expression of these risk genes via asphyxia and cesarean section may be associated, albeit through distinct pathways, with the pathobiology of schizophrenia.
Collapse
Affiliation(s)
- Alessandra Paparelli
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Keiko Iwata
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan.,Department of Biology, University of Padova, Padova, Italy
| | - Tomoyasu Wakuda
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Conrad Iyegbe
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Nori Takei
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, United Kingdom.,Division of Neuropsychological Development and Health Sciences, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Hamamatsu, Japan.,Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
6
|
Barkhuizen M, van den Hove DLA, Vles JSH, Steinbusch HWM, Kramer BW, Gavilanes AWD. 25 years of research on global asphyxia in the immature rat brain. Neurosci Biobehav Rev 2017; 75:166-182. [PMID: 28161509 DOI: 10.1016/j.neubiorev.2017.01.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/27/2017] [Accepted: 01/29/2017] [Indexed: 10/20/2022]
Abstract
Hypoxic-ischemic encephalopathy remains a common cause of brain damage in neonates. Preterm infants have additional complications, as prematurity by itself increases the risk of encephalopathy. Currently, therapy for this subset of asphyxiated infants is limited to supportive care. There is an urgent need for therapies in preterm infants - and for representative animal models for preclinical drug development. In 1991, a novel rodent model of global asphyxia in the preterm infant was developed in Sweden. This method was based on the induction of asphyxia during the birth processes itself by submerging pups, still in the uterine horns, in a water bath followed by C-section. This insult occurs at a time-point when the rodent brain maturity resembles the brain of a 22-32 week old human fetus. This model has developed over the past 25 years as an established model of perinatal global asphyxia in the early preterm brain. Here we summarize the knowledge gained on the short- and long-term neuropathological and behavioral effects of asphyxia on the immature central nervous system.
Collapse
Affiliation(s)
- M Barkhuizen
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands; Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, South Africa
| | - D L A van den Hove
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - J S H Vles
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Child Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - H W M Steinbusch
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - B W Kramer
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands; Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - A W D Gavilanes
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands; Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Institute of Biomedicine, Facultad de Ciencias Médicas, Universidad Católica de Santiago de Guayaquil, Ecuador.
| |
Collapse
|
7
|
Maternal Oxytocin Administration Before Birth Influences the Effects of Birth Anoxia on the Neonatal Rat Brain. Neurochem Res 2015; 40:1631-43. [DOI: 10.1007/s11064-015-1645-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 05/05/2015] [Accepted: 06/19/2015] [Indexed: 01/07/2023]
|
8
|
Ashdown H, Joita S, Luheshi GN, Boksa P. Acute brain cytokine responses after global birth hypoxia in the rat. J Neurosci Res 2008; 86:3401-9. [DOI: 10.1002/jnr.21785] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Juárez I, Gratton A, Flores G. Ontogeny of altered dendritic morphology in the rat prefrontal cortex, hippocampus, and nucleus accumbens following Cesarean delivery and birth anoxia. J Comp Neurol 2008; 507:1734-47. [PMID: 18253967 DOI: 10.1002/cne.21651] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We used a delayed Cesarean birth model and the Golgi-Cox staining method to investigate the effects of perinatal anoxia on prefrontal cortex (PFC) and hippocampal (CA1) pyramidal neurons as well as nucleus accumbens (NAcc) medium spiny neurons. Dendritic morphology in these regions was studied on postnatal days (P) 2, 7, 14, 21, 35, and 70 in male Sprague-Dawley rats born either vaginally (VAG) or by Cesarean section either with (C + anoxia) or without (C-only) anoxia. The most striking birth group differences seen were at the level of dendritic spine densities on P35. During this postnatal period the dendritic spine density of PFC neurons was significantly lower in C + anoxia and C-only animals than in VAG controls; however, by P70 PFC spine densities in all birth groups were comparable. In contrast, hippocampal spine densities on P35 were comparably greater in C + anoxia animals than in VAG controls, whereas in C-only animals spine densities were lower than controls; here again, by P70 all groups had comparable hippocampal spine densities. In NAcc greater spine densities were seen on medium spiny neurons of C + anoxia animals on P35. These findings provide evidence that perinatal insult in the form of Cesarean birth with or without anoxia alters the dendritic development of PFC and hippocampal pyramidal neurons and to some extent also of NAcc medium spiny neurons. They also suggest that perinatal anoxia can alter the neuronal development of key structures thought to be affected in such late-onset dopamine-related disorders as schizophrenia and Attention Deficit Hyperactivity Disorder (ADHD).
Collapse
Affiliation(s)
- Ismael Juárez
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Universidad Autónoma de Puebla, Puebla 72570, México
| | | | | |
Collapse
|
10
|
Valdez SR, Patterson SI, Ezquer ME, Torrecilla M, Lama MC, Seltzer AM. Acute sublethal global hypoxia induces transient increase of GAP-43 immunoreactivity in the striatum of neonatal rats. Synapse 2007; 61:124-37. [PMID: 17146769 DOI: 10.1002/syn.20353] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We assessed immunoreactivity (IR) in the cerebral cortex (CC), hippocampus (Hipp), and striatum (ST) of a growth-associated protein, GAP-43, and of proteins of the synaptic vesicle fusion complex: VAMP-2, Syntaxin-1, and SNAP-25 (SNARE proteins) throughout postnatal development of rats after submitting the animals to acute global postnatal hypoxia (6.5% O(2), 70 min) at postnatal day 4 (PND4). In the CC only the IR of the SNARE protein SNAP-25 increased significantly with age. The hypoxic animals showed the same pattern of IR for SNAP-25, although with lower levels at PND11, and also a significant increase of VAMP-2. SNAP-25 (control): PND11 P < 0.001 vs. PND18, 25, and 40, SNAP-25 (hypoxic): P < 0.001 vs. PND18, 25, and 40; VAMP-2 (hypoxic): P < 0.05 PND11 vs. PND18, and P < 0.01 vs. PND25 and PND40; one-way ANOVA and Bonferroni post-test. In the Hipp, SNAP-25 and syntaxin-1 increased significantly with age, reaching a plateau at PND25 through PND40 in control animals (one-way ANOVA: syntaxin-1: P = 0.043; Bonferroni: NS; SNAP-25: P = 0.013; Bonferroni: P < 0.01 PND11 vs. PND40). Hypoxic rats showed higher levels of significance in the one-way ANOVA than controls (syntaxin-1: P = 0.009; Bonferroni: P < 0.05 PND11 vs. PND25 and P < 0.001 PND11 vs. PND40). In the ST, GAP-43 differed significantly among hypoxic and control animals and the two-way ANOVA revealed significant differences with age (F = 3.23; P = 0.037) and treatment (F = 4.84; P = 0.036). VAMP-2 expression also reached statistical significance when comparing control and treated animals (F = 6.25, P = 0.018) without changes regarding to age. Elevated plus maze test performed at PND40 indicated a lower level of anxiety in the hypoxic animals. At adulthood (12 weeks) learning, memory and locomotor abilities were identical in both groups of animals. With these results, we demonstrate that proteins of the presynaptic structures of the ST are sensitive to acute disruption of homeostatic conditions, such as a temporary decrease of the O(2) concentration. Modifications in the activity of these proteins could contribute to the long term altered responses to stress due to acute hypoxic insult in the neonatal period.
Collapse
Affiliation(s)
- Susana R Valdez
- IMBECU-CRICYT, Centro Regional de Investigaciones Científicas y Tecnológicas, Mendoza, Argentina
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
The rat model of global anoxia during cesarean section birth has been used extensively to investigate effects of birth hypoxia on central nervous system function. This study tested whether differential maternal care mediates central nervous system alterations in this model. Maternal care of mixed litters of pups born vaginally, by cesarean section or by cesarean section with anoxia, was assessed. Frequency and duration of licking and grooming by dams were similar for all birth groups. No group differences were observed in order of retrieval, when pups were displaced from the nest. The results indicate that altered central nervous system function in anoxic animals in this model are not due to differential maternal care, but may be mediated by other mechanisms such as direct hypoxic insult to neurons.
Collapse
Affiliation(s)
- Yonina Levine
- Douglas Hospital Research Center, Department of Psychiatry, McGill University Montreal, Quebec, Canada
| | | |
Collapse
|
12
|
Panarello GL, Dewey CW, Barone G, Stefanacci JD. Magnetic resonance imaging of two suspected cases of global brain ischemia. J Vet Emerg Crit Care (San Antonio) 2004. [DOI: 10.1111/j.1476-4431.2004.04007.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
El-Khodor BF, Flores G, Srivastava LK, Boksa P. Effects of birth insult and stress at adulthood on excitatory amino acid receptors in adult rat brain. Synapse 2004; 54:138-46. [PMID: 15452866 DOI: 10.1002/syn.20073] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Birth complications involving fetal hypoxia and stress at adulthood, which are risk factors for schizophrenia, can produce alterations in subcortical dopamine (DA) function in rat models. As adults, rats born either by cesarean section (C-section) or by C-section with added global anoxia show increased stress-induced DA release from nucleus accumbens and increased amphetamine-induced locomotion, compared to vaginally born controls. Moreover, stress at adulthood interacts with these birth insults to modulate DA receptor and transporter levels. Glutamatergic transmission at the level of the nucleus accumbens, prefrontal cortex, and hippocampus are known to modulate subcortical DA activity. Thus, altered excitatory amino acid (EAA) function might contribute to the dopaminergic changes observed in rats after birth insult and/or stress at adulthood. To test this possibility, rats born vaginally, by C-section, or by C-section with 15 min of anoxia, were either repeatedly stressed (15 min of tail pinch daily for 5 days) at adulthood or received no stress, and levels of EAA receptor binding were measured by ligand autoradiography in limbic brain regions. As adults, rats born by C-section showed increases in AMPA receptor binding in nucleus accumbens shell, NMDA receptor binding in cingulate cortex, and kainate receptor binding in the hippocampal CA1 region. Anoxic rats showed increases in CA1 kainate receptor and anterior olfactory NMDA receptor binding. Stress at adulthood increased AMPA receptor binding in several regions of prefrontal cortex and reduced NMDA receptor binding in infralimbic cortex and dentate gyrus, across all birth groups. Two instances of interactions between birth insult and stress at adulthood were observed. Stress reduced cingulate cortex NMDA receptor binding and increased olfactory tubercle kainate receptor binding only in C-sectioned animals, but not in controls. The possibility that the observed EAA receptor changes contribute to dopaminergic dysfunction in these animal models is discussed, in light of known glutamate-DA interactions.
Collapse
Affiliation(s)
- Bassem F El-Khodor
- Department of Psychiatry, McGill University, Douglas Hospital Research Center, Verdun, Quebec, Canada H4H 1R3
| | | | | | | |
Collapse
|
14
|
Boksa P, Zhang Y, Bestawros A. Dopamine D1 receptor changes due to caesarean section birth: effects of anesthesia, developmental time course, and functional consequences. Exp Neurol 2002; 175:388-97. [PMID: 12061868 DOI: 10.1006/exnr.2002.7896] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is an epidemiological association between increased obstetric complications and disorders involving CNS dopamine dysregulation, such as schizophrenia. In light of this, a rat model of global hypoxia during Caesarean section (C-section) birth has been used to directly test if birth complications can produce long-term dopaminergic dysregulation. Previous studies have shown that, compared to vaginal birth, C-section birth alone (without additional global hypoxia) is sufficient to increase D1-like receptor binding in rat brain at adulthood. The current study examined (1) the developmental time course of changes in D1-like or D2-like receptors following C-section birth; (2) whether C-section birth from isoflurane-anesthetized dams also results in altered D1-like receptor levels, as does C-section from decapitated dams; and (3) behavioral responses to D1 and D2 agonists in rats born vaginally compared to C-section. Increases in nucleus accumbens D1-like receptor binding due to C-section birth were observed only at adulthood (3 months) but not prepubertally (1 month or 2 weeks). D2-like receptor binding levels were unaffected by C-section birth across the three developmental time points. Compared to vaginal birth, D1-like receptors were increased following C-section birth from isoflurane-anesthetized dams, as well as from decapitated dams. Adult rats that had been born by C-section showed enhanced D1 potentiation of D2-induced locomotor behavior. These studies indicate that C-section birth, from either anesthetized or unanesthetized dams, results in postpubertal increases in D1-like receptor binding and enhanced functional responses to D1 receptor activation.
Collapse
Affiliation(s)
- Patricia Boksa
- Department of Psychiatry, McGill University, Douglas Hospital Research Centre, 6875 LaSalle Boulevard, Verdun, Quebec H4H 1R3, Canada.
| | | | | |
Collapse
|
15
|
El-Khodor BF, Boksa P. Birth insult and stress interact to alter dopamine transporter binding in rat brain. Neuroreport 2002; 13:201-6. [PMID: 11893910 DOI: 10.1097/00001756-200202110-00006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study investigated whether mild birth complications (C-section birth, C-section + 15 min global anoxia) interact with stress at adulthood to modulate levels of [3H]WIN 35428 binding to dopamine transporters (DAT) in rat brain. Without stress, adult C-sectioned rats showed increased DAT binding in the dorsal striatum and nucleus accumbens core compared to vaginal birth, while anoxic rats showed increased DAT binding in cingulate and infralimbic cortices. Stress at adulthood had differential effects on DAT binding in the three birth groups. Thus, after repeated tail pinch stress at adulthood, DAT binding was significantly lower in the nucleus accumbens in both the C-section group and the anoxic group, compared to vaginal birth. It is concluded that a history of birth complications can alter the manner in which DAT is regulated by stress in the adult rat brain.
Collapse
Affiliation(s)
- Bassem F El-Khodor
- Departments of Psychiatry and of Neurology and Neurosurgery, McGill University, Douglas Hospital Research Centre, 6875 LaSalle Boulevard, Verdun, Quebec, Canada
| | | |
Collapse
|